mbed-os/cmsis/TARGET_CORTEX_A/core_ca.h

2614 lines
104 KiB
C

/**************************************************************************//**
* @file core_ca.h
* @brief CMSIS Cortex-A Core Peripheral Access Layer Header File
* @version V1.0.2
* @date 12. November 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CORE_CA_H_GENERIC
#define __CORE_CA_H_GENERIC
#ifdef __cplusplus
extern "C" {
#endif
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/* CMSIS CA definitions */
#define __CA_CMSIS_VERSION_MAIN (1U) /*!< \brief [31:16] CMSIS-Core(A) main version */
#define __CA_CMSIS_VERSION_SUB (1U) /*!< \brief [15:0] CMSIS-Core(A) sub version */
#define __CA_CMSIS_VERSION ((__CA_CMSIS_VERSION_MAIN << 16U) | \
__CA_CMSIS_VERSION_SUB ) /*!< \brief CMSIS-Core(A) version number */
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1U
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0U
#endif
#else
#define __FPU_USED 0U
#endif
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#if defined __ARM_FP
#if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)
#define __FPU_USED 1U
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0U
#endif
#else
#define __FPU_USED 0U
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1U
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0U
#endif
#else
#define __FPU_USED 0U
#endif
#elif defined ( __TMS470__ )
#if defined __TI_VFP_SUPPORT__
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1U
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0U
#endif
#else
#define __FPU_USED 0U
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1U
#else
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0U
#endif
#else
#define __FPU_USED 0U
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#if (__FPU_PRESENT == 1)
#define __FPU_USED 1U
#else
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#define __FPU_USED 0U
#endif
#else
#define __FPU_USED 0U
#endif
#endif
#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CA_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CA_H_DEPENDANT
#define __CORE_CA_H_DEPENDANT
#ifdef __cplusplus
extern "C" {
#endif
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CA_REV
#define __CA_REV 0x0000U
#warning "__CA_REV not defined in device header file; using default!"
#endif
#ifndef __FPU_PRESENT
#define __FPU_PRESENT 0U
#warning "__FPU_PRESENT not defined in device header file; using default!"
#endif
#ifndef __GIC_PRESENT
#define __GIC_PRESENT 1U
#warning "__GIC_PRESENT not defined in device header file; using default!"
#endif
#ifndef __TIM_PRESENT
#define __TIM_PRESENT 1U
#warning "__TIM_PRESENT not defined in device header file; using default!"
#endif
#ifndef __L2C_PRESENT
#define __L2C_PRESENT 0U
#warning "__L2C_PRESENT not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
#ifdef __cplusplus
#define __I volatile /*!< \brief Defines 'read only' permissions */
#else
#define __I volatile const /*!< \brief Defines 'read only' permissions */
#endif
#define __O volatile /*!< \brief Defines 'write only' permissions */
#define __IO volatile /*!< \brief Defines 'read / write' permissions */
/* following defines should be used for structure members */
#define __IM volatile const /*!< \brief Defines 'read only' structure member permissions */
#define __OM volatile /*!< \brief Defines 'write only' structure member permissions */
#define __IOM volatile /*!< \brief Defines 'read / write' structure member permissions */
#define RESERVED(N, T) T RESERVED##N; // placeholder struct members used for "reserved" areas
/*******************************************************************************
* Register Abstraction
Core Register contain:
- CPSR
- CP15 Registers
- L2C-310 Cache Controller
- Generic Interrupt Controller Distributor
- Generic Interrupt Controller Interface
******************************************************************************/
/* Core Register CPSR */
typedef union
{
struct
{
uint32_t M:5; /*!< \brief bit: 0.. 4 Mode field */
uint32_t T:1; /*!< \brief bit: 5 Thumb execution state bit */
uint32_t F:1; /*!< \brief bit: 6 FIQ mask bit */
uint32_t I:1; /*!< \brief bit: 7 IRQ mask bit */
uint32_t A:1; /*!< \brief bit: 8 Asynchronous abort mask bit */
uint32_t E:1; /*!< \brief bit: 9 Endianness execution state bit */
uint32_t IT1:6; /*!< \brief bit: 10..15 If-Then execution state bits 2-7 */
uint32_t GE:4; /*!< \brief bit: 16..19 Greater than or Equal flags */
RESERVED(0:4, uint32_t)
uint32_t J:1; /*!< \brief bit: 24 Jazelle bit */
uint32_t IT0:2; /*!< \brief bit: 25..26 If-Then execution state bits 0-1 */
uint32_t Q:1; /*!< \brief bit: 27 Saturation condition flag */
uint32_t V:1; /*!< \brief bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< \brief bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< \brief bit: 30 Zero condition code flag */
uint32_t N:1; /*!< \brief bit: 31 Negative condition code flag */
} b; /*!< \brief Structure used for bit access */
uint32_t w; /*!< \brief Type used for word access */
} CPSR_Type;
/* CPSR Register Definitions */
#define CPSR_N_Pos 31U /*!< \brief CPSR: N Position */
#define CPSR_N_Msk (1UL << CPSR_N_Pos) /*!< \brief CPSR: N Mask */
#define CPSR_Z_Pos 30U /*!< \brief CPSR: Z Position */
#define CPSR_Z_Msk (1UL << CPSR_Z_Pos) /*!< \brief CPSR: Z Mask */
#define CPSR_C_Pos 29U /*!< \brief CPSR: C Position */
#define CPSR_C_Msk (1UL << CPSR_C_Pos) /*!< \brief CPSR: C Mask */
#define CPSR_V_Pos 28U /*!< \brief CPSR: V Position */
#define CPSR_V_Msk (1UL << CPSR_V_Pos) /*!< \brief CPSR: V Mask */
#define CPSR_Q_Pos 27U /*!< \brief CPSR: Q Position */
#define CPSR_Q_Msk (1UL << CPSR_Q_Pos) /*!< \brief CPSR: Q Mask */
#define CPSR_IT0_Pos 25U /*!< \brief CPSR: IT0 Position */
#define CPSR_IT0_Msk (3UL << CPSR_IT0_Pos) /*!< \brief CPSR: IT0 Mask */
#define CPSR_J_Pos 24U /*!< \brief CPSR: J Position */
#define CPSR_J_Msk (1UL << CPSR_J_Pos) /*!< \brief CPSR: J Mask */
#define CPSR_GE_Pos 16U /*!< \brief CPSR: GE Position */
#define CPSR_GE_Msk (0xFUL << CPSR_GE_Pos) /*!< \brief CPSR: GE Mask */
#define CPSR_IT1_Pos 10U /*!< \brief CPSR: IT1 Position */
#define CPSR_IT1_Msk (0x3FUL << CPSR_IT1_Pos) /*!< \brief CPSR: IT1 Mask */
#define CPSR_E_Pos 9U /*!< \brief CPSR: E Position */
#define CPSR_E_Msk (1UL << CPSR_E_Pos) /*!< \brief CPSR: E Mask */
#define CPSR_A_Pos 8U /*!< \brief CPSR: A Position */
#define CPSR_A_Msk (1UL << CPSR_A_Pos) /*!< \brief CPSR: A Mask */
#define CPSR_I_Pos 7U /*!< \brief CPSR: I Position */
#define CPSR_I_Msk (1UL << CPSR_I_Pos) /*!< \brief CPSR: I Mask */
#define CPSR_F_Pos 6U /*!< \brief CPSR: F Position */
#define CPSR_F_Msk (1UL << CPSR_F_Pos) /*!< \brief CPSR: F Mask */
#define CPSR_T_Pos 5U /*!< \brief CPSR: T Position */
#define CPSR_T_Msk (1UL << CPSR_T_Pos) /*!< \brief CPSR: T Mask */
#define CPSR_M_Pos 0U /*!< \brief CPSR: M Position */
#define CPSR_M_Msk (0x1FUL << CPSR_M_Pos) /*!< \brief CPSR: M Mask */
#define CPSR_M_USR 0x10U /*!< \brief CPSR: M User mode (PL0) */
#define CPSR_M_FIQ 0x11U /*!< \brief CPSR: M Fast Interrupt mode (PL1) */
#define CPSR_M_IRQ 0x12U /*!< \brief CPSR: M Interrupt mode (PL1) */
#define CPSR_M_SVC 0x13U /*!< \brief CPSR: M Supervisor mode (PL1) */
#define CPSR_M_MON 0x16U /*!< \brief CPSR: M Monitor mode (PL1) */
#define CPSR_M_ABT 0x17U /*!< \brief CPSR: M Abort mode (PL1) */
#define CPSR_M_HYP 0x1AU /*!< \brief CPSR: M Hypervisor mode (PL2) */
#define CPSR_M_UND 0x1BU /*!< \brief CPSR: M Undefined mode (PL1) */
#define CPSR_M_SYS 0x1FU /*!< \brief CPSR: M System mode (PL1) */
/* CP15 Register SCTLR */
typedef union
{
struct
{
uint32_t M:1; /*!< \brief bit: 0 MMU enable */
uint32_t A:1; /*!< \brief bit: 1 Alignment check enable */
uint32_t C:1; /*!< \brief bit: 2 Cache enable */
RESERVED(0:2, uint32_t)
uint32_t CP15BEN:1; /*!< \brief bit: 5 CP15 barrier enable */
RESERVED(1:1, uint32_t)
uint32_t B:1; /*!< \brief bit: 7 Endianness model */
RESERVED(2:2, uint32_t)
uint32_t SW:1; /*!< \brief bit: 10 SWP and SWPB enable */
uint32_t Z:1; /*!< \brief bit: 11 Branch prediction enable */
uint32_t I:1; /*!< \brief bit: 12 Instruction cache enable */
uint32_t V:1; /*!< \brief bit: 13 Vectors bit */
uint32_t RR:1; /*!< \brief bit: 14 Round Robin select */
RESERVED(3:2, uint32_t)
uint32_t HA:1; /*!< \brief bit: 17 Hardware Access flag enable */
RESERVED(4:1, uint32_t)
uint32_t WXN:1; /*!< \brief bit: 19 Write permission implies XN */
uint32_t UWXN:1; /*!< \brief bit: 20 Unprivileged write permission implies PL1 XN */
uint32_t FI:1; /*!< \brief bit: 21 Fast interrupts configuration enable */
uint32_t U:1; /*!< \brief bit: 22 Alignment model */
RESERVED(5:1, uint32_t)
uint32_t VE:1; /*!< \brief bit: 24 Interrupt Vectors Enable */
uint32_t EE:1; /*!< \brief bit: 25 Exception Endianness */
RESERVED(6:1, uint32_t)
uint32_t NMFI:1; /*!< \brief bit: 27 Non-maskable FIQ (NMFI) support */
uint32_t TRE:1; /*!< \brief bit: 28 TEX remap enable. */
uint32_t AFE:1; /*!< \brief bit: 29 Access flag enable */
uint32_t TE:1; /*!< \brief bit: 30 Thumb Exception enable */
RESERVED(7:1, uint32_t)
} b; /*!< \brief Structure used for bit access */
uint32_t w; /*!< \brief Type used for word access */
} SCTLR_Type;
#define SCTLR_TE_Pos 30U /*!< \brief SCTLR: TE Position */
#define SCTLR_TE_Msk (1UL << SCTLR_TE_Pos) /*!< \brief SCTLR: TE Mask */
#define SCTLR_AFE_Pos 29U /*!< \brief SCTLR: AFE Position */
#define SCTLR_AFE_Msk (1UL << SCTLR_AFE_Pos) /*!< \brief SCTLR: AFE Mask */
#define SCTLR_TRE_Pos 28U /*!< \brief SCTLR: TRE Position */
