mirror of https://github.com/ARMmbed/mbed-os.git
216 lines
8.7 KiB
Python
216 lines
8.7 KiB
Python
"""
|
|
@copyright (c) 2012 ON Semiconductor. All rights reserved.
|
|
ON Semiconductor is supplying this software for use with ON Semiconductor
|
|
processor based microcontrollers only.
|
|
THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
|
|
OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
|
|
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
|
|
ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
|
|
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import print_function
|
|
|
|
import itertools
|
|
import binascii
|
|
import intelhex
|
|
from tools.config import Config
|
|
|
|
FIB_BASE = 0x2000
|
|
FLASH_BASE = 0x3000
|
|
FW_REV = 0x01000100
|
|
TRIM_BASE = 0x2800
|
|
|
|
def ranges(i):
|
|
for _, b in itertools.groupby(enumerate(i), lambda x_y: x_y[1] - x_y[0]):
|
|
b = list(b)
|
|
yield b[0][1], b[-1][1]
|
|
|
|
|
|
def add_fib_at_start(arginput):
|
|
input_file = arginput + ".bin"
|
|
file_name_hex = arginput + "_fib.hex"
|
|
file_name_bin = arginput + ".bin"
|
|
|
|
# Read in hex file
|
|
input_hex_file = intelhex.IntelHex()
|
|
input_hex_file.padding = 0x00
|
|
input_hex_file.loadbin(input_file, offset=FLASH_BASE)
|
|
|
|
output_hex_file = intelhex.IntelHex()
|
|
output_hex_file.padding = 0x00
|
|
|
|
# Get the starting and ending address
|
|
addresses = input_hex_file.addresses()
|
|
addresses.sort()
|
|
start_end_pairs = list(ranges(addresses))
|
|
regions = len(start_end_pairs)
|
|
|
|
if regions == 1:
|
|
start, end = start_end_pairs[0]
|
|
else:
|
|
start = min(min(start_end_pairs))
|
|
end = max(max(start_end_pairs))
|
|
|
|
assert start >= FLASH_BASE, ("Error - start 0x%x less than begining of user\
|
|
flash area" %start)
|
|
# Compute checksum over the range (don't include data at location of crc)
|
|
size = end - start + 1
|
|
data = input_hex_file.tobinarray(start=start, size=size)
|
|
crc32 = binascii.crc32(data) & 0xFFFFFFFF
|
|
|
|
fw_rev = FW_REV
|
|
|
|
checksum = (start + size + crc32 + fw_rev) & 0xFFFFFFFF
|
|
|
|
print("Writing FIB: base 0x%08X, size 0x%08X, crc32 0x%08X, fw rev 0x%08X,\
|
|
checksum 0x%08X" % (start, size, crc32, fw_rev, checksum))
|
|
|
|
#expected initial values used by daplink to validate that it is a valid bin
|
|
#file added as dummy values in this file because the fib area preceeds the
|
|
#application area the bootloader will ignore these dummy values
|
|
# 00 is stack pointer (RAM address)
|
|
# 04 is Reset vector (FLASH address)
|
|
# 08 NMI_Handler (FLASH address)
|
|
# 0C HardFault_Handler(FLASH address)
|
|
# 10 dummy
|
|
dummy_sp = 0x3FFFFC00
|
|
dummy_reset_vector = 0x00003625
|
|
dummy_nmi_handler = 0x00003761
|
|
dummy_hardfault_handler = 0x00003691
|
|
dummy_blank = 0x00000000
|
|
|
|
#expected fib structure
|
|
#typedef struct fib{
|
|
#uint32_t base; /**< Base offset of firmware, indicating what flash the
|
|
