mbed-os/features/netsocket/emac-drivers/TARGET_STM/stm32xx_emac.cpp

1032 lines
30 KiB
C++
Executable File

/* Copyright (c) 2017-2019 ARM Limited
* Copyright (c) 2017-2019 STMicroelectronics
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if DEVICE_EMAC
#include <stdlib.h>
#include "cmsis_os.h"
#include "mbed.h"
#include "mbed_interface.h"
#include "mbed_assert.h"
#include "mbed_shared_queues.h"
#include "netsocket/nsapi_types.h"
#include "stm32xx_emac_config.h"
#include "stm32xx_emac.h"
#if defined(ETH_IP_VERSION_V2)
#include "lan8742/lan8742.h"
#include "lwip/memp.h"
#include "lwip/api.h"
#endif
/* \brief Flags for worker thread */
#define FLAG_RX 1
/** \brief Driver thread priority */
#define THREAD_PRIORITY (osPriorityHigh)
#define PHY_TASK_PERIOD_MS 200
#define STM_HWADDR_SIZE (6)
#define STM_ETH_MTU_SIZE 1500
#define STM_ETH_IF_NAME "st"
#ifndef ETH_IP_VERSION_V2
#if defined (__ICCARM__) /*!< IAR Compiler */
#pragma data_alignment=4
#endif
__ALIGN_BEGIN ETH_DMADescTypeDef DMARxDscrTab[ETH_RXBUFNB] __ALIGN_END; /* Ethernet Rx DMA Descriptor */
#if defined (__ICCARM__) /*!< IAR Compiler */
#pragma data_alignment=4
#endif
__ALIGN_BEGIN ETH_DMADescTypeDef DMATxDscrTab[ETH_TXBUFNB] __ALIGN_END; /* Ethernet Tx DMA Descriptor */
#if defined (__ICCARM__) /*!< IAR Compiler */
#pragma data_alignment=4
#endif
__ALIGN_BEGIN uint8_t Rx_Buff[ETH_RXBUFNB][ETH_RX_BUF_SIZE] __ALIGN_END; /* Ethernet Receive Buffer */
#if defined (__ICCARM__) /*!< IAR Compiler */
#pragma data_alignment=4
#endif
__ALIGN_BEGIN uint8_t Tx_Buff[ETH_TXBUFNB][ETH_TX_BUF_SIZE] __ALIGN_END; /* Ethernet Transmit Buffer */
#else // ETH_IP_VERSION_V2
#if defined ( __ICCARM__ ) /*!< IAR Compiler */
#pragma location=0x30040000
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
#pragma location=0x30040100
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
#pragma location=0x30040400
uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE]; /* Ethernet Receive Buffers */
#elif defined ( __CC_ARM ) /* ARMC5 */
__attribute__((section(".RxDecripSection"))) ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
__attribute__((section(".TxDecripSection"))) ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
__attribute__((section(".RxArraySection"))) uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE]; /* Ethernet Receive Buffer */
#elif defined ( __GNUC__ ) /* GCC & ARMC6*/
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT] __attribute__((section(".RxDecripSection"))); /* Ethernet Rx DMA Descriptors */
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT] __attribute__((section(".TxDecripSection"))); /* Ethernet Tx DMA Descriptors */
uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE] __attribute__((section(".RxArraySection"))); /* Ethernet Receive Buffers */
#endif
static lan8742_Object_t LAN8742;
static int32_t ETH_PHY_IO_Init(void);
static int32_t ETH_PHY_IO_DeInit(void);
static int32_t ETH_PHY_IO_ReadReg(uint32_t DevAddr, uint32_t RegAddr, uint32_t *pRegVal);
static int32_t ETH_PHY_IO_WriteReg(uint32_t DevAddr, uint32_t RegAddr, uint32_t RegVal);
static int32_t ETH_PHY_IO_GetTick(void);