#define SCTLR_TRE_Msk (1UL << SCTLR_TRE_Pos) /*!< \brief SCTLR: TRE Mask */
#define SCTLR_NMFI_Pos 27U /*!< \brief SCTLR: NMFI Position */
#define SCTLR_NMFI_Msk (1UL << SCTLR_NMFI_Pos) /*!< \brief SCTLR: NMFI Mask */
#define SCTLR_EE_Pos 25U /*!< \brief SCTLR: EE Position */
#define SCTLR_EE_Msk (1UL << SCTLR_EE_Pos) /*!< \brief SCTLR: EE Mask */
#define SCTLR_VE_Pos 24U /*!< \brief SCTLR: VE Position */
#define SCTLR_VE_Msk (1UL << SCTLR_VE_Pos) /*!< \brief SCTLR: VE Mask */
#define SCTLR_U_Pos 22U /*!< \brief SCTLR: U Position */
#define SCTLR_U_Msk (1UL << SCTLR_U_Pos) /*!< \brief SCTLR: U Mask */
#define SCTLR_FI_Pos 21U /*!< \brief SCTLR: FI Position */
#define SCTLR_FI_Msk (1UL << SCTLR_FI_Pos) /*!< \brief SCTLR: FI Mask */
#define SCTLR_UWXN_Pos 20U /*!< \brief SCTLR: UWXN Position */
#define SCTLR_UWXN_Msk (1UL << SCTLR_UWXN_Pos) /*!< \brief SCTLR: UWXN Mask */
#define SCTLR_WXN_Pos 19U /*!< \brief SCTLR: WXN Position */
#define SCTLR_WXN_Msk (1UL << SCTLR_WXN_Pos) /*!< \brief SCTLR: WXN Mask */
#define SCTLR_HA_Pos 17U /*!< \brief SCTLR: HA Position */
#define SCTLR_HA_Msk (1UL << SCTLR_HA_Pos) /*!< \brief SCTLR: HA Mask */
#define SCTLR_RR_Pos 14U /*!< \brief SCTLR: RR Position */
#define SCTLR_RR_Msk (1UL << SCTLR_RR_Pos) /*!< \brief SCTLR: RR Mask */
#define SCTLR_V_Pos 13U /*!< \brief SCTLR: V Position */
#define SCTLR_V_Msk (1UL << SCTLR_V_Pos) /*!< \brief SCTLR: V Mask */
#define SCTLR_I_Pos 12U /*!< \brief SCTLR: I Position */
#define SCTLR_I_Msk (1UL << SCTLR_I_Pos) /*!< \brief SCTLR: I Mask */
#define SCTLR_Z_Pos 11U /*!< \brief SCTLR: Z Position */
#define SCTLR_Z_Msk (1UL << SCTLR_Z_Pos) /*!< \brief SCTLR: Z Mask */
#define SCTLR_SW_Pos 10U /*!< \brief SCTLR: SW Position */
#define SCTLR_SW_Msk (1UL << SCTLR_SW_Pos) /*!< \brief SCTLR: SW Mask */
#define SCTLR_B_Pos 7U /*!< \brief SCTLR: B Position */
#define SCTLR_B_Msk (1UL << SCTLR_B_Pos) /*!< \brief SCTLR: B Mask */
#define SCTLR_CP15BEN_Pos 5U /*!< \brief SCTLR: CP15BEN Position */
#define SCTLR_CP15BEN_Msk (1UL << SCTLR_CP15BEN_Pos) /*!< \brief SCTLR: CP15BEN Mask */
#define SCTLR_C_Pos 2U /*!< \brief SCTLR: C Position */
#define SCTLR_C_Msk (1UL << SCTLR_C_Pos) /*!< \brief SCTLR: C Mask */
#define SCTLR_A_Pos 1U /*!< \brief SCTLR: A Position */
#define SCTLR_A_Msk (1UL << SCTLR_A_Pos) /*!< \brief SCTLR: A Mask */
#define SCTLR_M_Pos 0U /*!< \brief SCTLR: M Position */
#define SCTLR_M_Msk (1UL << SCTLR_M_Pos) /*!< \brief SCTLR: M Mask */
/* CP15 Register ACTLR */
typedef union
{
#if __CORTEX_A == 5 || defined(DOXYGEN)
/** \brief Structure used for bit access on Cortex-A5 */
struct
{
uint32_t FW:1; /*!< \brief bit: 0 Cache and TLB maintenance broadcast */
RESERVED(0:5, uint32_t)
uint32_t SMP:1; /*!< \brief bit: 6 Enables coherent requests to the processor */
uint32_t EXCL:1; /*!< \brief bit: 7 Exclusive L1/L2 cache control */
RESERVED(1:2, uint32_t)
uint32_t DODMBS:1; /*!< \brief bit: 10 Disable optimized data memory barrier behavior */
uint32_t DWBST:1; /*!< \brief bit: 11 AXI data write bursts to Normal memory */
uint32_t RADIS:1; /*!< \brief bit: 12 L1 Data Cache read-allocate mode disable */
uint32_t L1PCTL:2; /*!< \brief bit:13..14 L1 Data prefetch control */
uint32_t BP:2; /*!< \brief bit:16..15 Branch prediction policy */
uint32_t RSDIS:1; /*!< \brief bit: 17 Disable return stack operation */
uint32_t BTDIS:1; /*!< \brief bit: 18 Disable indirect Branch Target Address Cache (BTAC) */
RESERVED(3:9, uint32_t)
uint32_t DBDI:1; /*!< \brief bit: 28 Disable branch dual issue */
RESERVED(7:3, uint32_t)
} b;
#endif
#if __CORTEX_A == 7 || defined(DOXYGEN)
/** \brief Structure used for bit access on Cortex-A7 */
struct
{
RESERVED(0:6, uint32_t)
uint32_t SMP:1; /*!< \brief bit: 6 Enables coherent requests to the processor */
RESERVED(1:3, uint32_t)
uint32_t DODMBS:1; /*!< \brief bit: 10 Disable optimized data memory barrier behavior */
uint32_t L2RADIS:1; /*!< \brief bit: 11 L2 Data Cache read-allocate mode disable */
uint32_t L1RADIS:1; /*!< \brief bit: 12 L1 Data Cache read-allocate mode disable */
uint32_t L1PCTL:2; /*!< \brief bit:13..14 L1 Data prefetch control */
uint32_t DDVM:1; /*!< \brief bit: 15 Disable Distributed Virtual Memory (DVM) transactions */
RESERVED(3:12, uint32_t)
uint32_t DDI:1; /*!< \brief bit: 28 Disable dual issue */
RESERVED(7:3, uint32_t)
} b;
#endif
#if __CORTEX_A == 9 || defined(DOXYGEN)
/** \brief Structure used for bit access on Cortex-A9 */
struct
{
uint32_t FW:1; /*!< \brief bit: 0 Cache and TLB maintenance broadcast */
RESERVED(0:1, uint32_t)
uint32_t L1PE:1; /*!< \brief bit: 2 Dside prefetch */
uint32_t WFLZM:1; /*!< \brief bit: 3 Cache and TLB maintenance broadcast */
RESERVED(1:2, uint32_t)
uint32_t SMP:1; /*!< \brief bit: 6 Enables coherent requests to the processor */
uint32_t EXCL:1; /*!< \brief bit: 7 Exclusive L1/L2 cache control */
uint32_t AOW:1; /*!< \brief bit: 8 Enable allocation in one cache way only */
uint32_t PARITY:1; /*!< \brief bit: 9 Support for parity checking, if implemented */
RESERVED(7:22, uint32_t)
} b;
#endif
uint32_t w; /*!< \brief Type used for word access */
} ACTLR_Type;
#define ACTLR_DDI_Pos 28U /*!< \brief ACTLR: DDI Position */
#define ACTLR_DDI_Msk (1UL << ACTLR_DDI_Pos) /*!< \brief ACTLR: DDI Mask */
#define ACTLR_DBDI_Pos 28U /*!< \brief ACTLR: DBDI Position */
#define ACTLR_DBDI_Msk (1UL << ACTLR_DBDI_Pos) /*!< \brief ACTLR: DBDI Mask */
#define ACTLR_BTDIS_Pos 18U /*!< \brief ACTLR: BTDIS Position */
#define ACTLR_BTDIS_Msk (1UL << ACTLR_BTDIS_Pos) /*!< \brief ACTLR: BTDIS Mask */
#define ACTLR_RSDIS_Pos 17U /*!< \brief ACTLR: RSDIS Position */
#define ACTLR_RSDIS_Msk (1UL << ACTLR_RSDIS_Pos) /*!< \brief ACTLR: RSDIS Mask */
#define ACTLR_BP_Pos 15U /*!< \brief ACTLR: BP Position */
#define ACTLR_BP_Msk (3UL << ACTLR_BP_Pos) /*!< \brief ACTLR: BP Mask */
#define ACTLR_DDVM_Pos 15U /*!< \brief ACTLR: DDVM Position */
#define ACTLR_DDVM_Msk (1UL << ACTLR_DDVM_Pos) /*!< \brief ACTLR: DDVM Mask */
#define ACTLR_L1PCTL_Pos 13U /*!< \brief ACTLR: L1PCTL Position */
#define ACTLR_L1PCTL_Msk (3UL << ACTLR_L1PCTL_Pos) /*!< \brief ACTLR: L1PCTL Mask */
#define ACTLR_RADIS_Pos 12U /*!< \brief ACTLR: RADIS Position */
#define ACTLR_RADIS_Msk (1UL << ACTLR_RADIS_Pos) /*!< \brief ACTLR: RADIS Mask */
#define ACTLR_L1RADIS_Pos 12U /*!< \brief ACTLR: L1RADIS Position */
#define ACTLR_L1RADIS_Msk (1UL << ACTLR_L1RADIS_Pos) /*!< \brief ACTLR: L1RADIS Mask */
#define ACTLR_DWBST_Pos 11U /*!< \brief ACTLR: DWBST Position */
#define ACTLR_DWBST_Msk (1UL << ACTLR_DWBST_Pos) /*!< \brief ACTLR: DWBST Mask */
#define ACTLR_L2RADIS_Pos 11U /*!< \brief ACTLR: L2RADIS Position */
#define ACTLR_L2RADIS_Msk (1UL << ACTLR_L2RADIS_Pos) /*!< \brief ACTLR: L2RADIS Mask */
#define ACTLR_DODMBS_Pos 10U /*!< \brief ACTLR: DODMBS Position */
#define ACTLR_DODMBS_Msk (1UL << ACTLR_DODMBS_Pos) /*!< \brief ACTLR: DODMBS Mask */
#define ACTLR_PARITY_Pos 9U /*!< \brief ACTLR: PARITY Position */
#define ACTLR_PARITY_Msk (1UL << ACTLR_PARITY_Pos) /*!< \brief ACTLR: PARITY Mask */
#define ACTLR_AOW_Pos 8U /*!< \brief ACTLR: AOW Position */
#define ACTLR_AOW_Msk (1UL << ACTLR_AOW_Pos) /*!< \brief ACTLR: AOW Mask */
#define ACTLR_EXCL_Pos 7U /*!< \brief ACTLR: EXCL Position */
#define ACTLR_EXCL_Msk (1UL << ACTLR_EXCL_Pos) /*!< \brief ACTLR: EXCL Mask */
#define ACTLR_SMP_Pos 6U /*!< \brief ACTLR: SMP Position */
#define ACTLR_SMP_Msk (1UL << ACTLR_SMP_Pos) /*!< \brief ACTLR: SMP Mask */
#define ACTLR_WFLZM_Pos 3U /*!< \brief ACTLR: WFLZM Position */
#define ACTLR_WFLZM_Msk (1UL << ACTLR_WFLZM_Pos) /*!< \brief ACTLR: WFLZM Mask */
#define ACTLR_L1PE_Pos 2U /*!< \brief ACTLR: L1PE Position */
#define ACTLR_L1PE_Msk (1UL << ACTLR_L1PE_Pos) /*!< \brief ACTLR: L1PE Mask */
#define ACTLR_FW_Pos 0U /*!< \brief ACTLR: FW Position */
#define ACTLR_FW_Msk (1UL << ACTLR_FW_Pos) /*!< \brief ACTLR: FW Mask */
/* CP15 Register CPACR */
typedef union
{
struct
{
uint32_t CP0:2; /*!< \brief bit: 0..1 Access rights for coprocessor 0 */
uint32_t CP1:2; /*!< \brief bit: 2..3 Access rights for coprocessor 1 */
uint32_t CP2:2; /*!< \brief bit: 4..5 Access rights for coprocessor 2 */
uint32_t CP3:2; /*!< \brief bit: 6..7 Access rights for coprocessor 3 */
uint32_t CP4:2; /*!< \brief bit: 8..9 Access rights for coprocessor 4 */
uint32_t CP5:2; /*!< \brief bit:10..11 Access rights for coprocessor 5 */
uint32_t CP6:2; /*!< \brief bit:12..13 Access rights for coprocessor 6 */
uint32_t CP7:2; /*!< \brief bit:14..15 Access rights for coprocessor 7 */
uint32_t CP8:2; /*!< \brief bit:16..17 Access rights for coprocessor 8 */
uint32_t CP9:2; /*!< \brief bit:18..19 Access rights for coprocessor 9 */
uint32_t CP10:2; /*!< \brief bit:20..21 Access rights for coprocessor 10 */
uint32_t CP11:2; /*!< \brief bit:22..23 Access rights for coprocessor 11 */
uint32_t CP12:2; /*!< \brief bit:24..25 Access rights for coprocessor 11 */
uint32_t CP13:2; /*!< \brief bit:26..27 Access rights for coprocessor 11 */
uint32_t TRCDIS:1; /*!< \brief bit: 28 Disable CP14 access to trace registers */
RESERVED(0:1, uint32_t)
uint32_t D32DIS:1; /*!< \brief bit: 30 Disable use of registers D16-D31 of the VFP register file */
uint32_t ASEDIS:1; /*!< \brief bit: 31 Disable Advanced SIMD Functionality */
} b; /*!< \brief Structure used for bit access */
uint32_t w; /*!< \brief Type used for word access */
} CPACR_Type;
#define CPACR_ASEDIS_Pos 31U /*!< \brief CPACR: ASEDIS Position */
#define CPACR_ASEDIS_Msk (1UL << CPACR_ASEDIS_Pos) /*!< \brief CPACR: ASEDIS Mask */