# firmware is in. (will never be 0x11111111) */
|
|
#uint32_t size; /**< Size of the firmware */
|
|
#uint32_t crc; /**< CRC32 for firmware correctness check */
|
|
#uint32_t rev; /**< Revision number */
|
|
#uint32_t checksum; /**< Check-sum of information block */
|
|
#}fib_t, *fib_pt;
|
|
|
|
fib_start = FIB_BASE
|
|
dummy_fib_size = 20
|
|
fib_size = 20
|
|
trim_size = 24
|
|
user_code_start = FLASH_BASE
|
|
trim_area_start = TRIM_BASE
|
|
|
|
# Write FIB to the file in little endian
|
|
output_hex_file[fib_start + 0] = (dummy_sp >> 0) & 0xFF
|
|
output_hex_file[fib_start + 1] = (dummy_sp >> 8) & 0xFF
|
|
output_hex_file[fib_start + 2] = (dummy_sp >> 16) & 0xFF
|
|
output_hex_file[fib_start + 3] = (dummy_sp >> 24) & 0xFF
|
|
|
|
output_hex_file[fib_start + 4] = (dummy_reset_vector >> 0) & 0xFF
|
|
output_hex_file[fib_start + 5] = (dummy_reset_vector >> 8) & 0xFF
|
|
output_hex_file[fib_start + 6] = (dummy_reset_vector >> 16) & 0xFF
|
|
output_hex_file[fib_start + 7] = (dummy_reset_vector >> 24) & 0xFF
|
|
|
|
output_hex_file[fib_start + 8] = (dummy_nmi_handler >> 0) & 0xFF
|
|
output_hex_file[fib_start + 9] = (dummy_nmi_handler >> 8) & 0xFF
|
|
output_hex_file[fib_start + 10] = (dummy_nmi_handler >> 16) & 0xFF
|
|
output_hex_file[fib_start + 11] = (dummy_nmi_handler >> 24) & 0xFF
|
|
|
|
output_hex_file[fib_start + 12] = (dummy_hardfault_handler >> 0) & 0xFF
|
|
output_hex_file[fib_start + 13] = (dummy_hardfault_handler >> 8) & 0xFF
|
|
output_hex_file[fib_start + 14] = (dummy_hardfault_handler >> 16) & 0xFF
|
|
output_hex_file[fib_start + 15] = (dummy_hardfault_handler >> 24) & 0xFF
|
|
|
|
output_hex_file[fib_start + 16] = (dummy_blank >> 0) & 0xFF
|
|
output_hex_file[fib_start + 17] = (dummy_blank >> 8) & 0xFF
|
|
output_hex_file[fib_start + 18] = (dummy_blank >> 16) & 0xFF
|
|
output_hex_file[fib_start + 19] = (dummy_blank >> 24) & 0xFF
|
|
|
|
# Write FIB to the file in little endian
|
|
output_hex_file[fib_start + 20] = (start >> 0) & 0xFF
|
|
output_hex_file[fib_start + 21] = (start >> 8) & 0xFF
|
|
output_hex_file[fib_start + 22] = (start >> 16) & 0xFF
|
|
output_hex_file[fib_start + 23] = (start >> 24) & 0xFF
|
|
|
|
output_hex_file[fib_start + 24] = (size >> 0) & 0xFF
|
|
output_hex_file[fib_start + 25] = (size >> 8) & 0xFF
|
|
output_hex_file[fib_start + 26] = (size >> 16) & 0xFF
|
|
output_hex_file[fib_start + 27] = (size >> 24) & 0xFF
|
|
|
|
output_hex_file[fib_start + 28] = (crc32 >> 0) & 0xFF
|
|
output_hex_file[fib_start + 29] = (crc32 >> 8) & 0xFF
|
|
output_hex_file[fib_start + 30] = (crc32 >> 16) & 0xFF
|
|
output_hex_file[fib_start + 31] = (crc32 >> 24) & 0xFF
|
|
|
|
output_hex_file[fib_start + 32] = (fw_rev >> 0) & 0xFF
|
|
output_hex_file[fib_start + 33] = (fw_rev >> 8) & 0xFF
|
|
output_hex_file[fib_start + 34] = (fw_rev >> 16) & 0xFF
|
|
output_hex_file[fib_start + 35] = (fw_rev >> 24) & 0xFF
|
|
|
|
output_hex_file[fib_start + 36] = (checksum >> 0) & 0xFF
|
|
output_hex_file[fib_start + 37] = (checksum >> 8) & 0xFF