static lan8742_IOCtx_t LAN8742_IOCtx = {
ETH_PHY_IO_Init,
ETH_PHY_IO_DeInit,
ETH_PHY_IO_WriteReg,
ETH_PHY_IO_ReadReg,
ETH_PHY_IO_GetTick
};
static ETH_TxPacketConfig TxConfig;
#endif // ETH_IP_VERSION_V2
__weak uint8_t mbed_otp_mac_address(char *mac);
void mbed_default_mac_address(char *mac);
#ifdef __cplusplus
extern "C" {
#endif
void _eth_config_mac(ETH_HandleTypeDef *heth);
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth);
void ETH_IRQHandler(void);
#ifdef __cplusplus
}
#endif
#ifdef ETH_IP_VERSION_V2
bool _phy_init()
{
/* Set PHY IO functions */
LAN8742_RegisterBusIO(&LAN8742, &LAN8742_IOCtx);
/* Initialize the LAN8742 ETH PHY */
return LAN8742_Init(&LAN8742) == LAN8742_STATUS_OK;
}
int32_t _phy_get_state()
{
return LAN8742_GetLinkState(&LAN8742);
}
bool _phy_get_duplex_and_speed(int32_t phy_state, uint32_t *duplex, uint32_t *speed)
{
switch (phy_state) {
case LAN8742_STATUS_100MBITS_FULLDUPLEX:
*duplex = ETH_FULLDUPLEX_MODE;
*speed = ETH_SPEED_100M;
break;
case LAN8742_STATUS_100MBITS_HALFDUPLEX:
*duplex = ETH_HALFDUPLEX_MODE;
*speed = ETH_SPEED_100M;
break;
case LAN8742_STATUS_10MBITS_FULLDUPLEX:
*duplex = ETH_FULLDUPLEX_MODE;
*speed = ETH_SPEED_10M;
break;
case LAN8742_STATUS_10MBITS_HALFDUPLEX:
*duplex = ETH_HALFDUPLEX_MODE;
*speed = ETH_SPEED_10M;
break;
default:
return false;
}
return true;
}
bool _phy_is_up(int32_t phy_state)
{
return phy_state > LAN8742_STATUS_LINK_DOWN;
}
static void MPU_Config(void)
{
MPU_Region_InitTypeDef MPU_InitStruct;
/* Disable the MPU */
HAL_MPU_Disable();
/* Configure the MPU attributes as Device not cacheable
for ETH DMA descriptors */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x30040000;
MPU_InitStruct.Size = MPU_REGION_SIZE_1KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Configure the MPU attributes as Cacheable write through
for LwIP RAM heap which contains the Tx buffers */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x30044000;
MPU_InitStruct.Size = MPU_REGION_SIZE_16KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Enable the MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
#endif
/**
* Ethernet Rx Transfer completed callback
*
* @param heth: ETH handle
* @retval None
*/
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
{
STM32_EMAC &emac = STM32_EMAC::get_instance();
if (emac.thread) {
osThreadFlagsSet(emac.thread, FLAG_RX);
}
}
/**
* Ethernet IRQ Handler
*
* @param None
* @retval None
*/
void ETH_IRQHandler(void)
{
STM32_EMAC &emac = STM32_EMAC::get_instance();
HAL_ETH_IRQHandler(&emac.EthHandle);
}
STM32_EMAC::STM32_EMAC()
: thread(0)
#ifdef ETH_IP_VERSION_V2
, phy_status(0)
#endif
{
}
static osThreadId_t create_new_thread(const char *threadName, void (*thread)(void *arg), void *arg, int stacksize, osPriority_t priority, mbed_rtos_storage_thread_t *thread_cb)
{
osThreadAttr_t attr = {0};
attr.name = threadName;
attr.stack_mem = malloc(stacksize);
attr.cb_mem = thread_cb;
attr.stack_size = stacksize;
attr.cb_size = sizeof(mbed_rtos_storage_thread_t);
attr.priority = priority;
return osThreadNew(thread, arg, &attr);
}
/**
* In this function, the hardware should be initialized.