#define CPACR_D32DIS_Pos 30U /*!< \brief CPACR: D32DIS Position */
#define CPACR_D32DIS_Msk (1UL << CPACR_D32DIS_Pos) /*!< \brief CPACR: D32DIS Mask */
#define CPACR_TRCDIS_Pos 28U /*!< \brief CPACR: D32DIS Position */
#define CPACR_TRCDIS_Msk (1UL << CPACR_D32DIS_Pos) /*!< \brief CPACR: D32DIS Mask */
#define CPACR_CP_Pos_(n) (n*2U) /*!< \brief CPACR: CPn Position */
#define CPACR_CP_Msk_(n) (3UL << CPACR_CP_Pos_(n)) /*!< \brief CPACR: CPn Mask */
#define CPACR_CP_NA 0U /*!< \brief CPACR CPn field: Access denied. */
#define CPACR_CP_PL1 1U /*!< \brief CPACR CPn field: Accessible from PL1 only. */
#define CPACR_CP_FA 3U /*!< \brief CPACR CPn field: Full access. */
/* CP15 Register DFSR */
typedef union
{
struct
{
uint32_t FS0:4; /*!< \brief bit: 0.. 3 Fault Status bits bit 0-3 */
uint32_t Domain:4; /*!< \brief bit: 4.. 7 Fault on which domain */
RESERVED(0:1, uint32_t)
uint32_t LPAE:1; /*!< \brief bit: 9 Large Physical Address Extension */
uint32_t FS1:1; /*!< \brief bit: 10 Fault Status bits bit 4 */
uint32_t WnR:1; /*!< \brief bit: 11 Write not Read bit */
uint32_t ExT:1; /*!< \brief bit: 12 External abort type */
uint32_t CM:1; /*!< \brief bit: 13 Cache maintenance fault */
RESERVED(1:18, uint32_t)
} s; /*!< \brief Structure used for bit access in short format */
struct
{
uint32_t STATUS:5; /*!< \brief bit: 0.. 5 Fault Status bits */
RESERVED(0:3, uint32_t)
uint32_t LPAE:1; /*!< \brief bit: 9 Large Physical Address Extension */
RESERVED(1:1, uint32_t)
uint32_t WnR:1; /*!< \brief bit: 11 Write not Read bit */
uint32_t ExT:1; /*!< \brief bit: 12 External abort type */
uint32_t CM:1; /*!< \brief bit: 13 Cache maintenance fault */
RESERVED(2:18, uint32_t)
} l; /*!< \brief Structure used for bit access in long format */
uint32_t w; /*!< \brief Type used for word access */
} DFSR_Type;
#define DFSR_CM_Pos 13U /*!< \brief DFSR: CM Position */
#define DFSR_CM_Msk (1UL << DFSR_CM_Pos) /*!< \brief DFSR: CM Mask */
#define DFSR_Ext_Pos 12U /*!< \brief DFSR: Ext Position */
#define DFSR_Ext_Msk (1UL << DFSR_Ext_Pos) /*!< \brief DFSR: Ext Mask */
#define DFSR_WnR_Pos 11U /*!< \brief DFSR: WnR Position */
#define DFSR_WnR_Msk (1UL << DFSR_WnR_Pos) /*!< \brief DFSR: WnR Mask */
#define DFSR_FS1_Pos 10U /*!< \brief DFSR: FS1 Position */
#define DFSR_FS1_Msk (1UL << DFSR_FS1_Pos) /*!< \brief DFSR: FS1 Mask */
#define DFSR_LPAE_Pos 9U /*!< \brief DFSR: LPAE Position */
#define DFSR_LPAE_Msk (1UL << DFSR_LPAE_Pos) /*!< \brief DFSR: LPAE Mask */
#define DFSR_Domain_Pos 4U /*!< \brief DFSR: Domain Position */
#define DFSR_Domain_Msk (0xFUL << DFSR_Domain_Pos) /*!< \brief DFSR: Domain Mask */
#define DFSR_FS0_Pos 0U /*!< \brief DFSR: FS0 Position */
#define DFSR_FS0_Msk (0xFUL << DFSR_FS0_Pos) /*!< \brief DFSR: FS0 Mask */
#define DFSR_STATUS_Pos 0U /*!< \brief DFSR: STATUS Position */
#define DFSR_STATUS_Msk (0x3FUL << DFSR_STATUS_Pos) /*!< \brief DFSR: STATUS Mask */
/* CP15 Register IFSR */
typedef union
{
struct
{
uint32_t FS0:4; /*!< \brief bit: 0.. 3 Fault Status bits bit 0-3 */
RESERVED(0:5, uint32_t)
uint32_t LPAE:1; /*!< \brief bit: 9 Large Physical Address Extension */
uint32_t FS1:1; /*!< \brief bit: 10 Fault Status bits bit 4 */
RESERVED(1:1, uint32_t)
uint32_t ExT:1; /*!< \brief bit: 12 External abort type */
RESERVED(2:19, uint32_t)
} s; /*!< \brief Structure used for bit access in short format */
struct
{
uint32_t STATUS:6; /*!< \brief bit: 0.. 5 Fault Status bits */
RESERVED(0:3, uint32_t)
uint32_t LPAE:1; /*!< \brief bit: 9 Large Physical Address Extension */
RESERVED(1:2, uint32_t)
uint32_t ExT:1; /*!< \brief bit: 12 External abort type */
RESERVED(2:19, uint32_t)
} l; /*!< \brief Structure used for bit access in long format */
uint32_t w; /*!< \brief Type used for word access */
} IFSR_Type;
#define IFSR_ExT_Pos 12U /*!< \brief IFSR: ExT Position */
#define IFSR_ExT_Msk (1UL << IFSR_ExT_Pos) /*!< \brief IFSR: ExT Mask */
#define IFSR_FS1_Pos 10U /*!< \brief IFSR: FS1 Position */
#define IFSR_FS1_Msk (1UL << IFSR_FS1_Pos) /*!< \brief IFSR: FS1 Mask */
#define IFSR_LPAE_Pos 9U /*!< \brief IFSR: LPAE Position */
#define IFSR_LPAE_Msk (0x1UL << IFSR_LPAE_Pos) /*!< \brief IFSR: LPAE Mask */
#define IFSR_FS0_Pos 0U /*!< \brief IFSR: FS0 Position */
#define IFSR_FS0_Msk (0xFUL << IFSR_FS0_Pos) /*!< \brief IFSR: FS0 Mask */
#define IFSR_STATUS_Pos 0U /*!< \brief IFSR: STATUS Position */
#define IFSR_STATUS_Msk (0x3FUL << IFSR_STATUS_Pos) /*!< \brief IFSR: STATUS Mask */
/* CP15 Register ISR */
typedef union
{
struct
{
RESERVED(0:6, uint32_t)
uint32_t F:1; /*!< \brief bit: 6 FIQ pending bit */
uint32_t I:1; /*!< \brief bit: 7 IRQ pending bit */
uint32_t A:1; /*!< \brief bit: 8 External abort pending bit */
RESERVED(1:23, uint32_t)
} b; /*!< \brief Structure used for bit access */
uint32_t w; /*!< \brief Type used for word access */
} ISR_Type;
#define ISR_A_Pos 13U /*!< \brief ISR: A Position */
#define ISR_A_Msk (1UL << ISR_A_Pos) /*!< \brief ISR: A Mask */
#define ISR_I_Pos 12U /*!< \brief ISR: I Position */
#define ISR_I_Msk (1UL << ISR_I_Pos) /*!< \brief ISR: I Mask */
#define ISR_F_Pos 11U /*!< \brief ISR: F Position */
#define ISR_F_Msk (1UL << ISR_F_Pos) /*!< \brief ISR: F Mask */
/* DACR Register */
#define DACR_D_Pos_(n) (2U*n) /*!< \brief DACR: Dn Position */
#define DACR_D_Msk_(n) (3UL << DACR_D_Pos_(n)) /*!< \brief DACR: Dn Mask */
#define DACR_Dn_NOACCESS 0U /*!< \brief DACR Dn field: No access */
#define DACR_Dn_CLIENT 1U /*!< \brief DACR Dn field: Client */
#define DACR_Dn_MANAGER 3U /*!< \brief DACR Dn field: Manager */
/**
\brief Mask and shift a bit field value for use in a register bit range.
\param [in] field Name of the register bit field.
\param [in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
\return Masked and shifted value.
*/
#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
/**
\brief Mask and shift a register value to extract a bit filed value.
\param [in] field Name of the register bit field.
\param [in] value Value of register. This parameter is interpreted as an uint32_t type.
\return Masked and shifted bit field value.
*/
#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
/**
\brief Union type to access the L2C_310 Cache Controller.
*/
#if (__L2C_PRESENT == 1U) || defined(DOXYGEN)
typedef struct
{
__IM uint32_t CACHE_ID; /*!< \brief Offset: 0x0000 (R/ ) Cache ID Register */
__IM uint32_t CACHE_TYPE; /*!< \brief Offset: 0x0004 (R/ ) Cache Type Register */
RESERVED(0[0x3e], uint32_t)
__IOM uint32_t CONTROL; /*!< \brief Offset: 0x0100 (R/W) Control Register */
__IOM uint32_t AUX_CNT; /*!< \brief Offset: 0x0104 (R/W) Auxiliary Control */
RESERVED(1[0x3e], uint32_t)
__IOM uint32_t EVENT_CONTROL; /*!< \brief Offset: 0x0200 (R/W) Event Counter Control */
__IOM uint32_t EVENT_COUNTER1_CONF; /*!< \brief Offset: 0x0204 (R/W) Event Counter 1 Configuration */
__IOM uint32_t EVENT_COUNTER0_CONF; /*!< \brief Offset: 0x0208 (R/W) Event Counter 1 Configuration */
RESERVED(2[0x2], uint32_t)
__IOM uint32_t INTERRUPT_MASK; /*!< \brief Offset: 0x0214 (R/W) Interrupt Mask */
__IM uint32_t MASKED_INT_STATUS; /*!< \brief Offset: 0x0218 (R/ ) Masked Interrupt Status */
__IM uint32_t RAW_INT_STATUS; /*!< \brief Offset: 0x021c (R/ ) Raw Interrupt Status */
__OM uint32_t INTERRUPT_CLEAR; /*!< \brief Offset: 0x0220 ( /W) Interrupt Clear */
RESERVED(3[0x143], uint32_t)
__IOM uint32_t CACHE_SYNC; /*!< \brief Offset: 0x0730 (R/W) Cache Sync */
RESERVED(4[0xf], uint32_t)
__IOM uint32_t INV_LINE_PA; /*!< \brief Offset: 0x0770 (R/W) Invalidate Line By PA */
RESERVED(6[2], uint32_t)
__IOM uint32_t INV_WAY; /*!< \brief Offset: 0x077c (R/W) Invalidate by Way */
RESERVED(5[0xc], uint32_t)
__IOM uint32_t CLEAN_LINE_PA; /*!< \brief Offset: 0x07b0 (R/W) Clean Line by PA */
RESERVED(7[1], uint32_t)
__IOM uint32_t CLEAN_LINE_INDEX_WAY; /*!< \brief Offset: 0x07b8 (R/W) Clean Line by Index/Way */
__IOM uint32_t CLEAN_WAY; /*!< \brief Offset: 0x07bc (R/W) Clean by Way */
RESERVED(8[0xc], uint32_t)
__IOM uint32_t CLEAN_INV_LINE_PA; /*!< \brief Offset: 0x07f0 (R/W) Clean and Invalidate Line by PA */
RESERVED(9[1], uint32_t)
__IOM uint32_t CLEAN_INV_LINE_INDEX_WAY; /*!< \brief Offset: 0x07f8 (R/W) Clean and Invalidate Line by Index/Way */
__IOM uint32_t CLEAN_INV_WAY; /*!< \brief Offset: 0x07fc (R/W) Clean and Invalidate by Way */
RESERVED(10[0x40], uint32_t)
__IOM uint32_t DATA_LOCK_0_WAY; /*!< \brief Offset: 0x0900 (R/W) Data Lockdown 0 by Way */
__IOM uint32_t INST_LOCK_0_WAY; /*!< \brief Offset: 0x0904 (R/W) Instruction Lockdown 0 by Way */
__IOM uint32_t DATA_LOCK_1_WAY; /*!< \brief Offset: 0x0908 (R/W) Data Lockdown 1 by Way */
__IOM uint32_t INST_LOCK_1_WAY; /*!< \brief Offset: 0x090c (R/W) Instruction Lockdown 1 by Way */
__IOM uint32_t DATA_LOCK_2_WAY; /*!< \brief Offset: 0x0910 (R/W) Data Lockdown 2 by Way */
__IOM uint32_t INST_LOCK_2_WAY; /*!< \brief Offset: 0x0914 (R/W) Instruction Lockdown 2 by Way */
__IOM uint32_t DATA_LOCK_3_WAY; /*!< \brief Offset: 0x0918 (R/W) Data Lockdown 3 by Way */
__IOM uint32_t INST_LOCK_3_WAY; /*!< \brief Offset: 0x091c (R/W) Instruction Lockdown 3 by Way */
__IOM uint32_t DATA_LOCK_4_WAY; /*!< \brief Offset: 0x0920 (R/W) Data Lockdown 4 by Way */
__IOM uint32_t INST_LOCK_4_WAY; /*!< \brief Offset: 0x0924 (R/W) Instruction Lockdown 4 by Way */
__IOM uint32_t DATA_LOCK_5_WAY; /*!< \brief Offset: 0x0928 (R/W) Data Lockdown 5 by Way */
__IOM uint32_t INST_LOCK_5_WAY; /*!< \brief Offset: 0x092c (R/W) Instruction Lockdown 5 by Way */
__IOM uint32_t DATA_LOCK_6_WAY; /*!< \brief Offset: 0x0930 (R/W) Data Lockdown 5 by Way */
__IOM uint32_t INST_LOCK_6_WAY; /*!< \brief Offset: 0x0934 (R/W) Instruction Lockdown 5 by Way */
__IOM uint32_t DATA_LOCK_7_WAY; /*!< \brief Offset: 0x0938 (R/W) Data Lockdown 6 by Way */
__IOM uint32_t INST_LOCK_7_WAY; /*!< \brief Offset: 0x093c (R/W) Instruction Lockdown 6 by Way */
RESERVED(11[0x4], uint32_t)