|
|
output_hex_file[fib_start + 38] = (checksum >> 16) & 0xFF
|
|
output_hex_file[fib_start + 39] = (checksum >> 24) & 0xFF
|
|
|
|
#pad the rest of the file
|
|
for i in range(fib_start + dummy_fib_size + fib_size, trim_area_start):
|
|
output_hex_file[i] = 0xFF
|
|
|
|
# Read in configuration data from the config parameter in targets.json
|
|
configData = Config('NCS36510')
|
|
paramData = configData.get_target_config_data()
|
|
for v in paramData.values():
|
|
if (v.name == "target.mac-addr-high"):
|
|
mac_addr_high = int(v.value, 16)
|
|
elif (v.name == "target.mac-addr-low"):
|
|
mac_addr_low = int(v.value,16)
|
|
elif (v.name == "target.32KHz-clk-trim"):
|
|
clk_32k_trim = int(v.value,16)
|
|
elif (v.name == "target.32MHz-clk-trim"):
|
|
clk_32m_trim = int(v.value,16)
|
|
elif (v.name == "target.rssi-trim"):
|
|
rssi = int(v.value,16)
|
|
elif (v.name == "target.txtune-trim"):
|
|
txtune = int(v.value,16)
|
|
else:
|
|
print("Not a valid param")
|
|
|
|
output_hex_file[trim_area_start + 0] = mac_addr_low & 0xFF
|
|
output_hex_file[trim_area_start + 1] = (mac_addr_low >> 8) & 0xFF
|
|
output_hex_file[trim_area_start + 2] = (mac_addr_low >> 16) & 0xFF
|
|
output_hex_file[trim_area_start + 3] = (mac_addr_low >> 24) & 0xFF
|
|
|
|
output_hex_file[trim_area_start + 4] = mac_addr_high & 0xFF
|
|
output_hex_file[trim_area_start + 5] = (mac_addr_high >> 8) & 0xFF
|
|
output_hex_file[trim_area_start + 6] = (mac_addr_high >> 16) & 0xFF
|
|
output_hex_file[trim_area_start + 7] = (mac_addr_high >> 24) & 0xFF
|
|
|
|
output_hex_file[trim_area_start + 8] = clk_32k_trim & 0xFF
|
|
output_hex_file[trim_area_start + 9] = (clk_32k_trim >> 8) & 0xFF
|
|
output_hex_file[trim_area_start + 10] = (clk_32k_trim >> 16) & 0xFF
|
|
output_hex_file[trim_area_start + 11] = (clk_32k_trim >> 24) & 0xFF
|
|
|
|
output_hex_file[trim_area_start + 12] = clk_32m_trim & 0xFF
|
|
output_hex_file[trim_area_start + 13] = (clk_32m_trim >> 8) & 0xFF
|
|
output_hex_file[trim_area_start + 14] = (clk_32m_trim >> 16) & 0xFF
|
|
output_hex_file[trim_area_start + 15] = (clk_32m_trim >> 24) & 0xFF
|
|
|
|
output_hex_file[trim_area_start + 16] = rssi & 0xFF
|
|
output_hex_file[trim_area_start + 17] = (rssi >> 8) & 0xFF
|
|
output_hex_file[trim_area_start + 18] = (rssi >> 16) & 0xFF
|
|
output_hex_file[trim_area_start + 19] = (rssi >> 24) & 0xFF
|
|
|
|
output_hex_file[trim_area_start + 20] = txtune & 0xFF
|
|
output_hex_file[trim_area_start + 21] = (txtune >> 8) & 0xFF
|
|
output_hex_file[trim_area_start + 22] = (txtune >> 16) & 0xFF
|
|
output_hex_file[trim_area_start + 23] = (txtune >> 24) & 0xFF
|
|
|
|
# pad the rest of the area with 0xFF
|
|
for i in range(trim_area_start + trim_size, user_code_start):
|
|
output_hex_file[i] = 0xFF
|
|
|
|
#merge two hex files
|
|
output_hex_file.merge(input_hex_file, overlap='error')
|
|
|
|
# Write out file(s)
|
|
output_hex_file.tofile(file_name_hex, 'hex')
|
|
output_hex_file.tofile(file_name_bin, 'bin')
|