*/
bool STM32_EMAC::low_level_init_successful()
#ifndef ETH_IP_VERSION_V2
{
/* Init ETH */
uint8_t MACAddr[6];
EthHandle.Instance = ETH;
EthHandle.Init.AutoNegotiation = MBED_CONF_STM32_EMAC_ETH_PHY_AUTONEGOTIATION;
EthHandle.Init.Speed = MBED_CONF_STM32_EMAC_ETH_PHY_SPEED;
EthHandle.Init.DuplexMode = MBED_CONF_STM32_EMAC_ETH_PHY_DUPLEXMODE;
EthHandle.Init.PhyAddress = MBED_CONF_STM32_EMAC_ETH_PHY_ADDRESS;
#if (MBED_MAC_ADDRESS_SUM != MBED_MAC_ADDR_INTERFACE)
MACAddr[0] = MBED_MAC_ADDR_0;
MACAddr[1] = MBED_MAC_ADDR_1;
MACAddr[2] = MBED_MAC_ADDR_2;
MACAddr[3] = MBED_MAC_ADDR_3;
MACAddr[4] = MBED_MAC_ADDR_4;
MACAddr[5] = MBED_MAC_ADDR_5;
#else
mbed_mac_address((char *)MACAddr);
#endif
EthHandle.Init.MACAddr = &MACAddr[0];
EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE;
EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE;
EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;
if (HAL_ETH_Init(&EthHandle) != HAL_OK) {
return false;
}
/* Initialize Tx Descriptors list: Chain Mode */
if (HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB) != HAL_OK) {
return false;
}
/* Initialize Rx Descriptors list: Chain Mode */
if (HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB) != HAL_OK) {
return false;
}
/* Configure MAC */
_eth_config_mac(&EthHandle);
/* Enable MAC and DMA transmission and reception */
if (HAL_ETH_Start(&EthHandle) != HAL_OK) {
return false;
}
return true;
}
#else // ETH_IP_VERSION_V2
{
uint32_t idx;
MPU_Config();
/* Init ETH */
uint8_t MACAddr[6];
EthHandle.Instance = ETH;
#if (MBED_MAC_ADDRESS_SUM != MBED_MAC_ADDR_INTERFACE)
MACAddr[0] = MBED_MAC_ADDR_0;
MACAddr[1] = MBED_MAC_ADDR_1;
MACAddr[2] = MBED_MAC_ADDR_2;
MACAddr[3] = MBED_MAC_ADDR_3;
MACAddr[4] = MBED_MAC_ADDR_4;
MACAddr[5] = MBED_MAC_ADDR_5;
#else
mbed_mac_address((char *)MACAddr);
#endif
EthHandle.Init.MACAddr = &MACAddr[0];
EthHandle.Init.MediaInterface = HAL_ETH_RMII_MODE;
EthHandle.Init.RxDesc = DMARxDscrTab;
EthHandle.Init.TxDesc = DMATxDscrTab;
EthHandle.Init.RxBuffLen = 1524;
if (HAL_ETH_Init(&EthHandle) != HAL_OK) {
return false;
}
memset(&TxConfig, 0, sizeof(ETH_TxPacketConfig));
TxConfig.Attributes = ETH_TX_PACKETS_FEATURES_CSUM | ETH_TX_PACKETS_FEATURES_CRCPAD;
TxConfig.ChecksumCtrl = ETH_CHECKSUM_IPHDR_PAYLOAD_INSERT_PHDR_CALC;
TxConfig.CRCPadCtrl = ETH_CRC_PAD_INSERT;
for (idx = 0; idx < ETH_RX_DESC_CNT; idx++) {
HAL_ETH_DescAssignMemory(&EthHandle, idx, Rx_Buff[idx], NULL);
}
return _phy_init();
}
#endif // ETH_IP_VERSION_V2
/**
* This function should do the actual transmission of the packet. The packet is
* contained in the memory buffer chain that is passed to the function.
*
* @param buf the MAC packet to send (e.g. IP packet including MAC addresses and type)
* @return true if the packet could be sent
* false value if the packet couldn't be sent
*
* @note Returning ERR_MEM here if a DMA queue of your MAC is full can lead to
* strange results. You might consider waiting for space in the DMA queue
* to become availale since the stack doesn't retry to send a packet
* dropped because of memory failure (except for the TCP timers).