__IOM uint32_t LOCK_LINE_EN; /*!< \brief Offset: 0x0950 (R/W) Lockdown by Line Enable */
__IOM uint32_t UNLOCK_ALL_BY_WAY; /*!< \brief Offset: 0x0954 (R/W) Unlock All Lines by Way */
RESERVED(12[0xaa], uint32_t)
__IOM uint32_t ADDRESS_FILTER_START; /*!< \brief Offset: 0x0c00 (R/W) Address Filtering Start */
__IOM uint32_t ADDRESS_FILTER_END; /*!< \brief Offset: 0x0c04 (R/W) Address Filtering End */
RESERVED(13[0xce], uint32_t)
__IOM uint32_t DEBUG_CONTROL; /*!< \brief Offset: 0x0f40 (R/W) Debug Control Register */
} L2C_310_TypeDef;
#define L2C_310 ((L2C_310_TypeDef *)L2C_310_BASE) /*!< \brief L2C_310 register set access pointer */
#endif
#if (__GIC_PRESENT == 1U) || defined(DOXYGEN)
/** \brief Structure type to access the Generic Interrupt Controller Distributor (GICD)
*/
typedef struct
{
__IOM uint32_t CTLR; /*!< \brief Offset: 0x000 (R/W) Distributor Control Register */
__IM uint32_t TYPER; /*!< \brief Offset: 0x004 (R/ ) Interrupt Controller Type Register */
__IM uint32_t IIDR; /*!< \brief Offset: 0x008 (R/ ) Distributor Implementer Identification Register */
RESERVED(0, uint32_t)
__IOM uint32_t STATUSR; /*!< \brief Offset: 0x010 (R/W) Error Reporting Status Register, optional */
RESERVED(1[11], uint32_t)
__OM uint32_t SETSPI_NSR; /*!< \brief Offset: 0x040 ( /W) Set SPI Register */
RESERVED(2, uint32_t)
__OM uint32_t CLRSPI_NSR; /*!< \brief Offset: 0x048 ( /W) Clear SPI Register */
RESERVED(3, uint32_t)
__OM uint32_t SETSPI_SR; /*!< \brief Offset: 0x050 ( /W) Set SPI, Secure Register */
RESERVED(4, uint32_t)
__OM uint32_t CLRSPI_SR; /*!< \brief Offset: 0x058 ( /W) Clear SPI, Secure Register */
RESERVED(5[9], uint32_t)
__IOM uint32_t IGROUPR[32]; /*!< \brief Offset: 0x080 (R/W) Interrupt Group Registers */
__IOM uint32_t ISENABLER[32]; /*!< \brief Offset: 0x100 (R/W) Interrupt Set-Enable Registers */
__IOM uint32_t ICENABLER[32]; /*!< \brief Offset: 0x180 (R/W) Interrupt Clear-Enable Registers */
__IOM uint32_t ISPENDR[32]; /*!< \brief Offset: 0x200 (R/W) Interrupt Set-Pending Registers */
__IOM uint32_t ICPENDR[32]; /*!< \brief Offset: 0x280 (R/W) Interrupt Clear-Pending Registers */
__IOM uint32_t ISACTIVER[32]; /*!< \brief Offset: 0x300 (R/W) Interrupt Set-Active Registers */
__IOM uint32_t ICACTIVER[32]; /*!< \brief Offset: 0x380 (R/W) Interrupt Clear-Active Registers */
__IOM uint32_t IPRIORITYR[255]; /*!< \brief Offset: 0x400 (R/W) Interrupt Priority Registers */
RESERVED(6, uint32_t)
__IOM uint32_t ITARGETSR[255]; /*!< \brief Offset: 0x800 (R/W) Interrupt Targets Registers */
RESERVED(7, uint32_t)
__IOM uint32_t ICFGR[64]; /*!< \brief Offset: 0xC00 (R/W) Interrupt Configuration Registers */
__IOM uint32_t IGRPMODR[32]; /*!< \brief Offset: 0xD00 (R/W) Interrupt Group Modifier Registers */
RESERVED(8[32], uint32_t)
__IOM uint32_t NSACR[64]; /*!< \brief Offset: 0xE00 (R/W) Non-secure Access Control Registers */
__OM uint32_t SGIR; /*!< \brief Offset: 0xF00 ( /W) Software Generated Interrupt Register */
RESERVED(9[3], uint32_t)
__IOM uint32_t CPENDSGIR[4]; /*!< \brief Offset: 0xF10 (R/W) SGI Clear-Pending Registers */
__IOM uint32_t SPENDSGIR[4]; /*!< \brief Offset: 0xF20 (R/W) SGI Set-Pending Registers */
RESERVED(10[5236], uint32_t)
__IOM uint64_t IROUTER[988]; /*!< \brief Offset: 0x6100(R/W) Interrupt Routing Registers */
} GICDistributor_Type;
#define GICDistributor ((GICDistributor_Type *) GIC_DISTRIBUTOR_BASE ) /*!< \brief GIC Distributor register set access pointer */
/** \brief Structure type to access the Generic Interrupt Controller Interface (GICC)
*/
typedef struct
{
__IOM uint32_t CTLR; /*!< \brief Offset: 0x000 (R/W) CPU Interface Control Register */
__IOM uint32_t PMR; /*!< \brief Offset: 0x004 (R/W) Interrupt Priority Mask Register */
__IOM uint32_t BPR; /*!< \brief Offset: 0x008 (R/W) Binary Point Register */
__IM uint32_t IAR; /*!< \brief Offset: 0x00C (R/ ) Interrupt Acknowledge Register */
__OM uint32_t EOIR; /*!< \brief Offset: 0x010 ( /W) End Of Interrupt Register */
__IM uint32_t RPR; /*!< \brief Offset: 0x014 (R/ ) Running Priority Register */
__IM uint32_t HPPIR; /*!< \brief Offset: 0x018 (R/ ) Highest Priority Pending Interrupt Register */
__IOM uint32_t ABPR; /*!< \brief Offset: 0x01C (R/W) Aliased Binary Point Register */
__IM uint32_t AIAR; /*!< \brief Offset: 0x020 (R/ ) Aliased Interrupt Acknowledge Register */
__OM uint32_t AEOIR; /*!< \brief Offset: 0x024 ( /W) Aliased End Of Interrupt Register */
__IM uint32_t AHPPIR; /*!< \brief Offset: 0x028 (R/ ) Aliased Highest Priority Pending Interrupt Register */
__IOM uint32_t STATUSR; /*!< \brief Offset: 0x02C (R/W) Error Reporting Status Register, optional */
RESERVED(1[40], uint32_t)
__IOM uint32_t APR[4]; /*!< \brief Offset: 0x0D0 (R/W) Active Priority Register */
__IOM uint32_t NSAPR[4]; /*!< \brief Offset: 0x0E0 (R/W) Non-secure Active Priority Register */
RESERVED(2[3], uint32_t)
__IM uint32_t IIDR; /*!< \brief Offset: 0x0FC (R/ ) CPU Interface Identification Register */
RESERVED(3[960], uint32_t)
__OM uint32_t DIR; /*!< \brief Offset: 0x1000( /W) Deactivate Interrupt Register */
} GICInterface_Type;
#define GICInterface ((GICInterface_Type *) GIC_INTERFACE_BASE ) /*!< \brief GIC Interface register set access pointer */
#endif
#if (__TIM_PRESENT == 1U) || defined(DOXYGEN)
#if ((__CORTEX_A == 5U) || (__CORTEX_A == 9U)) || defined(DOXYGEN)
/** \brief Structure type to access the Private Timer
*/
typedef struct
{
__IOM uint32_t LOAD; //!< \brief Offset: 0x000 (R/W) Private Timer Load Register
__IOM uint32_t COUNTER; //!< \brief Offset: 0x004 (R/W) Private Timer Counter Register
__IOM uint32_t CONTROL; //!< \brief Offset: 0x008 (R/W) Private Timer Control Register
__IOM uint32_t ISR; //!< \brief Offset: 0x00C (R/W) Private Timer Interrupt Status Register
RESERVED(0[4], uint32_t)
__IOM uint32_t WLOAD; //!< \brief Offset: 0x020 (R/W) Watchdog Load Register
__IOM uint32_t WCOUNTER; //!< \brief Offset: 0x024 (R/W) Watchdog Counter Register
__IOM uint32_t WCONTROL; //!< \brief Offset: 0x028 (R/W) Watchdog Control Register
__IOM uint32_t WISR; //!< \brief Offset: 0x02C (R/W) Watchdog Interrupt Status Register
__IOM uint32_t WRESET; //!< \brief Offset: 0x030 (R/W) Watchdog Reset Status Register
__OM uint32_t WDISABLE; //!< \brief Offset: 0x034 ( /W) Watchdog Disable Register
} Timer_Type;
#define PTIM ((Timer_Type *) TIMER_BASE ) /*!< \brief Timer register struct */
#endif
#endif
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- L1 Cache Functions
- L2C-310 Cache Controller Functions
- PL1 Timer Functions
- GIC Functions
- MMU Functions
******************************************************************************/
/* ########################## L1 Cache functions ################################# */
/** \brief Enable Caches by setting I and C bits in SCTLR register.
*/
__STATIC_FORCEINLINE void L1C_EnableCaches(void) {
__set_SCTLR( __get_SCTLR() | SCTLR_I_Msk | SCTLR_C_Msk);
__ISB();
}
/** \brief Disable Caches by clearing I and C bits in SCTLR register.
*/
__STATIC_FORCEINLINE void L1C_DisableCaches(void) {
__set_SCTLR( __get_SCTLR() & (~SCTLR_I_Msk) & (~SCTLR_C_Msk));
__ISB();
}
/** \brief Enable Branch Prediction by setting Z bit in SCTLR register.
*/
__STATIC_FORCEINLINE void L1C_EnableBTAC(void) {
__set_SCTLR( __get_SCTLR() | SCTLR_Z_Msk);
__ISB();
}
/** \brief Disable Branch Prediction by clearing Z bit in SCTLR register.
*/
__STATIC_FORCEINLINE void L1C_DisableBTAC(void) {
__set_SCTLR( __get_SCTLR() & (~SCTLR_Z_Msk));
__ISB();
}
/** \brief Invalidate entire branch predictor array
*/
__STATIC_FORCEINLINE void L1C_InvalidateBTAC(void) {
__set_BPIALL(0);
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new state
}
/** \brief Invalidate the whole instruction cache
*/
__STATIC_FORCEINLINE void L1C_InvalidateICacheAll(void) {
__set_ICIALLU(0);
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new I cache state
}
/** \brief Clean data cache line by address.
* \param [in] va Pointer to data to clear the cache for.
*/
__STATIC_FORCEINLINE void L1C_CleanDCacheMVA(void *va) {
__set_DCCMVAC((uint32_t)va);
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Invalidate data cache line by address.
* \param [in] va Pointer to data to invalidate the cache for.
*/
__STATIC_FORCEINLINE void L1C_InvalidateDCacheMVA(void *va) {
__set_DCIMVAC((uint32_t)va);
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Clean and Invalidate data cache by address.
* \param [in] va Pointer to data to invalidate the cache for.
*/
__STATIC_FORCEINLINE void L1C_CleanInvalidateDCacheMVA(void *va) {
__set_DCCIMVAC((uint32_t)va);
__DMB(); //ensure the ordering of data cache maintenance operations and their effects
}
/** \brief Calculate log2 rounded up
* - log(0) => 0
* - log(1) => 0
* - log(2) => 1
* - log(3) => 2
* - log(4) => 2
* - log(5) => 3
* : :
* - log(16) => 4
* - log(32) => 5
* : :
* \param [in] n input value parameter
* \return log2(n)
*/
__STATIC_FORCEINLINE uint8_t __log2_up(uint32_t n)
{
if (n < 2U) {
return 0U;
}
uint8_t log = 0U;
uint32_t t = n;
while(t > 1U)
{
log++;
t >>= 1U;
}
if (n & 1U) { log++; }
return log;
}
/** \brief Apply cache maintenance to given cache level.
