mbed-os/targets/TARGET_STM/rtc_api.c

337 lines
11 KiB
C

/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2016, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#if DEVICE_RTC
#include "rtc_api.h"
#include "rtc_api_hal.h"
#include "mbed_error.h"
static RTC_HandleTypeDef RtcHandle;
#if RTC_LSI
#define RTC_CLOCK LSI_VALUE
#else
#define RTC_CLOCK LSE_VALUE
#endif
#if DEVICE_LOWPOWERTIMER
#define RTC_ASYNCH_PREDIV ((RTC_CLOCK - 1) / 0x8000)
#define RTC_SYNCH_PREDIV (RTC_CLOCK / (RTC_ASYNCH_PREDIV + 1) - 1)
#else
#define RTC_ASYNCH_PREDIV (0x007F)
#define RTC_SYNCH_PREDIV (RTC_CLOCK / (RTC_ASYNCH_PREDIV + 1) - 1)
#endif
#if DEVICE_LOWPOWERTIMER
static void (*irq_handler)(void);
static void RTC_IRQHandler(void);
#endif
void rtc_init(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct;
// Enable access to Backup domain
HAL_PWR_EnableBkUpAccess();
RtcHandle.Instance = RTC;
#if !RTC_LSI
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; // Mandatory, otherwise the PLL is reconfigured!
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_OFF;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) == HAL_OK) {
__HAL_RCC_RTC_CLKPRESCALER(RCC_RTCCLKSOURCE_LSE);
__HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_LSE);
} else {
error("Cannot initialize RTC with LSE\n");
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) {
error("PeriphClkInitStruct RTC failed with LSE\n");
}
#else /* !RTC_LSI */
__PWR_CLK_ENABLE();
// Reset Backup domain
__HAL_RCC_BACKUPRESET_FORCE();
__HAL_RCC_BACKUPRESET_RELEASE();
// Enable LSI clock
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; // Mandatory, otherwise the PLL is reconfigured!
RCC_OscInitStruct.LSEState = RCC_LSE_OFF;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
error("Cannot initialize RTC with LSI\n");
}
__HAL_RCC_RTC_CLKPRESCALER(RCC_RTCCLKSOURCE_LSI);
__HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_LSI);
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) {
error("PeriphClkInitStruct RTC failed with LSI\n");
}
#endif /* !RTC_LSI */
// Enable RTC
__HAL_RCC_RTC_ENABLE();
#if TARGET_STM32F1
RtcHandle.Init.AsynchPrediv = RTC_AUTO_1_SECOND;
#else /* TARGET_STM32F1 */
RtcHandle.Init.HourFormat = RTC_HOURFORMAT_24;
RtcHandle.Init.AsynchPrediv = RTC_ASYNCH_PREDIV;
RtcHandle.Init.SynchPrediv = RTC_SYNCH_PREDIV;
RtcHandle.Init.OutPut = RTC_OUTPUT_DISABLE;
RtcHandle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
RtcHandle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
#endif /* TARGET_STM32F1 */
if (HAL_RTC_Init(&RtcHandle) != HAL_OK) {
error("RTC error: RTC initialization failed.");
}
#if DEVICE_LOWPOWERTIMER
#if !RTC_LSI
if (!rtc_isenabled())
#endif /* !RTC_LSI */
{
rtc_write(0);
}
NVIC_ClearPendingIRQ(RTC_WKUP_IRQn);
NVIC_DisableIRQ(RTC_WKUP_IRQn);
NVIC_SetVector(RTC_WKUP_IRQn, (uint32_t)RTC_IRQHandler);
NVIC_EnableIRQ(RTC_WKUP_IRQn);
#endif /* DEVICE_LOWPOWERTIMER */
}
void rtc_free(void)
{
#if RTC_LSI
// Enable Power clock
__PWR_CLK_ENABLE();
// Enable access to Backup domain
HAL_PWR_EnableBkUpAccess();
// Reset Backup domain
__HAL_RCC_BACKUPRESET_FORCE();
__HAL_RCC_BACKUPRESET_RELEASE();
// Disable access to Backup domain
HAL_PWR_DisableBkUpAccess();
#endif
// Disable LSI and LSE clocks
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.LSIState = RCC_LSI_OFF;
RCC_OscInitStruct.LSEState = RCC_LSE_OFF;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
}
/*
ST RTC_DateTypeDef structure
WeekDay 1=monday, 2=tuesday, ..., 7=sunday
Month 0x1=january, 0x2=february, ..., 0x12=december
Date day of the month 1-31
Year year 0-99
ST RTC_TimeTypeDef structure
Hours 0-12 if the RTC_HourFormat_12 is selected during init
0-23 if the RTC_HourFormat_24 is selected during init
Minutes 0-59
Seconds 0-59
TimeFormat RTC_HOURFORMAT12_AM/RTC_HOURFORMAT12_PM
SubSeconds time unit range between [0-1] Second with [1 Sec / SecondFraction +1] granularity
SecondFraction range or granularity of Sub Second register content corresponding to Synchronous pre-scaler factor value (PREDIV_S)
DayLightSaving RTC_DAYLIGHTSAVING_SUB1H/RTC_DAYLIGHTSAVING_ADD1H/RTC_DAYLIGHTSAVING_NONE
StoreOperation RTC_STOREOPERATION_RESET/RTC_STOREOPERATION_SET
struct tm
tm_sec seconds after the minute 0-61
tm_min minutes after the hour 0-59
tm_hour hours since midnight 0-23
tm_mday day of the month 1-31
tm_mon months since January 0-11
tm_year years since 1900
tm_wday days since Sunday 0-6
tm_yday days since January 1 0-365
tm_isdst Daylight Saving Time flag
*/
/*
Information about STM32F0, STM32F2, STM32F3, STM32F4, STM32F7, STM32L0, STM32L1, STM32L4:
BCD format is used to store the date in the RTC. The year is store on 2 * 4 bits.