*/
bool STM32_EMAC::link_out(emac_mem_buf_t *buf)
#ifndef ETH_IP_VERSION_V2
{
bool success = true;
emac_mem_buf_t *q;
uint8_t *buffer = reinterpret_cast<uint8_t *>(EthHandle.TxDesc->Buffer1Addr);
__IO ETH_DMADescTypeDef *DmaTxDesc;
uint32_t framelength = 0;
uint32_t bufferoffset = 0;
uint32_t byteslefttocopy = 0;
uint32_t payloadoffset = 0;
DmaTxDesc = EthHandle.TxDesc;
/* Get exclusive access */
TXLockMutex.lock();
/* copy frame from pbufs to driver buffers */
for (q = buf; q != NULL; q = memory_manager->get_next(q)) {
/* Is this buffer available? If not, goto error */
if ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET) {
success = false;
goto error;
}
/* Get bytes in current lwIP buffer */
byteslefttocopy = memory_manager->get_len(q);
payloadoffset = 0;
/* Check if the length of data to copy is bigger than Tx buffer size*/
while ((byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE) {
/* Copy data to Tx buffer*/
memcpy(static_cast<uint8_t *>(buffer) + bufferoffset, static_cast<uint8_t *>(memory_manager->get_ptr(q)) + payloadoffset, (ETH_TX_BUF_SIZE - bufferoffset));
/* Point to next descriptor */
DmaTxDesc = reinterpret_cast<ETH_DMADescTypeDef *>(DmaTxDesc->Buffer2NextDescAddr);
/* Check if the buffer is available */
if ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET) {
success = false;
goto error;
}
buffer = reinterpret_cast<uint8_t *>(DmaTxDesc->Buffer1Addr);
byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy the remaining bytes */
memcpy(static_cast<uint8_t *>(buffer) + bufferoffset, static_cast<uint8_t *>(memory_manager->get_ptr(q)) + payloadoffset, byteslefttocopy);
bufferoffset = bufferoffset + byteslefttocopy;
framelength = framelength + byteslefttocopy;
}
/* Prepare transmit descriptors to give to DMA */
if (HAL_ETH_TransmitFrame(&EthHandle, framelength) != HAL_OK) {
success = false;
}
error:
/* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET) {
/* Clear TUS ETHERNET DMA flag */
EthHandle.Instance->DMASR = ETH_DMASR_TUS;
/* Resume DMA transmission*/
EthHandle.Instance->DMATPDR = 0;
}
memory_manager->free(buf);
/* Restore access */
TXLockMutex.unlock();
return success;
}
#else // ETH_IP_VERSION_V2
{
bool success = false;
uint32_t i = 0;
uint32_t frameLength = 0;
struct pbuf *q;
ETH_BufferTypeDef Txbuffer[ETH_TX_DESC_CNT];
HAL_StatusTypeDef status;
struct pbuf *p = NULL;
p = (struct pbuf *)buf;
/* Get exclusive access */
TXLockMutex.lock();
memset(Txbuffer, 0, ETH_TX_DESC_CNT * sizeof(ETH_BufferTypeDef));
/* copy frame from pbufs to driver buffers */
for (q = p; q != NULL; q = q->next) {
if (i >= ETH_TX_DESC_CNT) {
printf("Error : ETH_TX_DESC_CNT not sufficient\n");
goto error;
}
Txbuffer[i].buffer = (uint8_t *)q->payload;
Txbuffer[i].len = q->len;
frameLength += q->len;
if (i > 0) {
Txbuffer[i - 1].next = &Txbuffer[i];
}
if (q->next == NULL) {
Txbuffer[i].next = NULL;
}
i++;
}
TxConfig.Length = frameLength;
TxConfig.TxBuffer = Txbuffer;
status = HAL_ETH_Transmit(&EthHandle, &TxConfig, 50);
if (status == HAL_OK) {
success = 1;
} else {
printf("Error returned by HAL_ETH_Transmit (%d)\n", status);
success = 0;
}
error:
if (p->ref > 1) {
pbuf_free(p);
}
/* Restore access */
TXLockMutex.unlock();
return success;
}
#endif // ETH_IP_VERSION_V2
/**
* Should allocate a contiguous memory buffer and transfer the bytes of the incoming
* packet to the buffer.