* \param [in] level cache level to be maintained
* \param [in] maint 0 - invalidate, 1 - clean, otherwise - invalidate and clean
*/
__STATIC_FORCEINLINE void __L1C_MaintainDCacheSetWay(uint32_t level, uint32_t maint)
{
uint32_t Dummy;
uint32_t ccsidr;
uint32_t num_sets;
uint32_t num_ways;
uint32_t shift_way;
uint32_t log2_linesize;
int32_t log2_num_ways;
Dummy = level << 1U;
/* set csselr, select ccsidr register */
__set_CSSELR(Dummy);
/* get current ccsidr register */
ccsidr = __get_CCSIDR();
num_sets = ((ccsidr & 0x0FFFE000U) >> 13U) + 1U;
num_ways = ((ccsidr & 0x00001FF8U) >> 3U) + 1U;
log2_linesize = (ccsidr & 0x00000007U) + 2U + 2U;
log2_num_ways = __log2_up(num_ways);
if ((log2_num_ways < 0) || (log2_num_ways > 32)) {
return; // FATAL ERROR
}
shift_way = 32U - (uint32_t)log2_num_ways;
for(int32_t way = num_ways-1; way >= 0; way--)
{
for(int32_t set = num_sets-1; set >= 0; set--)
{
Dummy = (level << 1U) | (((uint32_t)set) << log2_linesize) | (((uint32_t)way) << shift_way);
switch (maint)
{
case 0U: __set_DCISW(Dummy); break;
case 1U: __set_DCCSW(Dummy); break;
default: __set_DCCISW(Dummy); break;
}
}
}
__DMB();
}
/** \brief Clean and Invalidate the entire data or unified cache
* Generic mechanism for cleaning/invalidating the entire data or unified cache to the point of coherency
* \param [in] op 0 - invalidate, 1 - clean, otherwise - invalidate and clean
*/
__STATIC_FORCEINLINE void L1C_CleanInvalidateCache(uint32_t op) {
uint32_t clidr;
uint32_t cache_type;
clidr = __get_CLIDR();
for(uint32_t i = 0U; i<7U; i++)
{
cache_type = (clidr >> i*3U) & 0x7UL;
if ((cache_type >= 2U) && (cache_type <= 4U))
{
__L1C_MaintainDCacheSetWay(i, op);
}
}
}
/** \brief Clean and Invalidate the entire data or unified cache
* Generic mechanism for cleaning/invalidating the entire data or unified cache to the point of coherency
* \param [in] op 0 - invalidate, 1 - clean, otherwise - invalidate and clean
* \deprecated Use generic L1C_CleanInvalidateCache instead.
*/
CMSIS_DEPRECATED
__STATIC_FORCEINLINE void __L1C_CleanInvalidateCache(uint32_t op) {
L1C_CleanInvalidateCache(op);
}
/** \brief Invalidate the whole data cache.
*/
__STATIC_FORCEINLINE void L1C_InvalidateDCacheAll(void) {
L1C_CleanInvalidateCache(0);
}
/** \brief Clean the whole data cache.
*/
__STATIC_FORCEINLINE void L1C_CleanDCacheAll(void) {
L1C_CleanInvalidateCache(1);
}
/** \brief Clean and invalidate the whole data cache.
*/
__STATIC_FORCEINLINE void L1C_CleanInvalidateDCacheAll(void) {
L1C_CleanInvalidateCache(2);
}
/* ########################## L2 Cache functions ################################# */
#if (__L2C_PRESENT == 1U) || defined(DOXYGEN)
/** \brief Cache Sync operation by writing CACHE_SYNC register.
*/
__STATIC_INLINE void L2C_Sync(void)
{
L2C_310->CACHE_SYNC = 0x0;
}
/** \brief Read cache controller cache ID from CACHE_ID register.
* \return L2C_310_TypeDef::CACHE_ID
*/
__STATIC_INLINE int L2C_GetID (void)
{
return L2C_310->CACHE_ID;
}
/** \brief Read cache controller cache type from CACHE_TYPE register.
* \return L2C_310_TypeDef::CACHE_TYPE
*/
__STATIC_INLINE int L2C_GetType (void)
{
return L2C_310->CACHE_TYPE;
}
/** \brief Invalidate all cache by way
*/
__STATIC_INLINE void L2C_InvAllByWay (void)
{
unsigned int assoc;
if (L2C_310->AUX_CNT & (1U << 16U)) {
assoc = 16U;
} else {
assoc = 8U;
}
L2C_310->INV_WAY = (1U << assoc) - 1U;
while(L2C_310->INV_WAY & ((1U << assoc) - 1U)); //poll invalidate
L2C_Sync();
}
/** \brief Clean and Invalidate all cache by way
*/
__STATIC_INLINE void L2C_CleanInvAllByWay (void)
{
unsigned int assoc;
if (L2C_310->AUX_CNT & (1U << 16U)) {
assoc = 16U;
} else {
assoc = 8U;
}
L2C_310->CLEAN_INV_WAY = (1U << assoc) - 1U;
while(L2C_310->CLEAN_INV_WAY & ((1U << assoc) - 1U)); //poll invalidate
L2C_Sync();
}
/** \brief Enable Level 2 Cache
*/
__STATIC_INLINE void L2C_Enable(void)
{
L2C_310->CONTROL = 0;
L2C_310->INTERRUPT_CLEAR = 0x000001FFuL;
L2C_310->DEBUG_CONTROL = 0;
L2C_310->DATA_LOCK_0_WAY = 0;
L2C_310->CACHE_SYNC = 0;
L2C_310->CONTROL = 0x01;
L2C_Sync();
}
/** \brief Disable Level 2 Cache
*/
__STATIC_INLINE void L2C_Disable(void)
{
L2C_310->CONTROL = 0x00;
L2C_Sync();
}
/** \brief Invalidate cache by physical address
* \param [in] pa Pointer to data to invalidate cache for.
*/
__STATIC_INLINE void L2C_InvPa (void *pa)
{
L2C_310->INV_LINE_PA = (unsigned int)pa;
L2C_Sync();
}
/** \brief Clean cache by physical address
* \param [in] pa Pointer to data to invalidate cache for.
*/
__STATIC_INLINE void L2C_CleanPa (void *pa)
{
L2C_310->CLEAN_LINE_PA = (unsigned int)pa;
L2C_Sync();
}
/** \brief Clean and invalidate cache by physical address
* \param [in] pa Pointer to data to invalidate cache for.
*/
__STATIC_INLINE void L2C_CleanInvPa (void *pa)
{
L2C_310->CLEAN_INV_LINE_PA = (unsigned int)pa;
L2C_Sync();
}
#endif
/* ########################## GIC functions ###################################### */
#if (__GIC_PRESENT == 1U) || defined(DOXYGEN)
/** \brief Enable the interrupt distributor using the GIC's CTLR register.
*/
__STATIC_INLINE void GIC_EnableDistributor(void)
{
GICDistributor->CTLR |= 1U;
}
/** \brief Disable the interrupt distributor using the GIC's CTLR register.
*/
__STATIC_INLINE void GIC_DisableDistributor(void)
{
GICDistributor->CTLR &=~1U;
}
/** \brief Read the GIC's TYPER register.
* \return GICDistributor_Type::TYPER
*/
__STATIC_INLINE uint32_t GIC_DistributorInfo(void)
{
return (GICDistributor->TYPER);
}
/** \brief Reads the GIC's IIDR register.
* \return GICDistributor_Type::IIDR
*/
__STATIC_INLINE uint32_t GIC_DistributorImplementer(void)
{
return (GICDistributor->IIDR);
}
/** \brief Sets the GIC's ITARGETSR register for the given interrupt.
* \param [in] IRQn Interrupt to be configured.
* \param [in] cpu_target CPU interfaces to assign this interrupt to.
*/
__STATIC_INLINE void GIC_SetTarget(IRQn_Type IRQn, uint32_t cpu_target)
{
uint32_t mask = GICDistributor->ITARGETSR[IRQn / 4U] & ~(0xFFUL << ((IRQn % 4U) * 8U));
GICDistributor->ITARGETSR[IRQn / 4U] = mask | ((cpu_target & 0xFFUL) << ((IRQn % 4U) * 8U));
}
/** \brief Read the GIC's ITARGETSR register.
* \param [in] IRQn Interrupt to acquire the configuration for.
* \return GICDistributor_Type::ITARGETSR
*/
__STATIC_INLINE uint32_t GIC_GetTarget(IRQn_Type IRQn)
{
return (GICDistributor->ITARGETSR[IRQn / 4U] >> ((IRQn % 4U) * 8U)) & 0xFFUL;
}
/** \brief Enable the CPU's interrupt interface.
*/
__STATIC_INLINE void GIC_EnableInterface(void)
{
GICInterface->CTLR |= 1U; //enable interface
}
/** \brief Disable the CPU's interrupt interface.
*/
__STATIC_INLINE void GIC_DisableInterface(void)
{
GICInterface->CTLR &=~1U; //disable distributor
}
/** \brief Read the CPU's IAR register.
* \return GICInterface_Type::IAR
*/
__STATIC_INLINE IRQn_Type GIC_AcknowledgePending(void)
{
return (IRQn_Type)(GICInterface->IAR);
}
/** \brief Writes the given interrupt number to the CPU's EOIR register.
* \param [in] IRQn The interrupt to be signaled as finished.
*/
__STATIC_INLINE void GIC_EndInterrupt(IRQn_Type IRQn)
{
GICInterface->EOIR = IRQn;
}
/** \brief Enables the given interrupt using GIC's ISENABLER register.
* \param [in] IRQn The interrupt to be enabled.
*/
__STATIC_INLINE void GIC_EnableIRQ(IRQn_Type IRQn)
{
GICDistributor->ISENABLER[IRQn / 32U] = 1U << (IRQn % 32U);
}
/** \brief Get interrupt enable status using GIC's ISENABLER register.
* \param [in] IRQn The interrupt to be queried.
* \return 0 - interrupt is not enabled, 1 - interrupt is enabled.
*/
__STATIC_INLINE uint32_t GIC_GetEnableIRQ(IRQn_Type IRQn)
{
return (GICDistributor->ISENABLER[IRQn / 32U] >> (IRQn % 32U)) & 1UL;
}
/** \brief Disables the given interrupt using GIC's ICENABLER register.
* \param [in] IRQn The interrupt to be disabled.
*/
__STATIC_INLINE void GIC_DisableIRQ(IRQn_Type IRQn)
{
GICDistributor->ICENABLER[IRQn / 32U] = 1U << (IRQn % 32U);
}
/** \brief Get interrupt pending status from GIC's ISPENDR register.
* \param [in] IRQn The interrupt to be queried.
* \return 0 - interrupt is not pending, 1 - interrupt is pendig.
*/
__STATIC_INLINE uint32_t GIC_GetPendingIRQ(IRQn_Type IRQn)
{
uint32_t pend;
if (IRQn >= 16U) {
pend = (GICDistributor->ISPENDR[IRQn / 32U] >> (IRQn % 32U)) & 1UL;
} else {
// INTID 0-15 Software Generated Interrupt
pend = (GICDistributor->SPENDSGIR[IRQn / 4U] >> ((IRQn % 4U) * 8U)) & 0xFFUL;
// No CPU identification offered
if (pend != 0U) {
pend = 1U;
} else {
pend = 0U;
}
}
return (pend);
}
/** \brief Sets the given interrupt as pending using GIC's ISPENDR register.
* \param [in] IRQn The interrupt to be enabled.
*/
__STATIC_INLINE void GIC_SetPendingIRQ(IRQn_Type IRQn)
{
if (IRQn >= 16U) {
GICDistributor->ISPENDR[IRQn / 32U] = 1U << (IRQn % 32U);
} else {
// INTID 0-15 Software Generated Interrupt
GICDistributor->SPENDSGIR[IRQn / 4U] = 1U << ((IRQn % 4U) * 8U);
}
}
/** \brief Clears the given interrupt from being pending using GIC's ICPENDR register.
* \param [in] IRQn The interrupt to be enabled.
*/
__STATIC_INLINE void GIC_ClearPendingIRQ(IRQn_Type IRQn)
{
if (IRQn >= 16U) {
GICDistributor->ICPENDR[IRQn / 32U] = 1U << (IRQn % 32U);
} else {
// INTID 0-15 Software Generated Interrupt
GICDistributor->CPENDSGIR[IRQn / 4U] = 1U << ((IRQn % 4U) * 8U);
}
}
/** \brief Sets the interrupt configuration using GIC's ICFGR register.
* \param [in] IRQn The interrupt to be configured.
* \param [in] int_config Int_config field value. Bit 0: Reserved (0 - N-N model, 1 - 1-N model for some GIC before v1)
* Bit 1: 0 - level sensitive, 1 - edge triggered
*/
__STATIC_INLINE void GIC_SetConfiguration(IRQn_Type IRQn, uint32_t int_config)
{
uint32_t icfgr = GICDistributor->ICFGR[IRQn / 16U];
uint32_t shift = (IRQn % 16U) << 1U;
icfgr &= (~(3U << shift));
icfgr |= ( int_config << shift);
GICDistributor->ICFGR[IRQn / 16U] = icfgr;
}
/** \brief Get the interrupt configuration from the GIC's ICFGR register.
* \param [in] IRQn Interrupt to acquire the configuration for.
* \return Int_config field value. Bit 0: Reserved (0 - N-N model, 1 - 1-N model for some GIC before v1)
* Bit 1: 0 - level sensitive, 1 - edge triggered
*/
__STATIC_INLINE uint32_t GIC_GetConfiguration(IRQn_Type IRQn)
{
return (GICDistributor->ICFGR[IRQn / 16U] >> ((IRQn % 16U) >> 1U));
}
/** \brief Set the priority for the given interrupt in the GIC's IPRIORITYR register.
* \param [in] IRQn The interrupt to be configured.
* \param [in] priority The priority for the interrupt, lower values denote higher priorities.