Because the first year is reserved to see if the RTC is init, the supposed range is 01-99.
1st point is to cover the standard range from 1970 to 2038 (limited by the 32 bits of time_t).
2nd point is to keep the year 1970 and the leap years synchronized.
So by moving it 68 years forward from 1970, it become 1969-2067 which include 1970-2038.
68 is also a multiple of 4 so it let the leap year synchronized.
Information about STM32F1:
32bit register is used (no BCD format) for the seconds and a software structure to store dates.
It is then not a problem to not use shifts.
*/
time_t rtc_read(void)
{
RTC_DateTypeDef dateStruct;
RTC_TimeTypeDef timeStruct;
struct tm timeinfo;
RtcHandle.Instance = RTC;
// Read actual date and time
// Warning: the time must be read first!
HAL_RTC_GetTime(&RtcHandle, &timeStruct, RTC_FORMAT_BIN);
HAL_RTC_GetDate(&RtcHandle, &dateStruct, RTC_FORMAT_BIN);
// Setup a tm structure based on the RTC
/* tm_wday information is ignored by mktime */
timeinfo.tm_mon = dateStruct.Month - 1;
timeinfo.tm_mday = dateStruct.Date;
timeinfo.tm_year = dateStruct.Year + 68;
timeinfo.tm_hour = timeStruct.Hours;
timeinfo.tm_min = timeStruct.Minutes;
timeinfo.tm_sec = timeStruct.Seconds;
// Daylight Saving Time information is not available
timeinfo.tm_isdst = -1;
// Convert to timestamp
time_t t = mktime(&timeinfo);
return t;
}
void rtc_write(time_t t)
{
RTC_DateTypeDef dateStruct;
RTC_TimeTypeDef timeStruct;
RtcHandle.Instance = RTC;
// Convert the time into a tm
struct tm *timeinfo = localtime(&t);
// Fill RTC structures
if (timeinfo->tm_wday == 0) {
dateStruct.WeekDay = 7;
} else {
dateStruct.WeekDay = timeinfo->tm_wday;
}
dateStruct.Month = timeinfo->tm_mon + 1;
dateStruct.Date = timeinfo->tm_mday;
dateStruct.Year = timeinfo->tm_year - 68;
timeStruct.Hours = timeinfo->tm_hour;
timeStruct.Minutes = timeinfo->tm_min;
timeStruct.Seconds = timeinfo->tm_sec;
#if !(TARGET_STM32F1)
timeStruct.TimeFormat = RTC_HOURFORMAT_24;
timeStruct.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
timeStruct.StoreOperation = RTC_STOREOPERATION_RESET;
#endif /* TARGET_STM32F1 */
// Change the RTC current date/time
HAL_RTC_SetDate(&RtcHandle, &dateStruct, RTC_FORMAT_BIN);
HAL_RTC_SetTime(&RtcHandle, &timeStruct, RTC_FORMAT_BIN);
}
int rtc_isenabled(void)
{
#if !(TARGET_STM32F1)
return ( ((RTC->ISR & RTC_ISR_INITS) == RTC_ISR_INITS) && ((RTC->ISR & RTC_ISR_RSF) == RTC_ISR_RSF) );
#else /* TARGET_STM32F1 */
return ((RTC->CRL & RTC_CRL_RSF) == RTC_CRL_RSF);
#endif /* TARGET_STM32F1 */
}
#if DEVICE_LOWPOWERTIMER
static void RTC_IRQHandler(void)
{
HAL_RTCEx_WakeUpTimerIRQHandler(&RtcHandle);
}
void HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc)
{
if (irq_handler) {
// Fire the user callback
irq_handler();
}
}
void rtc_set_irq_handler(uint32_t handler)
{
irq_handler = (void (*)(void))handler;
}
uint32_t rtc_read_subseconds(void)
{
return 1000000.f * ((double)(RTC_SYNCH_PREDIV - RTC->SSR) / (RTC_SYNCH_PREDIV + 1));
}
void rtc_set_wake_up_timer(uint32_t delta)
{
uint32_t wake_up_counter = delta / (2000000 / RTC_CLOCK);
if (HAL_RTCEx_SetWakeUpTimer_IT(&RtcHandle, wake_up_counter,
RTC_WAKEUPCLOCK_RTCCLK_DIV2) != HAL_OK) {
error("Set wake up timer failed\n");
}
}
void rtc_deactivate_wake_up_timer(void)
{
HAL_RTCEx_DeactivateWakeUpTimer(&RtcHandle);
}
void rtc_synchronize(void)
{
HAL_RTC_WaitForSynchro(&RtcHandle);
}
#endif /* DEVICE_LOWPOWERTIMER */
#endif /* DEVICE_RTC */