*
* @param buf If a frame was received and the memory buffer allocation was successful, a memory
* buffer filled with the received packet (including MAC header)
* @return negative value when no more frames,
* zero when frame is received
*/
int STM32_EMAC::low_level_input(emac_mem_buf_t **buf)
#ifndef ETH_IP_VERSION_V2
{
uint32_t len = 0;
uint8_t *buffer;
__IO ETH_DMADescTypeDef *dmarxdesc;
uint32_t bufferoffset = 0;
uint32_t byteslefttocopy = 0;
emac_mem_buf_t *q;
uint32_t payloadoffset = 0;
/* get received frame */
if (HAL_ETH_GetReceivedFrame_IT(&EthHandle) != HAL_OK) {
return -1;
}
/* Obtain the size of the packet and put it into the "len" variable. */
len = EthHandle.RxFrameInfos.length;
buffer = reinterpret_cast<uint8_t *>(EthHandle.RxFrameInfos.buffer);
byteslefttocopy = len;
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
if (len > 0 && len <= ETH_RX_BUF_SIZE) {
/* Allocate a memory buffer chain from buffer pool */
*buf = memory_manager->alloc_pool(len, 0);
}
if (*buf != NULL) {
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
bufferoffset = 0;
for (q = *buf; q != NULL; q = memory_manager->get_next(q)) {
byteslefttocopy = memory_manager->get_len(q);
payloadoffset = 0;
/* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
while ((byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE) {
/* Copy data to pbuf */
memcpy(static_cast<uint8_t *>(memory_manager->get_ptr(q)) + payloadoffset, static_cast<uint8_t *>(buffer) + bufferoffset, ETH_RX_BUF_SIZE - bufferoffset);
/* Point to next descriptor */
dmarxdesc = reinterpret_cast<ETH_DMADescTypeDef *>(dmarxdesc->Buffer2NextDescAddr);
buffer = reinterpret_cast<uint8_t *>(dmarxdesc->Buffer1Addr);
byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy remaining data in pbuf */
memcpy(static_cast<uint8_t *>(memory_manager->get_ptr(q)) + payloadoffset, static_cast<uint8_t *>(buffer) + bufferoffset, byteslefttocopy);
bufferoffset = bufferoffset + byteslefttocopy;
}
}
/* Release descriptors to DMA */
/* Point to first descriptor */
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
for (uint32_t i = 0; i < EthHandle.RxFrameInfos.SegCount; i++) {
dmarxdesc->Status |= ETH_DMARXDESC_OWN;
dmarxdesc = reinterpret_cast<ETH_DMADescTypeDef *>(dmarxdesc->Buffer2NextDescAddr);
}
/* Clear Segment_Count */
EthHandle.RxFrameInfos.SegCount = 0;
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET) {
/* Clear RBUS ETHERNET DMA flag */
EthHandle.Instance->DMASR = ETH_DMASR_RBUS;
/* Resume DMA reception */
EthHandle.Instance->DMARPDR = 0;
}
return 0;
}
#else // ETH_IP_VERSION_V2
{
ETH_BufferTypeDef RxBuff;
uint32_t frameLength = 0;
if (HAL_ETH_GetRxDataBuffer(&EthHandle, &RxBuff) == HAL_OK) {
if (HAL_ETH_GetRxDataLength(&EthHandle, &frameLength) != HAL_OK) {
printf("Error: returned by HAL_ETH_GetRxDataLength\n");
return -1;
}
/* Build Rx descriptor to be ready for next data reception */
HAL_ETH_BuildRxDescriptors(&EthHandle);
/* Invalidate data cache for ETH Rx Buffers */
SCB_InvalidateDCache_by_Addr((uint32_t *)RxBuff.buffer, frameLength);
*buf = pbuf_alloc(PBUF_RAW, frameLength, PBUF_POOL);
if (*buf) {
pbuf_take((struct pbuf *)*buf, RxBuff.buffer, frameLength);
}
} else {
return -1;
}
return 0;
}
#endif // ETH_IP_VERSION_V2
/** \brief Attempt to read a packet from the EMAC interface.
*
*/
void STM32_EMAC::packet_rx()
{
/* move received packet into a new buf */
while (1) {
emac_mem_buf_t *p = NULL;
RXLockMutex.lock();
if (low_level_input(&p) < 0) {
RXLockMutex.unlock();
break;
}
if (p) {
emac_link_input_cb(p);
}
RXLockMutex.unlock();
}
}
/** \brief Worker thread.
*
* Woken by thread flags to receive packets or clean up transmit
*
* \param[in] pvParameters pointer to the interface data
*/
void STM32_EMAC::thread_function(void *pvParameters)
{
static struct STM32_EMAC *stm32_enet = static_cast<STM32_EMAC *>(pvParameters);
for (;;) {
uint32_t flags = osThreadFlagsWait(FLAG_RX, osFlagsWaitAny, osWaitForever);
if (flags & FLAG_RX) {
stm32_enet->packet_rx();
}
}
}
/**
* This task checks phy link status and updates net status
*/
void STM32_EMAC::phy_task()
#ifndef ETH_IP_VERSION_V2
{
uint32_t status;
if (HAL_ETH_ReadPHYRegister(&EthHandle, PHY_BSR, &status) == HAL_OK) {
if (emac_link_state_cb) {
if ((status & PHY_LINKED_STATUS) && !(phy_status & PHY_LINKED_STATUS)) {
emac_link_state_cb(true);
} else if (!(status & PHY_LINKED_STATUS) && (phy_status & PHY_LINKED_STATUS)) {
emac_link_state_cb(false);
}
}
phy_status = status;
}
}
#else // ETH_IP_VERSION_V2
{
const int32_t status = _phy_get_state();
const int32_t old_status = (int32_t)phy_status;
const bool is_up = _phy_is_up(status);
const bool was_up = _phy_is_up(old_status);
if (is_up && !was_up) {
uint32_t duplex, speed;
ETH_MACConfigTypeDef MACConf;
if (!_phy_get_duplex_and_speed(status, &speed, &duplex)) {
// Default
duplex = ETH_FULLDUPLEX_MODE;
speed = ETH_SPEED_10M;
}
/* Get MAC Config MAC */
HAL_ETH_GetMACConfig(&EthHandle, &MACConf);
MACConf.DuplexMode = duplex;
MACConf.Speed = speed;
HAL_ETH_SetMACConfig(&EthHandle, &MACConf);
HAL_ETH_Start_IT(&EthHandle);
} else if (was_up && !is_up) {
// Stop ETH
disable_interrupts();
HAL_ETH_Stop(&EthHandle);
enable_interrupts();
}
if (emac_link_state_cb) {
if (is_up && !was_up) {
emac_link_state_cb(true);
} else if (!is_up && was_up) {
emac_link_state_cb(false);
}
}
phy_status = (uint32_t)status;
}
#endif // ETH_IP_VERSION_V2
#if defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx)\
|| defined (STM32F779xx)
/**
* workaround for the ETH RMII bug in STM32F76x and STM32F77x revA
*
* \param[in] netif the lwip network interface structure
*/
/** \brief Worker thread.
*
* Woken by thread flags to receive packets or clean up transmit
*
* \param[in] pvParameters pointer to the interface data
*/
void STM32_EMAC::rmii_watchdog_thread_function(void *pvParameters)
{
struct STM32_EMAC *stm32_enet = static_cast<STM32_EMAC *>(pvParameters);
while (1) {
/* some good packets are received */
if (stm32_enet->EthHandle.Instance->MMCRGUFCR > 0) {
/* RMII Init is OK - would need service to terminate or suspend
* the thread */
while (1) {
/* don't do anything anymore */
osDelay(0xFFFFFFFF);
}
} else if (stm32_enet->EthHandle.Instance->MMCRFCECR > 10) {
/* ETH received too many packets with CRC errors, resetting RMII */
SYSCFG->PMC &= ~SYSCFG_PMC_MII_RMII_SEL;
SYSCFG->PMC |= SYSCFG_PMC_MII_RMII_SEL;
stm32_enet->EthHandle.Instance->MMCCR |= ETH_MMCCR_CR;
} else {
osDelay(100);
}
}
}
#endif
void STM32_EMAC::enable_interrupts(void)
{
HAL_NVIC_SetPriority(ETH_IRQn, 0x7, 0);
HAL_NVIC_EnableIRQ(ETH_IRQn);
}
void STM32_EMAC::disable_interrupts(void)
{
NVIC_DisableIRQ(ETH_IRQn);
}
/** This returns a unique 6-byte MAC address, based on the device UID
* This function overrides hal/common/mbed_interface.c function
* @param mac A 6-byte array to write the MAC address
*/
void mbed_mac_address(char *mac)
{
if (mbed_otp_mac_address(mac)) {
return;
} else {
mbed_default_mac_address(mac);
}
return;
}
__weak uint8_t mbed_otp_mac_address(char *mac)
{
return 0;
}
void mbed_default_mac_address(char *mac)
{
unsigned char ST_mac_addr[3] = {0x00, 0x80, 0xe1}; // default STMicro mac address
// Read unic id
#if defined (TARGET_STM32F2)
uint32_t word0 = *(uint32_t *)0x1FFF7A10;
#elif defined (TARGET_STM32F4)
uint32_t word0 = *(uint32_t *)0x1FFF7A10;
#elif defined (TARGET_STM32F7)
uint32_t word0 = *(uint32_t *)0x1FF0F420;
#elif defined (TARGET_STM32H7)
uint32_t word0 = *(uint32_t *)0x1FF1E800;
#else
#error MAC address can not be derived from target unique Id
#endif
mac[0] = ST_mac_addr[0];
mac[1] = ST_mac_addr[1];
mac[2] = ST_mac_addr[2];
mac[3] = (word0 & 0x00ff0000) >> 16;
mac[4] = (word0 & 0x0000ff00) >> 8;
mac[5] = (word0 & 0x000000ff);
return;
}
bool STM32_EMAC::power_up()
{
sleep_manager_lock_deep_sleep();
/* Initialize the hardware */
if (!low_level_init_successful()) {
return false;
}
/* Worker thread */
thread = create_new_thread("stm32_emac_thread", &STM32_EMAC::thread_function, this, THREAD_STACKSIZE, THREAD_PRIORITY, &thread_cb);
phy_task_handle = mbed::mbed_event_queue()->call_every(PHY_TASK_PERIOD_MS, mbed::callback(this, &STM32_EMAC::phy_task));
#if defined (STM32F767xx) || defined (STM32F769xx) || defined (STM32F777xx)\
|| defined (STM32F779xx)
rmii_watchdog_thread = create_new_thread("stm32_rmii_watchdog", &STM32_EMAC::rmii_watchdog_thread_function, this, THREAD_STACKSIZE, THREAD_PRIORITY, &rmii_watchdog_thread_cb);
#endif
/* Allow the PHY task to detect the initial link state and set up the proper flags */
osDelay(10);
enable_interrupts();
return true;
}
uint32_t STM32_EMAC::get_mtu_size() const
{
return STM_ETH_MTU_SIZE;
}
uint32_t STM32_EMAC::get_align_preference() const
{
return 0;
}
void STM32_EMAC::get_ifname(char *name, uint8_t size) const
{
memcpy(name, STM_ETH_IF_NAME, (size < sizeof(STM_ETH_IF_NAME)) ? size : sizeof(STM_ETH_IF_NAME));
}
uint8_t STM32_EMAC::get_hwaddr_size() const
{
return STM_HWADDR_SIZE;
}
bool STM32_EMAC::get_hwaddr(uint8_t *addr) const
{
mbed_mac_address((char *)addr);
return true;
}
void STM32_EMAC::set_hwaddr(const uint8_t *addr)
{
/* No-op at this stage */
}
void STM32_EMAC::set_link_input_cb(emac_link_input_cb_t input_cb)
{
emac_link_input_cb = input_cb;
}
void STM32_EMAC::set_link_state_cb(emac_link_state_change_cb_t state_cb)
{
emac_link_state_cb = state_cb;
}
void STM32_EMAC::add_multicast_group(const uint8_t *addr)
{
/* No-op at this stage */
}
void STM32_EMAC::remove_multicast_group(const uint8_t *addr)
{
/* No-op at this stage */
}
void STM32_EMAC::set_all_multicast(bool all)
{
/* No-op at this stage */
}
void STM32_EMAC::power_down()
{
/* No-op at this stage */
sleep_manager_unlock_deep_sleep();
}
void STM32_EMAC::set_memory_manager(EMACMemoryManager &mem_mngr)
{
memory_manager = &mem_mngr;
}
STM32_EMAC &STM32_EMAC::get_instance()
{
static STM32_EMAC emac;
return emac;
}
// Weak so a module can override
MBED_WEAK EMAC &EMAC::get_default_instance()
{
return STM32_EMAC::get_instance();
}
#if defined(ETH_IP_VERSION_V2)
/*******************************************************************************
PHI IO Functions
*******************************************************************************/
/**
* @brief Initializes the MDIO interface GPIO and clocks.
* @param None
* @retval 0 if OK, -1 if ERROR
*/
static int32_t ETH_PHY_IO_Init(void)
{
/* We assume that MDIO GPIO configuration is already done
in the ETH_MspInit() else it should be done here
*/
STM32_EMAC &emac = STM32_EMAC::get_instance();
/* Configure the MDIO Clock */
HAL_ETH_SetMDIOClockRange(&emac.EthHandle);
return 0;
}
/**
* @brief De-Initializes the MDIO interface .
* @param None
* @retval 0 if OK, -1 if ERROR
*/
static int32_t ETH_PHY_IO_DeInit(void)
{
return 0;
}
/**
* @brief Read a PHY register through the MDIO interface.
* @param DevAddr: PHY port address
* @param RegAddr: PHY register address
* @param pRegVal: pointer to hold the register value
* @retval 0 if OK -1 if Error
*/
static int32_t ETH_PHY_IO_ReadReg(uint32_t DevAddr, uint32_t RegAddr, uint32_t *pRegVal)
{
STM32_EMAC &emac = STM32_EMAC::get_instance();
if (HAL_ETH_ReadPHYRegister(&emac.EthHandle, DevAddr, RegAddr, pRegVal) != HAL_OK) {
return -1;
}
return 0;
}
/**
* @brief Write a value to a PHY register through the MDIO interface.
* @param DevAddr: PHY port address
* @param RegAddr: PHY register address
* @param RegVal: Value to be written
* @retval 0 if OK -1 if Error
*/
static int32_t ETH_PHY_IO_WriteReg(uint32_t DevAddr, uint32_t RegAddr, uint32_t RegVal)
{
STM32_EMAC &emac = STM32_EMAC::get_instance();
if (HAL_ETH_WritePHYRegister(&emac.EthHandle, DevAddr, RegAddr, RegVal) != HAL_OK) {
return -1;
}
return 0;
}
/**
* @brief Get the time in millisecons used for internal PHY driver process.
* @retval Time value
*/
static int32_t ETH_PHY_IO_GetTick(void)
{
return HAL_GetTick();
}
/**
* Ethernet DMA transfer error callbacks
*/
void HAL_ETH_DMAErrorCallback(ETH_HandleTypeDef *heth)
{
MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER_ETHERNET, EIO), \
"Error from ethernet HAL (HAL_ETH_DMAErrorCallback)\n");
}
/**
* Ethernet MAC transfer error callbacks
*/
void HAL_ETH_MACErrorCallback(ETH_HandleTypeDef *heth)
{
MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER_ETHERNET, EIO), \
"Error from ethernet HAL (HAL_ETH_MACErrorCallback)\n");
}
#endif // ETH_IP_VERSION_V2
#endif /* DEVICE_EMAC */