*/
__STATIC_INLINE void GIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
uint32_t mask = GICDistributor->IPRIORITYR[IRQn / 4U] & ~(0xFFUL << ((IRQn % 4U) * 8U));
GICDistributor->IPRIORITYR[IRQn / 4U] = mask | ((priority & 0xFFUL) << ((IRQn % 4U) * 8U));
}
/** \brief Read the current interrupt priority from GIC's IPRIORITYR register.
* \param [in] IRQn The interrupt to be queried.
*/
__STATIC_INLINE uint32_t GIC_GetPriority(IRQn_Type IRQn)
{
return (GICDistributor->IPRIORITYR[IRQn / 4U] >> ((IRQn % 4U) * 8U)) & 0xFFUL;
}
/** \brief Set the interrupt priority mask using CPU's PMR register.
* \param [in] priority Priority mask to be set.
*/
__STATIC_INLINE void GIC_SetInterfacePriorityMask(uint32_t priority)
{
GICInterface->PMR = priority & 0xFFUL; //set priority mask
}
/** \brief Read the current interrupt priority mask from CPU's PMR register.
* \result GICInterface_Type::PMR
*/
__STATIC_INLINE uint32_t GIC_GetInterfacePriorityMask(void)
{
return GICInterface->PMR;
}
/** \brief Configures the group priority and subpriority split point using CPU's BPR register.
* \param [in] binary_point Amount of bits used as subpriority.
*/
__STATIC_INLINE void GIC_SetBinaryPoint(uint32_t binary_point)
{
GICInterface->BPR = binary_point & 7U; //set binary point
}
/** \brief Read the current group priority and subpriority split point from CPU's BPR register.
* \return GICInterface_Type::BPR
*/
__STATIC_INLINE uint32_t GIC_GetBinaryPoint(void)
{
return GICInterface->BPR;
}
/** \brief Get the status for a given interrupt.
* \param [in] IRQn The interrupt to get status for.
* \return 0 - not pending/active, 1 - pending, 2 - active, 3 - pending and active
*/
__STATIC_INLINE uint32_t GIC_GetIRQStatus(IRQn_Type IRQn)
{
uint32_t pending, active;
active = ((GICDistributor->ISACTIVER[IRQn / 32U]) >> (IRQn % 32U)) & 1UL;
pending = ((GICDistributor->ISPENDR[IRQn / 32U]) >> (IRQn % 32U)) & 1UL;
return ((active<<1U) | pending);
}
/** \brief Generate a software interrupt using GIC's SGIR register.
* \param [in] IRQn Software interrupt to be generated.
* \param [in] target_list List of CPUs the software interrupt should be forwarded to.
* \param [in] filter_list Filter to be applied to determine interrupt receivers.
*/
__STATIC_INLINE void GIC_SendSGI(IRQn_Type IRQn, uint32_t target_list, uint32_t filter_list)
{
GICDistributor->SGIR = ((filter_list & 3U) << 24U) | ((target_list & 0xFFUL) << 16U) | (IRQn & 0x0FUL);
}
/** \brief Get the interrupt number of the highest interrupt pending from CPU's HPPIR register.
* \return GICInterface_Type::HPPIR
*/
__STATIC_INLINE uint32_t GIC_GetHighPendingIRQ(void)
{
return GICInterface->HPPIR;
}
/** \brief Provides information about the implementer and revision of the CPU interface.
* \return GICInterface_Type::IIDR
*/
__STATIC_INLINE uint32_t GIC_GetInterfaceId(void)
{
return GICInterface->IIDR;
}
/** \brief Set the interrupt group from the GIC's IGROUPR register.
* \param [in] IRQn The interrupt to be queried.
* \param [in] group Interrupt group number: 0 - Group 0, 1 - Group 1
*/
__STATIC_INLINE void GIC_SetGroup(IRQn_Type IRQn, uint32_t group)
{
uint32_t igroupr = GICDistributor->IGROUPR[IRQn / 32U];
uint32_t shift = (IRQn % 32U);
igroupr &= (~(1U << shift));
igroupr |= ( (group & 1U) << shift);
GICDistributor->IGROUPR[IRQn / 32U] = igroupr;
}
#define GIC_SetSecurity GIC_SetGroup
/** \brief Get the interrupt group from the GIC's IGROUPR register.
* \param [in] IRQn The interrupt to be queried.
* \return 0 - Group 0, 1 - Group 1
*/
__STATIC_INLINE uint32_t GIC_GetGroup(IRQn_Type IRQn)
{
return (GICDistributor->IGROUPR[IRQn / 32U] >> (IRQn % 32U)) & 1UL;
}
#define GIC_GetSecurity GIC_GetGroup
/** \brief Initialize the interrupt distributor.
*/
__STATIC_INLINE void GIC_DistInit(void)
{
uint32_t i;
uint32_t num_irq = 0U;
uint32_t priority_field;
//A reset sets all bits in the IGROUPRs corresponding to the SPIs to 0,
//configuring all of the interrupts as Secure.
//Disable interrupt forwarding
GIC_DisableDistributor();
//Get the maximum number of interrupts that the GIC supports
num_irq = 32U * ((GIC_DistributorInfo() & 0x1FU) + 1U);
/* Priority level is implementation defined.
To determine the number of priority bits implemented write 0xFF to an IPRIORITYR
priority field and read back the value stored.*/
GIC_SetPriority((IRQn_Type)0U, 0xFFU);
priority_field = GIC_GetPriority((IRQn_Type)0U);
for (i = 32U; i < num_irq; i++)
{
//Disable the SPI interrupt
GIC_DisableIRQ((IRQn_Type)i);
//Set level-sensitive (and N-N model)
GIC_SetConfiguration((IRQn_Type)i, 0U);
//Set priority
GIC_SetPriority((IRQn_Type)i, priority_field/2U);
//Set target list to CPU0
GIC_SetTarget((IRQn_Type)i, 1U);
}
//Enable distributor
GIC_EnableDistributor();
}
/** \brief Initialize the CPU's interrupt interface
*/
__STATIC_INLINE void GIC_CPUInterfaceInit(void)
{
uint32_t i;
uint32_t priority_field;
//A reset sets all bits in the IGROUPRs corresponding to the SPIs to 0,
//configuring all of the interrupts as Secure.
//Disable interrupt forwarding
GIC_DisableInterface();
/* Priority level is implementation defined.
To determine the number of priority bits implemented write 0xFF to an IPRIORITYR
priority field and read back the value stored.*/
GIC_SetPriority((IRQn_Type)0U, 0xFFU);
priority_field = GIC_GetPriority((IRQn_Type)0U);
//SGI and PPI
for (i = 0U; i < 32U; i++)
{
if(i > 15U) {
//Set level-sensitive (and N-N model) for PPI
GIC_SetConfiguration((IRQn_Type)i, 0U);
}
//Disable SGI and PPI interrupts
GIC_DisableIRQ((IRQn_Type)i);
//Set priority
GIC_SetPriority((IRQn_Type)i, priority_field/2U);
}
//Enable interface
GIC_EnableInterface();
//Set binary point to 0
GIC_SetBinaryPoint(0U);
//Set priority mask
GIC_SetInterfacePriorityMask(0xFFU);
}
/** \brief Initialize and enable the GIC
*/
__STATIC_INLINE void GIC_Enable(void)
{
GIC_DistInit();
GIC_CPUInterfaceInit(); //per CPU
}
#endif
/* ########################## Generic Timer functions ############################ */
#if (__TIM_PRESENT == 1U) || defined(DOXYGEN)
/* PL1 Physical Timer */
#if (__CORTEX_A == 7U) || defined(DOXYGEN)
/** \brief Physical Timer Control register */
typedef union
{
struct
{
uint32_t ENABLE:1; /*!< \brief bit: 0 Enables the timer. */
uint32_t IMASK:1; /*!< \brief bit: 1 Timer output signal mask bit. */
uint32_t ISTATUS:1; /*!< \brief bit: 2 The status of the timer. */
RESERVED(0:29, uint32_t)
} b; /*!< \brief Structure used for bit access */
uint32_t w; /*!< \brief Type used for word access */
} CNTP_CTL_Type;
/** \brief Configures the frequency the timer shall run at.
* \param [in] value The timer frequency in Hz.
*/
__STATIC_INLINE void PL1_SetCounterFrequency(uint32_t value)
{
__set_CNTFRQ(value);
__ISB();
}
/** \brief Sets the reset value of the timer.
* \param [in] value The value the timer is loaded with.
*/
__STATIC_INLINE void PL1_SetLoadValue(uint32_t value)
{
__set_CNTP_TVAL(value);
__ISB();
}
/** \brief Get the current counter value.
* \return Current counter value.
*/
__STATIC_INLINE uint32_t PL1_GetCurrentValue(void)
{
return(__get_CNTP_TVAL());
}
/** \brief Get the current physical counter value.
* \return Current physical counter value.
*/
__STATIC_INLINE uint64_t PL1_GetCurrentPhysicalValue(void)
{
return(__get_CNTPCT());
}
/** \brief Set the physical compare value.
* \param [in] value New physical timer compare value.
*/
__STATIC_INLINE void PL1_SetPhysicalCompareValue(uint64_t value)
{
__set_CNTP_CVAL(value);
__ISB();
}
/** \brief Get the physical compare value.
* \return Physical compare value.
*/
__STATIC_INLINE uint64_t PL1_GetPhysicalCompareValue(void)
{
return(__get_CNTP_CVAL());
}
/** \brief Configure the timer by setting the control value.
* \param [in] value New timer control value.
*/
__STATIC_INLINE void PL1_SetControl(uint32_t value)
{
__set_CNTP_CTL(value);
__ISB();
}
/** \brief Get the control value.
* \return Control value.
*/
__STATIC_INLINE uint32_t PL1_GetControl(void)
{
return(__get_CNTP_CTL());
}
#endif
/* Private Timer */
#if ((__CORTEX_A == 5U) || (__CORTEX_A == 9U)) || defined(DOXYGEN)
/** \brief Set the load value to timers LOAD register.
* \param [in] value The load value to be set.
*/
__STATIC_INLINE void PTIM_SetLoadValue(uint32_t value)
{
PTIM->LOAD = value;
}
/** \brief Get the load value from timers LOAD register.
* \return Timer_Type::LOAD
*/
__STATIC_INLINE uint32_t PTIM_GetLoadValue(void)
{
return(PTIM->LOAD);
}
/** \brief Set current counter value from its COUNTER register.
*/
__STATIC_INLINE void PTIM_SetCurrentValue(uint32_t value)
{
PTIM->COUNTER = value;
}
/** \brief Get current counter value from timers COUNTER register.
* \result Timer_Type::COUNTER
*/
__STATIC_INLINE uint32_t PTIM_GetCurrentValue(void)
{
return(PTIM->COUNTER);
}
/** \brief Configure the timer using its CONTROL register.
* \param [in] value The new configuration value to be set.
*/
__STATIC_INLINE void PTIM_SetControl(uint32_t value)
{
PTIM->CONTROL = value;
}
/** ref Timer_Type::CONTROL Get the current timer configuration from its CONTROL register.
* \return Timer_Type::CONTROL
*/
__STATIC_INLINE uint32_t PTIM_GetControl(void)
{
return(PTIM->CONTROL);
}
/** ref Timer_Type::CONTROL Get the event flag in timers ISR register.
* \return 0 - flag is not set, 1- flag is set
*/
__STATIC_INLINE uint32_t PTIM_GetEventFlag(void)
{
return (PTIM->ISR & 1UL);
}
/** ref Timer_Type::CONTROL Clears the event flag in timers ISR register.
*/
__STATIC_INLINE void PTIM_ClearEventFlag(void)
{
PTIM->ISR = 1;
}
#endif
#endif
/* ########################## MMU functions ###################################### */
#define SECTION_DESCRIPTOR (0x2)
#define SECTION_MASK (0xFFFFFFFC)
#define SECTION_TEXCB_MASK (0xFFFF8FF3)
#define SECTION_B_SHIFT (2)
#define SECTION_C_SHIFT (3)
#define SECTION_TEX0_SHIFT (12)
#define SECTION_TEX1_SHIFT (13)
#define SECTION_TEX2_SHIFT (14)
#define SECTION_XN_MASK (0xFFFFFFEF)
#define SECTION_XN_SHIFT (4)
#define SECTION_DOMAIN_MASK (0xFFFFFE1F)
#define SECTION_DOMAIN_SHIFT (5)
#define SECTION_P_MASK (0xFFFFFDFF)
#define SECTION_P_SHIFT (9)
#define SECTION_AP_MASK (0xFFFF73FF)
#define SECTION_AP_SHIFT (10)
#define SECTION_AP2_SHIFT (15)
#define SECTION_S_MASK (0xFFFEFFFF)
#define SECTION_S_SHIFT (16)
#define SECTION_NG_MASK (0xFFFDFFFF)
#define SECTION_NG_SHIFT (17)
#define SECTION_NS_MASK (0xFFF7FFFF)
#define SECTION_NS_SHIFT (19)
#define PAGE_L1_DESCRIPTOR (0x1)
#define PAGE_L1_MASK (0xFFFFFFFC)
#define PAGE_L2_4K_DESC (0x2)
#define PAGE_L2_4K_MASK (0xFFFFFFFD)
#define PAGE_L2_64K_DESC (0x1)
#define PAGE_L2_64K_MASK (0xFFFFFFFC)
#define PAGE_4K_TEXCB_MASK (0xFFFFFE33)
#define PAGE_4K_B_SHIFT (2)
#define PAGE_4K_C_SHIFT (3)
#define PAGE_4K_TEX0_SHIFT (6)
#define PAGE_4K_TEX1_SHIFT (7)
#define PAGE_4K_TEX2_SHIFT (8)
#define PAGE_64K_TEXCB_MASK (0xFFFF8FF3)
#define PAGE_64K_B_SHIFT (2)
#define PAGE_64K_C_SHIFT (3)
#define PAGE_64K_TEX0_SHIFT (12)
#define PAGE_64K_TEX1_SHIFT (13)
#define PAGE_64K_TEX2_SHIFT (14)
#define PAGE_TEXCB_MASK (0xFFFF8FF3)
#define PAGE_B_SHIFT (2)
#define PAGE_C_SHIFT (3)
#define PAGE_TEX_SHIFT (12)
#define PAGE_XN_4K_MASK (0xFFFFFFFE)
#define PAGE_XN_4K_SHIFT (0)
#define PAGE_XN_64K_MASK (0xFFFF7FFF)
#define PAGE_XN_64K_SHIFT (15)
#define PAGE_DOMAIN_MASK (0xFFFFFE1F)
#define PAGE_DOMAIN_SHIFT (5)
#define PAGE_P_MASK (0xFFFFFDFF)
#define PAGE_P_SHIFT (9)
#define PAGE_AP_MASK (0xFFFFFDCF)
#define PAGE_AP_SHIFT (4)
#define PAGE_AP2_SHIFT (9)
#define PAGE_S_MASK (0xFFFFFBFF)
#define PAGE_S_SHIFT (10)
#define PAGE_NG_MASK (0xFFFFF7FF)
#define PAGE_NG_SHIFT (11)
#define PAGE_NS_MASK (0xFFFFFFF7)
#define PAGE_NS_SHIFT (3)
#define OFFSET_1M (0x00100000)
#define OFFSET_64K (0x00010000)
#define OFFSET_4K (0x00001000)
#define DESCRIPTOR_FAULT (0x00000000)
/* Attributes enumerations */
/* Region size attributes */
typedef enum
{
SECTION,
PAGE_4k,
PAGE_64k,
} mmu_region_size_Type;
/* Region type attributes */
typedef enum
{
NORMAL,
DEVICE,
SHARED_DEVICE,
NON_SHARED_DEVICE,
STRONGLY_ORDERED
} mmu_memory_Type;
/* Region cacheability attributes */
typedef enum
{
NON_CACHEABLE,
WB_WA,
WT,
WB_NO_WA,
} mmu_cacheability_Type;
/* Region parity check attributes */
typedef enum
{
ECC_DISABLED,
ECC_ENABLED,
} mmu_ecc_check_Type;
/* Region execution attributes */
typedef enum
{
EXECUTE,
NON_EXECUTE,
} mmu_execute_Type;
/* Region global attributes */
typedef enum
{
GLOBAL,
NON_GLOBAL,
} mmu_global_Type;
/* Region shareability attributes */
typedef enum
{
NON_SHARED,
SHARED,
} mmu_shared_Type;
/* Region security attributes */
typedef enum
{
SECURE,
NON_SECURE,
} mmu_secure_Type;
/* Region access attributes */
typedef enum
{
NO_ACCESS,
RW,
READ,
} mmu_access_Type;
/* Memory Region definition */
typedef struct RegionStruct {
mmu_region_size_Type rg_t;
mmu_memory_Type mem_t;
uint8_t domain;
mmu_cacheability_Type inner_norm_t;
mmu_cacheability_Type outer_norm_t;
mmu_ecc_check_Type e_t;
mmu_execute_Type xn_t;
mmu_global_Type g_t;
mmu_secure_Type sec_t;
mmu_access_Type priv_t;
mmu_access_Type user_t;
mmu_shared_Type sh_t;
} mmu_region_attributes_Type;
//Following macros define the descriptors and attributes
//Sect_Normal. Outer & inner wb/wa, non-shareable, executable, rw, domain 0
#define section_normal(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = WB_WA; \
region.outer_norm_t = WB_WA; \
region.mem_t = NORMAL; \
region.sec_t = SECURE; \
region.xn_t = EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_Normal_NC. Outer & inner non-cacheable, non-shareable, executable, rw, domain 0
#define section_normal_nc(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = NON_CACHEABLE; \
region.outer_norm_t = NON_CACHEABLE; \
region.mem_t = NORMAL; \
region.sec_t = SECURE; \
region.xn_t = EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_Normal_Cod. Outer & inner wb/wa, non-shareable, executable, ro, domain 0
#define section_normal_cod(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = WB_WA; \
region.outer_norm_t = WB_WA; \
region.mem_t = NORMAL; \
region.sec_t = SECURE; \
region.xn_t = EXECUTE; \
region.priv_t = READ; \
region.user_t = READ; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_Normal_RO. Sect_Normal_Cod, but not executable
#define section_normal_ro(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = WB_WA; \
region.outer_norm_t = WB_WA; \
region.mem_t = NORMAL; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = READ; \
region.user_t = READ; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_Normal_RW. Sect_Normal_Cod, but writeable and not executable
#define section_normal_rw(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = WB_WA; \
region.outer_norm_t = WB_WA; \
region.mem_t = NORMAL; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_SO. Strongly-ordered (therefore shareable), not executable, rw, domain 0, base addr 0
#define section_so(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = NON_CACHEABLE; \
region.outer_norm_t = NON_CACHEABLE; \
region.mem_t = STRONGLY_ORDERED; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_Device_RO. Device, non-shareable, non-executable, ro, domain 0, base addr 0
#define section_device_ro(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = NON_CACHEABLE; \
region.outer_norm_t = NON_CACHEABLE; \
region.mem_t = STRONGLY_ORDERED; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = READ; \
region.user_t = READ; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Sect_Device_RW. Sect_Device_RO, but writeable
#define section_device_rw(descriptor_l1, region) region.rg_t = SECTION; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = NON_CACHEABLE; \
region.outer_norm_t = NON_CACHEABLE; \
region.mem_t = STRONGLY_ORDERED; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetSectionDescriptor(&descriptor_l1, region);
//Page_4k_Device_RW. Shared device, not executable, rw, domain 0
#define page4k_device_rw(descriptor_l1, descriptor_l2, region) region.rg_t = PAGE_4k; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = NON_CACHEABLE; \
region.outer_norm_t = NON_CACHEABLE; \
region.mem_t = SHARED_DEVICE; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetPageDescriptor(&descriptor_l1, &descriptor_l2, region);
//Page_64k_Device_RW. Shared device, not executable, rw, domain 0
#define page64k_device_rw(descriptor_l1, descriptor_l2, region) region.rg_t = PAGE_64k; \
region.domain = 0x0; \
region.e_t = ECC_DISABLED; \
region.g_t = GLOBAL; \
region.inner_norm_t = NON_CACHEABLE; \
region.outer_norm_t = NON_CACHEABLE; \
region.mem_t = SHARED_DEVICE; \
region.sec_t = SECURE; \
region.xn_t = NON_EXECUTE; \
region.priv_t = RW; \
region.user_t = RW; \
region.sh_t = NON_SHARED; \
MMU_GetPageDescriptor(&descriptor_l1, &descriptor_l2, region);
/** \brief Set section execution-never attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] xn Section execution-never attribute : EXECUTE , NON_EXECUTE.
\return 0
*/
__STATIC_INLINE int MMU_XNSection(uint32_t *descriptor_l1, mmu_execute_Type xn)
{
*descriptor_l1 &= SECTION_XN_MASK;
*descriptor_l1 |= ((xn & 0x1) << SECTION_XN_SHIFT);
return 0;
}
/** \brief Set section domain
\param [out] descriptor_l1 L1 descriptor.
\param [in] domain Section domain
\return 0
*/
__STATIC_INLINE int MMU_DomainSection(uint32_t *descriptor_l1, uint8_t domain)
{
*descriptor_l1 &= SECTION_DOMAIN_MASK;
*descriptor_l1 |= ((domain & 0xF) << SECTION_DOMAIN_SHIFT);
return 0;
}
/** \brief Set section parity check
\param [out] descriptor_l1 L1 descriptor.
\param [in] p_bit Parity check: ECC_DISABLED, ECC_ENABLED
\return 0
*/
__STATIC_INLINE int MMU_PSection(uint32_t *descriptor_l1, mmu_ecc_check_Type p_bit)
{
*descriptor_l1 &= SECTION_P_MASK;
*descriptor_l1 |= ((p_bit & 0x1) << SECTION_P_SHIFT);
return 0;
}
/** \brief Set section access privileges
\param [out] descriptor_l1 L1 descriptor.
\param [in] user User Level Access: NO_ACCESS, RW, READ
\param [in] priv Privilege Level Access: NO_ACCESS, RW, READ
\param [in] afe Access flag enable
\return 0
*/
__STATIC_INLINE int MMU_APSection(uint32_t *descriptor_l1, mmu_access_Type user, mmu_access_Type priv, uint32_t afe)
{
uint32_t ap = 0;
if (afe == 0) { //full access
if ((priv == NO_ACCESS) && (user == NO_ACCESS)) { ap = 0x0; }
else if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == READ)) { ap = 0x2; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x7; }
}
else { //Simplified access
if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x7; }
}
*descriptor_l1 &= SECTION_AP_MASK;
*descriptor_l1 |= (ap & 0x3) << SECTION_AP_SHIFT;
*descriptor_l1 |= ((ap & 0x4)>>2) << SECTION_AP2_SHIFT;
return 0;
}
/** \brief Set section shareability
\param [out] descriptor_l1 L1 descriptor.
\param [in] s_bit Section shareability: NON_SHARED, SHARED
\return 0
*/
__STATIC_INLINE int MMU_SharedSection(uint32_t *descriptor_l1, mmu_shared_Type s_bit)
{
*descriptor_l1 &= SECTION_S_MASK;
*descriptor_l1 |= ((s_bit & 0x1) << SECTION_S_SHIFT);
return 0;
}
/** \brief Set section Global attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] g_bit Section attribute: GLOBAL, NON_GLOBAL
\return 0
*/
__STATIC_INLINE int MMU_GlobalSection(uint32_t *descriptor_l1, mmu_global_Type g_bit)
{
*descriptor_l1 &= SECTION_NG_MASK;
*descriptor_l1 |= ((g_bit & 0x1) << SECTION_NG_SHIFT);
return 0;
}
/** \brief Set section Security attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] s_bit Section Security attribute: SECURE, NON_SECURE
\return 0
*/
__STATIC_INLINE int MMU_SecureSection(uint32_t *descriptor_l1, mmu_secure_Type s_bit)
{
*descriptor_l1 &= SECTION_NS_MASK;
*descriptor_l1 |= ((s_bit & 0x1) << SECTION_NS_SHIFT);
return 0;
}
/* Page 4k or 64k */
/** \brief Set 4k/64k page execution-never attribute
\param [out] descriptor_l2 L2 descriptor.
\param [in] xn Page execution-never attribute : EXECUTE , NON_EXECUTE.
\param [in] page Page size: PAGE_4k, PAGE_64k,
\return 0
*/
__STATIC_INLINE int MMU_XNPage(uint32_t *descriptor_l2, mmu_execute_Type xn, mmu_region_size_Type page)
{
if (page == PAGE_4k)
{
*descriptor_l2 &= PAGE_XN_4K_MASK;
*descriptor_l2 |= ((xn & 0x1) << PAGE_XN_4K_SHIFT);
}
else
{
*descriptor_l2 &= PAGE_XN_64K_MASK;
*descriptor_l2 |= ((xn & 0x1) << PAGE_XN_64K_SHIFT);
}
return 0;
}
/** \brief Set 4k/64k page domain
\param [out] descriptor_l1 L1 descriptor.
\param [in] domain Page domain
\return 0
*/
__STATIC_INLINE int MMU_DomainPage(uint32_t *descriptor_l1, uint8_t domain)
{
*descriptor_l1 &= PAGE_DOMAIN_MASK;
*descriptor_l1 |= ((domain & 0xf) << PAGE_DOMAIN_SHIFT);
return 0;
}
/** \brief Set 4k/64k page parity check
\param [out] descriptor_l1 L1 descriptor.
\param [in] p_bit Parity check: ECC_DISABLED, ECC_ENABLED
\return 0
*/
__STATIC_INLINE int MMU_PPage(uint32_t *descriptor_l1, mmu_ecc_check_Type p_bit)
{
*descriptor_l1 &= SECTION_P_MASK;
*descriptor_l1 |= ((p_bit & 0x1) << SECTION_P_SHIFT);
return 0;
}
/** \brief Set 4k/64k page access privileges
\param [out] descriptor_l2 L2 descriptor.
\param [in] user User Level Access: NO_ACCESS, RW, READ
\param [in] priv Privilege Level Access: NO_ACCESS, RW, READ
\param [in] afe Access flag enable
\return 0
*/
__STATIC_INLINE int MMU_APPage(uint32_t *descriptor_l2, mmu_access_Type user, mmu_access_Type priv, uint32_t afe)
{
uint32_t ap = 0;
if (afe == 0) { //full access
if ((priv == NO_ACCESS) && (user == NO_ACCESS)) { ap = 0x0; }
else if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == READ)) { ap = 0x2; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x6; }
}
else { //Simplified access
if ((priv == RW) && (user == NO_ACCESS)) { ap = 0x1; }
else if ((priv == RW) && (user == RW)) { ap = 0x3; }
else if ((priv == READ) && (user == NO_ACCESS)) { ap = 0x5; }
else if ((priv == READ) && (user == READ)) { ap = 0x7; }
}
*descriptor_l2 &= PAGE_AP_MASK;
*descriptor_l2 |= (ap & 0x3) << PAGE_AP_SHIFT;
*descriptor_l2 |= ((ap & 0x4)>>2) << PAGE_AP2_SHIFT;
return 0;
}
/** \brief Set 4k/64k page shareability
\param [out] descriptor_l2 L2 descriptor.
\param [in] s_bit 4k/64k page shareability: NON_SHARED, SHARED
\return 0
*/
__STATIC_INLINE int MMU_SharedPage(uint32_t *descriptor_l2, mmu_shared_Type s_bit)
{
*descriptor_l2 &= PAGE_S_MASK;
*descriptor_l2 |= ((s_bit & 0x1) << PAGE_S_SHIFT);
return 0;
}
/** \brief Set 4k/64k page Global attribute
\param [out] descriptor_l2 L2 descriptor.
\param [in] g_bit 4k/64k page attribute: GLOBAL, NON_GLOBAL
\return 0
*/
__STATIC_INLINE int MMU_GlobalPage(uint32_t *descriptor_l2, mmu_global_Type g_bit)
{
*descriptor_l2 &= PAGE_NG_MASK;
*descriptor_l2 |= ((g_bit & 0x1) << PAGE_NG_SHIFT);
return 0;
}
/** \brief Set 4k/64k page Security attribute
\param [out] descriptor_l1 L1 descriptor.
\param [in] s_bit 4k/64k page Security attribute: SECURE, NON_SECURE
\return 0
*/
__STATIC_INLINE int MMU_SecurePage(uint32_t *descriptor_l1, mmu_secure_Type s_bit)
{
*descriptor_l1 &= PAGE_NS_MASK;
*descriptor_l1 |= ((s_bit & 0x1) << PAGE_NS_SHIFT);
return 0;
}
/** \brief Set Section memory attributes
\param [out] descriptor_l1 L1 descriptor.
\param [in] mem Section memory type: NORMAL, DEVICE, SHARED_DEVICE, NON_SHARED_DEVICE, STRONGLY_ORDERED
\param [in] outer Outer cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\param [in] inner Inner cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\return 0
*/
__STATIC_INLINE int MMU_MemorySection(uint32_t *descriptor_l1, mmu_memory_Type mem, mmu_cacheability_Type outer, mmu_cacheability_Type inner)
{
*descriptor_l1 &= SECTION_TEXCB_MASK;
if (STRONGLY_ORDERED == mem)
{
return 0;
}
else if (SHARED_DEVICE == mem)
{
*descriptor_l1 |= (1 << SECTION_B_SHIFT);
}
else if (NON_SHARED_DEVICE == mem)
{
*descriptor_l1 |= (1 << SECTION_TEX1_SHIFT);
}
else if (NORMAL == mem)
{
*descriptor_l1 |= 1 << SECTION_TEX2_SHIFT;
switch(inner)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l1 |= (1 << SECTION_B_SHIFT);
break;
case WT:
*descriptor_l1 |= 1 << SECTION_C_SHIFT;
break;
case WB_NO_WA:
*descriptor_l1 |= (1 << SECTION_B_SHIFT) | (1 << SECTION_C_SHIFT);
break;
}
switch(outer)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l1 |= (1 << SECTION_TEX0_SHIFT);
break;
case WT:
*descriptor_l1 |= 1 << SECTION_TEX1_SHIFT;
break;
case WB_NO_WA:
*descriptor_l1 |= (1 << SECTION_TEX0_SHIFT) | (1 << SECTION_TEX0_SHIFT);
break;
}
}
return 0;
}
/** \brief Set 4k/64k page memory attributes
\param [out] descriptor_l2 L2 descriptor.
\param [in] mem 4k/64k page memory type: NORMAL, DEVICE, SHARED_DEVICE, NON_SHARED_DEVICE, STRONGLY_ORDERED
\param [in] outer Outer cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\param [in] inner Inner cacheability: NON_CACHEABLE, WB_WA, WT, WB_NO_WA,
\param [in] page Page size
\return 0
*/
__STATIC_INLINE int MMU_MemoryPage(uint32_t *descriptor_l2, mmu_memory_Type mem, mmu_cacheability_Type outer, mmu_cacheability_Type inner, mmu_region_size_Type page)
{
*descriptor_l2 &= PAGE_4K_TEXCB_MASK;
if (page == PAGE_64k)
{
//same as section
MMU_MemorySection(descriptor_l2, mem, outer, inner);
}
else
{
if (STRONGLY_ORDERED == mem)
{
return 0;
}
else if (SHARED_DEVICE == mem)
{
*descriptor_l2 |= (1 << PAGE_4K_B_SHIFT);
}
else if (NON_SHARED_DEVICE == mem)
{
*descriptor_l2 |= (1 << PAGE_4K_TEX1_SHIFT);
}
else if (NORMAL == mem)
{
*descriptor_l2 |= 1 << PAGE_4K_TEX2_SHIFT;
switch(inner)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l2 |= (1 << PAGE_4K_B_SHIFT);
break;
case WT:
*descriptor_l2 |= 1 << PAGE_4K_C_SHIFT;
break;
case WB_NO_WA:
*descriptor_l2 |= (1 << PAGE_4K_B_SHIFT) | (1 << PAGE_4K_C_SHIFT);
break;
}
switch(outer)
{
case NON_CACHEABLE:
break;
case WB_WA:
*descriptor_l2 |= (1 << PAGE_4K_TEX0_SHIFT);
break;
case WT:
*descriptor_l2 |= 1 << PAGE_4K_TEX1_SHIFT;
break;
case WB_NO_WA:
*descriptor_l2 |= (1 << PAGE_4K_TEX0_SHIFT) | (1 << PAGE_4K_TEX0_SHIFT);
break;
}
}
}
return 0;
}
/** \brief Create a L1 section descriptor
\param [out] descriptor L1 descriptor
\param [in] reg Section attributes
\return 0
*/
__STATIC_INLINE int MMU_GetSectionDescriptor(uint32_t *descriptor, mmu_region_attributes_Type reg)
{
*descriptor = 0;
MMU_MemorySection(descriptor, reg.mem_t, reg.outer_norm_t, reg.inner_norm_t);
MMU_XNSection(descriptor,reg.xn_t);
MMU_DomainSection(descriptor, reg.domain);
MMU_PSection(descriptor, reg.e_t);
MMU_APSection(descriptor, reg.priv_t, reg.user_t, 1);
MMU_SharedSection(descriptor,reg.sh_t);
MMU_GlobalSection(descriptor,reg.g_t);
MMU_SecureSection(descriptor,reg.sec_t);
*descriptor &= SECTION_MASK;
*descriptor |= SECTION_DESCRIPTOR;
return 0;
}
/** \brief Create a L1 and L2 4k/64k page descriptor
\param [out] descriptor L1 descriptor
\param [out] descriptor2 L2 descriptor
\param [in] reg 4k/64k page attributes
\return 0
*/
__STATIC_INLINE int MMU_GetPageDescriptor(uint32_t *descriptor, uint32_t *descriptor2, mmu_region_attributes_Type reg)
{
*descriptor = 0;
*descriptor2 = 0;
switch (reg.rg_t)
{
case PAGE_4k:
MMU_MemoryPage(descriptor2, reg.mem_t, reg.outer_norm_t, reg.inner_norm_t, PAGE_4k);
MMU_XNPage(descriptor2, reg.xn_t, PAGE_4k);
MMU_DomainPage(descriptor, reg.domain);
MMU_PPage(descriptor, reg.e_t);
MMU_APPage(descriptor2, reg.priv_t, reg.user_t, 1);
MMU_SharedPage(descriptor2,reg.sh_t);
MMU_GlobalPage(descriptor2,reg.g_t);
MMU_SecurePage(descriptor,reg.sec_t);
*descriptor &= PAGE_L1_MASK;
*descriptor |= PAGE_L1_DESCRIPTOR;
*descriptor2 &= PAGE_L2_4K_MASK;
*descriptor2 |= PAGE_L2_4K_DESC;
break;
case PAGE_64k:
MMU_MemoryPage(descriptor2, reg.mem_t, reg.outer_norm_t, reg.inner_norm_t, PAGE_64k);
MMU_XNPage(descriptor2, reg.xn_t, PAGE_64k);
MMU_DomainPage(descriptor, reg.domain);
MMU_PPage(descriptor, reg.e_t);
MMU_APPage(descriptor2, reg.priv_t, reg.user_t, 1);
MMU_SharedPage(descriptor2,reg.sh_t);
MMU_GlobalPage(descriptor2,reg.g_t);
MMU_SecurePage(descriptor,reg.sec_t);
*descriptor &= PAGE_L1_MASK;
*descriptor |= PAGE_L1_DESCRIPTOR;
*descriptor2 &= PAGE_L2_64K_MASK;
*descriptor2 |= PAGE_L2_64K_DESC;
break;
case SECTION:
//error
break;
}
return 0;
}
/** \brief Create a 1MB Section
\param [in] ttb Translation table base address
\param [in] base_address Section base address
\param [in] count Number of sections to create
\param [in] descriptor_l1 L1 descriptor (region attributes)
*/
__STATIC_INLINE void MMU_TTSection(uint32_t *ttb, uint32_t base_address, uint32_t count, uint32_t descriptor_l1)
{
uint32_t offset;
uint32_t entry;
uint32_t i;
offset = base_address >> 20;
entry = (base_address & 0xFFF00000) | descriptor_l1;
//4 bytes aligned
ttb = ttb + offset;
for (i = 0; i < count; i++ )
{
//4 bytes aligned
*ttb++ = entry;
entry += OFFSET_1M;
}
}
/** \brief Create a 4k page entry
\param [in] ttb L1 table base address
\param [in] base_address 4k base address
\param [in] count Number of 4k pages to create
\param [in] descriptor_l1 L1 descriptor (region attributes)
\param [in] ttb_l2 L2 table base address
\param [in] descriptor_l2 L2 descriptor (region attributes)
*/
__STATIC_INLINE void MMU_TTPage4k(uint32_t *ttb, uint32_t base_address, uint32_t count, uint32_t descriptor_l1, uint32_t *ttb_l2, uint32_t descriptor_l2 )
{
uint32_t offset, offset2;
uint32_t entry, entry2;
uint32_t i;
offset = base_address >> 20;
entry = ((int)ttb_l2 & 0xFFFFFC00) | descriptor_l1;
//4 bytes aligned
ttb += offset;
//create l1_entry
*ttb = entry;
offset2 = (base_address & 0xff000) >> 12;
ttb_l2 += offset2;
entry2 = (base_address & 0xFFFFF000) | descriptor_l2;
for (i = 0; i < count; i++ )
{
//4 bytes aligned
*ttb_l2++ = entry2;
entry2 += OFFSET_4K;
}
}
/** \brief Create a 64k page entry
\param [in] ttb L1 table base address
\param [in] base_address 64k base address
\param [in] count Number of 64k pages to create
\param [in] descriptor_l1 L1 descriptor (region attributes)
\param [in] ttb_l2 L2 table base address
\param [in] descriptor_l2 L2 descriptor (region attributes)
*/
__STATIC_INLINE void MMU_TTPage64k(uint32_t *ttb, uint32_t base_address, uint32_t count, uint32_t descriptor_l1, uint32_t *ttb_l2, uint32_t descriptor_l2 )
{
uint32_t offset, offset2;
uint32_t entry, entry2;
uint32_t i,j;
offset = base_address >> 20;
entry = ((int)ttb_l2 & 0xFFFFFC00) | descriptor_l1;
//4 bytes aligned
ttb += offset;
//create l1_entry
*ttb = entry;
offset2 = (base_address & 0xff000) >> 12;
ttb_l2 += offset2;
entry2 = (base_address & 0xFFFF0000) | descriptor_l2;
for (i = 0; i < count; i++ )
{
//create 16 entries
for (j = 0; j < 16; j++)
{
//4 bytes aligned
*ttb_l2++ = entry2;
}
entry2 += OFFSET_64K;
}
}
/** \brief Enable MMU
*/
__STATIC_INLINE void MMU_Enable(void)
{
// Set M bit 0 to enable the MMU
// Set AFE bit to enable simplified access permissions model
// Clear TRE bit to disable TEX remap and A bit to disable strict alignment fault checking
__set_SCTLR( (__get_SCTLR() & ~(1 << 28) & ~(1 << 1)) | 1 | (1 << 29));
__ISB();
}
/** \brief Disable MMU
*/
__STATIC_INLINE void MMU_Disable(void)
{
// Clear M bit 0 to disable the MMU
__set_SCTLR( __get_SCTLR() & ~1);
__ISB();
}
/** \brief Invalidate entire unified TLB
*/
__STATIC_INLINE void MMU_InvalidateTLB(void)
{
__set_TLBIALL(0);
__DSB(); //ensure completion of the invalidation
__ISB(); //ensure instruction fetch path sees new state
}
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CA_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */