mbed-os/UNITTESTS/features/lorawan/loraphy/Test_LoRaPHY.cpp

945 lines
26 KiB
C++

/*
* Copyright (c) 2018, Arm Limited and affiliates
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gtest/gtest.h"
#include "LoRaPHY.h"
#include "LoRaWANTimer_stub.h"
class my_LoRaPHY : public LoRaPHY {
public:
my_LoRaPHY()
{
phy_params.adr_ack_delay = 1;
}
virtual ~my_LoRaPHY()
{
}
loraphy_params_t &get_phy_params()
{
return phy_params;
}
};
class my_radio : public LoRaRadio {
public:
virtual void init_radio(radio_events_t *events)
{
};
virtual void radio_reset()
{
};
virtual void sleep(void)
{
};
virtual void standby(void)
{
};
virtual void set_rx_config(radio_modems_t modem, uint32_t bandwidth,
uint32_t datarate, uint8_t coderate,
uint32_t bandwidth_afc, uint16_t preamble_len,
uint16_t symb_timeout, bool fix_len,
uint8_t payload_len,
bool crc_on, bool freq_hop_on, uint8_t hop_period,
bool iq_inverted, bool rx_continuous)
{
};
virtual void set_tx_config(radio_modems_t modem, int8_t power, uint32_t fdev,
uint32_t bandwidth, uint32_t datarate,
uint8_t coderate, uint16_t preamble_len,
bool fix_len, bool crc_on, bool freq_hop_on,
uint8_t hop_period, bool iq_inverted, uint32_t timeout)
{
};
virtual void send(uint8_t *buffer, uint8_t size)
{
};
virtual void receive(void)
{
};
virtual void set_channel(uint32_t freq)
{
};
virtual uint32_t random(void)
{
};
virtual uint8_t get_status(void)
{
return uint8_value;
};
virtual void set_max_payload_length(radio_modems_t modem, uint8_t max)
{
};
virtual void set_public_network(bool enable)
{
};
virtual uint32_t time_on_air(radio_modems_t modem, uint8_t pkt_len)
{
};
virtual bool perform_carrier_sense(radio_modems_t modem,
uint32_t freq,
int16_t rssi_threshold,
uint32_t max_carrier_sense_time)
{
return bool_value;
};
virtual void start_cad(void)
{
};
virtual bool check_rf_frequency(uint32_t frequency)
{
return bool_value;
};
virtual void set_tx_continuous_wave(uint32_t freq, int8_t power, uint16_t time)
{
};
virtual void lock(void)
{
};
virtual void unlock(void)
{
};
bool bool_value;
uint8_t uint8_value;
};
class Test_LoRaPHY : public testing::Test {
protected:
my_LoRaPHY *object;
virtual void SetUp()
{
object = new my_LoRaPHY();
memset(&object->get_phy_params(), 0, sizeof(object->get_phy_params()));
}
virtual void TearDown()
{
delete object;
}
};
TEST_F(Test_LoRaPHY, initialize)
{
object->initialize(NULL);
}
TEST_F(Test_LoRaPHY, set_radio_instance)
{
my_radio radio;
object->set_radio_instance(radio);
}
TEST_F(Test_LoRaPHY, put_radio_to_sleep)
{
my_radio radio;
object->set_radio_instance(radio);
object->put_radio_to_sleep();
}
TEST_F(Test_LoRaPHY, put_radio_to_standby)
{
my_radio radio;
object->set_radio_instance(radio);
object->put_radio_to_standby();
}
TEST_F(Test_LoRaPHY, handle_receive)
{
my_radio radio;
object->set_radio_instance(radio);
object->handle_receive();
}
TEST_F(Test_LoRaPHY, handle_send)
{
my_radio radio;
object->set_radio_instance(radio);
object->handle_send(NULL, 0);
}
TEST_F(Test_LoRaPHY, setup_public_network_mode)
{
my_radio radio;
channel_params_t p;
object->get_phy_params().channels.channel_list = &p;
object->set_radio_instance(radio);
object->setup_public_network_mode(false);
}
TEST_F(Test_LoRaPHY, get_radio_rng)
{
my_radio radio;
object->set_radio_instance(radio);
EXPECT_TRUE(0 != object->get_radio_rng());
}
TEST_F(Test_LoRaPHY, calculate_backoff)
{
channel_params_t p[1];
p[0].band = 0;
p[0].dr_range.fields.min = DR_0;
p[0].dr_range.fields.max = DR_5;
object->get_phy_params().channels.channel_list = p;
band_t b[1];
b[0].duty_cycle = 0;
b[0].higher_band_freq = 8689000;
b[0].lower_band_freq = 8687000;
b[0].max_tx_pwr = 20;
b[0].last_join_tx_time = 0;
b[0].last_tx_time = 0;
b[0].off_time = 0;
object->get_phy_params().bands.table = b;
object->calculate_backoff(false, false, false, 0, 10, 12);
object->calculate_backoff(false, true, false, 0, 3600000 + 10, 12);
object->calculate_backoff(false, false, true, 0, 3600000 + 36000000 + 10, 12);
}
TEST_F(Test_LoRaPHY, mask_bit_test)
{
uint16_t buf;
buf = 0x08;
EXPECT_TRUE(!object->mask_bit_test(&buf, 0));
}
TEST_F(Test_LoRaPHY, mask_bit_set)
{
uint16_t buf;
object->mask_bit_set(&buf, 3);
}
TEST_F(Test_LoRaPHY, mask_bit_clear)
{
uint16_t buf;
object->mask_bit_clear(&buf, 0);
}
TEST_F(Test_LoRaPHY, request_new_channel)
{
band_t b;
object->get_phy_params().bands.size = 1;
b.higher_band_freq = 8689000;
b.lower_band_freq = 8678000;
b.duty_cycle = 0;
b.last_join_tx_time = 0;
b.last_tx_time = 0;
b.max_tx_pwr = 20;
b.off_time = 0;
object->get_phy_params().bands.table = &b;
channel_params_t p;
//First 3 channels are set to be default
p.band = 0;
p.dr_range.fields.min = DR_0;
p.dr_range.fields.max = DR_5;
p.frequency = 8687000;
p.rx1_frequency = 0;
uint16_t dflt_msk = 0x07;
object->get_phy_params().channels.default_mask = &dflt_msk;
object->get_phy_params().channels.channel_list = &p;
object->get_phy_params().custom_channelplans_supported = true;
//Default channel, PARAMETER invalid
EXPECT_TRUE(0 == object->request_new_channel(0, &p));
//Freq & DR invalid
p.frequency = 12345;
p.dr_range.fields.max = 12;
object->get_phy_params().max_channel_cnt = 16;
object->get_phy_params().min_tx_datarate = DR_0;
object->get_phy_params().max_tx_datarate = DR_5;
// Frequency and DR are invalid - LORAWAN_STATUS_FREQ_AND_DR_INVALID
EXPECT_TRUE(0 == object->request_new_channel(0, &p));
//Freq invalid
p.frequency = 12345;
p.dr_range.fields.max = DR_5;
object->get_phy_params().default_channel_cnt = 3;
EXPECT_TRUE(2 == object->request_new_channel(0, &p));
//DR invalid
p.frequency = 8687000;
p.dr_range.fields.max = 12;
p.dr_range.fields.min = 1;
EXPECT_TRUE(1 == object->request_new_channel(0, &p));
//STATUS_OK
p.dr_range.fields.max = DR_5;
p.dr_range.fields.min = DR_0;
uint16_t ch_msk = 0x08;
object->get_phy_params().channels.mask = &ch_msk;
EXPECT_TRUE(3 == object->request_new_channel(0, &p));
}
TEST_F(Test_LoRaPHY, set_last_tx_done)
{
channel_params_t p[1];
p[0].band = 0;
object->get_phy_params().channels.channel_list = p;
band_t b[1];
object->get_phy_params().bands.table = b;
object->set_last_tx_done(0, false, 0);
object->set_last_tx_done(0, true, 0);
}
TEST_F(Test_LoRaPHY, restore_default_channels)
{
channel_params_t p[1];
p[0].band = 0;
object->get_phy_params().channels.channel_list = p;
uint16_t m, dm;
object->get_phy_params().channels.mask_size = 1;
object->get_phy_params().channels.default_mask = &dm;
object->get_phy_params().channels.mask = &m;
object->restore_default_channels();
}
TEST_F(Test_LoRaPHY, apply_cf_list)
{
uint8_t list[16];
memset(list, 0, 16);
object->apply_cf_list(list, 0);
object->get_phy_params().cflist_supported = true;
object->apply_cf_list(list, 0);
object->get_phy_params().default_channel_cnt = 1;
object->get_phy_params().cflist_channel_cnt = 0;
object->get_phy_params().max_channel_cnt = 3;
uint16_t def_mask = 0x01;
channel_params_t p[16];
memset(p, 0, 16);
//one default channel
p[0].band = 0;
p[0].dr_range.fields.min = DR_0;
p[0].dr_range.fields.min = DR_5;
p[0].frequency = 8687000;
object->get_phy_params().channels.default_mask = &def_mask;
object->get_phy_params().channels.mask = &def_mask;
object->get_phy_params().channels.channel_list = p;
object->apply_cf_list(list, 16);
list[1] = 15;
object->get_phy_params().cflist_channel_cnt = 1;
object->apply_cf_list(list, 16);
}
TEST_F(Test_LoRaPHY, get_next_ADR)
{
int8_t i = 0;
int8_t j = 0;
uint32_t ctr = 0;
object->get_phy_params().min_tx_datarate = 0;
EXPECT_TRUE(!object->get_next_ADR(false, i, j, ctr));
i = 1;
object->get_phy_params().adr_ack_limit = 3;
EXPECT_TRUE(!object->get_next_ADR(false, i, j, ctr));
object->get_phy_params().adr_ack_limit = 3;
ctr = 4;
object->get_phy_params().max_tx_power = 2;
object->get_phy_params().adr_ack_delay = 1;
EXPECT_TRUE(object->get_next_ADR(true, i, j, ctr));
ctr = 5;
object->get_phy_params().adr_ack_delay = 2;
EXPECT_TRUE(!object->get_next_ADR(true, i, j, ctr));
}
TEST_F(Test_LoRaPHY, rx_config)
{
my_radio radio;
object->set_radio_instance(radio);
uint8_t list;
object->get_phy_params().datarates.table = &list;
uint8_t list2;
object->get_phy_params().payloads_with_repeater.table = &list2;
rx_config_params_t p;
memset(&p, 0, sizeof(rx_config_params_t));
p.datarate = 0;
p.rx_slot = RX_SLOT_WIN_1;
channel_params_t pp[1];
object->get_phy_params().channels.channel_list = pp;
pp[0].rx1_frequency = 2;
p.channel = 0;
uint8_t tab[8];
object->get_phy_params().payloads.table = tab;
object->get_phy_params().payloads_with_repeater.table = tab;
EXPECT_TRUE(object->rx_config(&p));
p.datarate = DR_7;
p.is_repeater_supported = true;
object->get_phy_params().fsk_supported = true;
EXPECT_TRUE(object->rx_config(&p));
}
TEST_F(Test_LoRaPHY, compute_rx_win_params)
{
uint32_t list[1];
list[0] = 125000;
object->get_phy_params().bandwidths.table = list;
uint8_t list2[1];
list2[0] = 12;
object->get_phy_params().datarates.table = &list2;
channel_params_t ch_lst[16];
memset(ch_lst, 0, sizeof(channel_params_t) * 16);
ch_lst[0].band = 0;
ch_lst[0].dr_range.fields.min = DR_0;
ch_lst[0].dr_range.fields.max = DR_5;
ch_lst[0].frequency = 8687000;
object->get_phy_params().channels.channel_list = ch_lst;
object->get_phy_params().channels.channel_list_size = 16;
rx_config_params_t p;
memset(&p, 0, sizeof(rx_config_params_t));
p.frequency = 8687000;
object->compute_rx_win_params(0, 0, 0, &p);
p.datarate = 0;
list[0] = 125000;
object->compute_rx_win_params(0, 0, 0, &p);
list[0] = 250000;
object->compute_rx_win_params(0, 0, 0, &p);
list[0] = 500000;
object->get_phy_params().fsk_supported = true;
object->get_phy_params().max_rx_datarate = 0;
object->compute_rx_win_params(0, 0, 0, &p);
}
TEST_F(Test_LoRaPHY, tx_config)
{
band_t b;
memset(&b, 0, sizeof(band_t));
object->get_phy_params().bands.table = &b;
channel_params_t pp;
memset(&pp, 0, sizeof(channel_params_t));
pp.band = 0;
object->get_phy_params().channels.channel_list = &pp;
uint32_t list[1];
list[0] = 125000;
object->get_phy_params().bandwidths.table = &list;
uint8_t list2[1];
list2[0] = 12;
object->get_phy_params().datarates.table = &list2;
my_radio radio;
object->set_radio_instance(radio);
tx_config_params_t p;
memset(&p, 0, sizeof(tx_config_params_t));
p.channel = 0;
int8_t i = 20;
lorawan_time_t t = 36;
object->tx_config(&p, &i, &t);
p.datarate = 8;
object->get_phy_params().max_tx_datarate = 8;
object->tx_config(&p, &i, &t);
}
TEST_F(Test_LoRaPHY, link_ADR_request)
{
adr_req_params_t p;
memset(&p, 0, sizeof(adr_req_params_t));
uint8_t b[100];
memset(b, 0, 100);
p.payload = b;
b[0] = 0x03;
b[1] = 1;
b[2] = 0;
b[3] = 0;
b[4] = 1 << 4;
b[5] = 0x03;
b[6] = 1;
b[7] = 1;
b[8] = 1;
b[9] = 6 << 4;
b[10] = 0x03;
b[11] = 1;
b[12] = 0xff;
b[13] = 0xff;
b[14] = 0;
b[15] = 0;
p.payload_size = 16;
int8_t i = 0, j = 0;
uint8_t k = 0, l = 0;
uint8_t t[5] = {12, 11, 10, 9, 8};
t[0] = 0;
object->get_phy_params().datarates.size = 5;
object->get_phy_params().datarates.table = t;
//Test without ADR payload does not make sense here.
object->get_phy_params().max_channel_cnt = 16;
channel_params_t li[16];
memset(li, 0, sizeof(channel_params_t) * 16);
object->get_phy_params().channels.channel_list = li;
li[0].frequency = 0;
li[1].frequency = 5;
EXPECT_TRUE(4 == object->link_ADR_request(&p, &i, &j, &k, &l));
t[0] = 3;
//verify adr with p.adr_enabled = false
EXPECT_TRUE(0 == object->link_ADR_request(&p, &i, &j, &k, &l));
p.current_nb_trans = 0;
EXPECT_TRUE(0 == object->link_ADR_request(&p, &i, &j, &k, &l));
p.adr_enabled = true;
li[0].dr_range.value = 0xff;
object->get_phy_params().min_tx_datarate = DR_3;
object->get_phy_params().max_tx_datarate = DR_8;
//verify adr with status != 0
EXPECT_TRUE(0 == object->link_ADR_request(&p, &i, &j, &k, &l));
object->get_phy_params().max_tx_power = 2;
object->get_phy_params().min_tx_power = 6;
//verify adr with status != 0
EXPECT_TRUE(4 == object->link_ADR_request(&p, &i, &j, &k, &l));
object->get_phy_params().min_tx_datarate = DR_0;
li[0].dr_range.value = 0xf0;
EXPECT_TRUE(6 == object->link_ADR_request(&p, &i, &j, &k, &l));
li[1].dr_range.fields.min = DR_0;
li[1].dr_range.fields.max = DR_13;
b[4] = 6 << 4;
p.payload_size = 5;
EXPECT_TRUE(7 == object->link_ADR_request(&p, &i, &j, &k, &l));
uint16_t mask[2];
object->get_phy_params().channels.mask = mask;
object->get_phy_params().channels.mask_size = 2;
EXPECT_TRUE(7 == object->link_ADR_request(&p, &i, &j, &k, &l));
li[0].dr_range.value = 0xff;
object->get_phy_params().max_channel_cnt = 0;
EXPECT_TRUE(5 == object->link_ADR_request(&p, &i, &j, &k, &l));
b[0] = 0x03;
b[1] = 1;
b[2] = 0;
b[3] = 0;
b[4] = 0;
t[0] = 0;
object->get_phy_params().datarates.size = 1;
object->get_phy_params().datarates.table = t;
//Test without ADR payload does not make sense here.
object->get_phy_params().max_channel_cnt = 2;
li[0].frequency = 0;
li[1].frequency = 5;
EXPECT_TRUE(4 == object->link_ADR_request(&p, &i, &j, &k, &l));
}
TEST_F(Test_LoRaPHY, accept_rx_param_setup_req)
{
my_radio radio;
radio.bool_value = true;
object->set_radio_instance(radio);
rx_param_setup_req_t req;
req.datarate = DR_0;
req.dr_offset = 0;
req.frequency = 8678000;
band_t band[1];
memset(band, 0, sizeof(band_t));
band[0].higher_band_freq = 8688000;
band[0].lower_band_freq = 8666000;
object->get_phy_params().bands.size = 1;
object->get_phy_params().bands.table = band;
EXPECT_TRUE(0x07 == object->accept_rx_param_setup_req(&req));
}
TEST_F(Test_LoRaPHY, accept_tx_param_setup_req)
{
my_radio radio;
object->set_radio_instance(radio);
object->get_phy_params().accept_tx_param_setup_req = true;
EXPECT_TRUE(object->accept_tx_param_setup_req(0, 0));
}
TEST_F(Test_LoRaPHY, dl_channel_request)
{
EXPECT_TRUE(0 == object->dl_channel_request(0, 0));
object->get_phy_params().dl_channel_req_supported = true;
object->get_phy_params().bands.size = 1;
band_t t[1];
memset(t, 0, sizeof(band_t));
t[0].higher_band_freq = 8688000;
t[0].lower_band_freq = 8668000;
object->get_phy_params().bands.size = 1;
object->get_phy_params().bands.table = t;
channel_params_t p[16];
memset(p, 0, sizeof(channel_params_t) * 16);
object->get_phy_params().channels.channel_list_size = 16;
object->get_phy_params().channels.channel_list = p;
p[0].frequency = 0;
EXPECT_TRUE(0 == object->dl_channel_request(0, 1));
t[0].higher_band_freq = 19;
t[0].lower_band_freq = 0;
p[0].frequency = 1;
EXPECT_TRUE(3 == object->dl_channel_request(0, 1));
}
TEST_F(Test_LoRaPHY, get_alternate_DR)
{
EXPECT_TRUE(0 == object->get_alternate_DR(0));
object->get_phy_params().default_max_datarate = 5;
object->get_phy_params().min_tx_datarate = 4;
EXPECT_TRUE(5 == object->get_alternate_DR(1));
object->get_phy_params().default_max_datarate = 6;
object->get_phy_params().min_tx_datarate = 4;
EXPECT_TRUE(5 == object->get_alternate_DR(2));
}
TEST_F(Test_LoRaPHY, set_next_channel)
{
channel_selection_params_t p;
memset(&p, 0, sizeof(channel_selection_params_t));
band_t band[1];
memset(band, 0, sizeof(band_t));
band[0].higher_band_freq = 8687000;
object->get_phy_params().bands.size = 1;
object->get_phy_params().bands.table = band;
uint8_t ch = 5;
lorawan_time_t t1 = 16;
lorawan_time_t t2 = 32;
p.aggregate_timeoff = 10000;
EXPECT_TRUE(LORAWAN_STATUS_DUTYCYCLE_RESTRICTED == object->set_next_channel(&p, &ch, &t1, &t2));
uint16_t list[129];
memset(list, 0, sizeof(list));
list[4] = 1;
list[128] = 1;
object->get_phy_params().channels.mask = list;
object->get_phy_params().channels.default_mask = list;
object->get_phy_params().channels.mask_size = 1;
p.aggregate_timeoff = 10000;
EXPECT_TRUE(LORAWAN_STATUS_DUTYCYCLE_RESTRICTED == object->set_next_channel(&p, &ch, &t1, &t2));
LoRaWANTimer_stub::time_value = 20000;
EXPECT_TRUE(LORAWAN_STATUS_NO_CHANNEL_FOUND == object->set_next_channel(&p, &ch, &t1, &t2));
p.joined = false;
p.dc_enabled = false;
band_t b[4];
ch = 5;
t1 = 16;
t2 = 32;
memset(b, 0, sizeof(band_t) * 4);
object->get_phy_params().bands.size = 2;
object->get_phy_params().bands.table = &b;
b[0].off_time = 0;
b[1].off_time = 9999999;
memset(list, 0, 129);
list[4] = 0;
object->get_phy_params().channels.mask = list;
object->get_phy_params().channels.default_mask = list;
object->get_phy_params().channels.mask_size = 128;
p.current_datarate = DR_1;
object->get_phy_params().max_channel_cnt = 4;
EXPECT_TRUE(LORAWAN_STATUS_NO_CHANNEL_FOUND == object->set_next_channel(&p, &ch, &t1, &t2));
p.dc_enabled = true;
EXPECT_TRUE(LORAWAN_STATUS_NO_CHANNEL_FOUND == object->set_next_channel(&p, &ch, &t1, &t2));
list[4] = 1;
p.joined = true;
p.dc_enabled = false;
channel_params_t l[4];
l[0].dr_range.value = 0xff;
l[1].dr_range.value = 0xff;
l[2].dr_range.value = 0xf0;
l[3].dr_range.value = 0xf0;
l[2].band = 2;
l[3].band = 3;
object->get_phy_params().channels.channel_list = l;
list[0] = 0xFF;
b[2].off_time = 9999999;
b[3].off_time = 0;
EXPECT_TRUE(LORAWAN_STATUS_OK == object->set_next_channel(&p, &ch, &t1, &t2));
b[0].off_time = 10000;
LoRaWANTimer_stub::time_value = 2000;
p.aggregate_timeoff = 1000;
p.dc_enabled = true;
EXPECT_TRUE(LORAWAN_STATUS_OK == object->set_next_channel(&p, &ch, &t1, &t2));
}
TEST_F(Test_LoRaPHY, add_channel)
{
uint16_t list[16];
object->get_phy_params().channels.mask = list;
object->get_phy_params().channels.default_mask = list;
channel_params_t p;
p.band = 0;
p.frequency = 0;
EXPECT_TRUE(LORAWAN_STATUS_PARAMETER_INVALID == object->add_channel(&p, 0));
object->get_phy_params().custom_channelplans_supported = true;
object->get_phy_params().max_channel_cnt = 2;
object->get_phy_params().min_tx_datarate = 0;
object->get_phy_params().max_tx_datarate = 13;
p.dr_range.fields.min = 6;
p.dr_range.fields.max = 1;
EXPECT_TRUE(LORAWAN_STATUS_FREQ_AND_DR_INVALID == object->add_channel(&p, 0));
}
TEST_F(Test_LoRaPHY, remove_channel)
{
channel_params_t pp;
pp.band = 0;
object->get_phy_params().channels.channel_list = &pp;
uint16_t list[16];
list[0] = 1;
object->get_phy_params().channels.mask = list;
object->get_phy_params().channels.default_mask = list;
EXPECT_TRUE(false == object->remove_channel(0));
list[0] = 0;
EXPECT_TRUE(false == object->remove_channel(0));
object->get_phy_params().channels.mask_size = 1;
object->get_phy_params().max_channel_cnt = 0;
EXPECT_TRUE(false == object->remove_channel(0));
object->get_phy_params().max_channel_cnt = 1;
EXPECT_TRUE(true == object->remove_channel(0));
}
TEST_F(Test_LoRaPHY, set_tx_cont_mode)
{
channel_params_t pp;
pp.band = 0;
object->get_phy_params().channels.channel_list = &pp;
band_t b;
b.max_tx_pwr = 10;
object->get_phy_params().bands.table = &b;
my_radio radio;
object->set_radio_instance(radio);
cw_mode_params_t p;
p.max_eirp = 0;
p.channel = 0;
p.tx_power = -1;
p.datarate = 0;
p.antenna_gain = 1;
object->set_tx_cont_mode(&p);
p.max_eirp = 1;
p.antenna_gain = 1;
object->set_tx_cont_mode(&p, 1);
}
TEST_F(Test_LoRaPHY, apply_DR_offset)
{
EXPECT_TRUE(0 == object->apply_DR_offset(0, 0));
object->get_phy_params().min_tx_datarate = 1;
EXPECT_TRUE(1 == object->apply_DR_offset(0, 2));
}
TEST_F(Test_LoRaPHY, reset_to_default_values)
{
loramac_protocol_params p;
object->reset_to_default_values(&p);
object->reset_to_default_values(&p, true);
}
TEST_F(Test_LoRaPHY, get_next_lower_tx_datarate)
{
EXPECT_TRUE(DR_0 == object->get_next_lower_tx_datarate(DR_2));
object->get_phy_params().ul_dwell_time_setting = 1;
object->get_phy_params().dwell_limit_datarate = DR_1;
EXPECT_TRUE(DR_1 == object->get_next_lower_tx_datarate(DR_2));
}
TEST_F(Test_LoRaPHY, get_minimum_rx_datarate)
{
EXPECT_TRUE(DR_0 == object->get_minimum_rx_datarate());
object->get_phy_params().dl_dwell_time_setting = 1;
object->get_phy_params().dwell_limit_datarate = DR_1;
EXPECT_TRUE(DR_1 == object->get_minimum_rx_datarate());
}
TEST_F(Test_LoRaPHY, get_minimum_tx_datarate)
{
EXPECT_TRUE(DR_0 == object->get_minimum_tx_datarate());
object->get_phy_params().ul_dwell_time_setting = 1;
object->get_phy_params().dwell_limit_datarate = DR_1;
EXPECT_TRUE(DR_1 == object->get_minimum_tx_datarate());
}
TEST_F(Test_LoRaPHY, get_default_tx_datarate)
{
EXPECT_TRUE(0 == object->get_default_tx_datarate());
}
TEST_F(Test_LoRaPHY, get_default_max_tx_datarate)
{
EXPECT_TRUE(DR_0 == object->get_default_max_tx_datarate());
}
TEST_F(Test_LoRaPHY, get_default_tx_power)
{
EXPECT_TRUE(0 == object->get_default_tx_power());
}
TEST_F(Test_LoRaPHY, get_max_payload)
{
uint8_t list = 8;
object->get_phy_params().payloads.table = &list;
object->get_phy_params().payloads_with_repeater.table = &list;
EXPECT_TRUE(8 == object->get_max_payload(0));
EXPECT_TRUE(8 == object->get_max_payload(0, true));
}
TEST_F(Test_LoRaPHY, get_maximum_frame_counter_gap)
{
EXPECT_TRUE(0 == object->get_maximum_frame_counter_gap());
}
TEST_F(Test_LoRaPHY, get_ack_timeout)
{
EXPECT_TRUE(0 == object->get_ack_timeout());
}
TEST_F(Test_LoRaPHY, get_default_rx2_frequency)
{
EXPECT_TRUE(0 == object->get_default_rx2_frequency());
}
TEST_F(Test_LoRaPHY, get_default_rx2_datarate)
{
EXPECT_TRUE(0 == object->get_default_rx2_datarate());
}
TEST_F(Test_LoRaPHY, get_channel_mask)
{
EXPECT_TRUE(0 == object->get_channel_mask());
EXPECT_TRUE(0 == object->get_channel_mask(true));
}
TEST_F(Test_LoRaPHY, get_max_nb_channels)
{
EXPECT_TRUE(0 == object->get_max_nb_channels());
}
TEST_F(Test_LoRaPHY, get_phy_channels)
{
EXPECT_TRUE(0 == object->get_phy_channels());
}
TEST_F(Test_LoRaPHY, is_custom_channel_plan_supported)
{
EXPECT_TRUE(false == object->is_custom_channel_plan_supported());
}
TEST_F(Test_LoRaPHY, verify_rx_datarate)
{
EXPECT_TRUE(false == object->verify_rx_datarate(0));
object->get_phy_params().datarates.size = 1;
uint8_t t[1];
t[0] = 2;
object->get_phy_params().datarates.table = t;
object->get_phy_params().dl_dwell_time_setting = 0;
EXPECT_TRUE(true == object->verify_rx_datarate(0));
object->get_phy_params().dl_dwell_time_setting = 1;
object->get_phy_params().min_rx_datarate = 0;
EXPECT_TRUE(true == object->verify_rx_datarate(0));
}
TEST_F(Test_LoRaPHY, verify_tx_datarate)
{
EXPECT_TRUE(false == object->verify_tx_datarate(0));
object->get_phy_params().datarates.size = 1;
uint8_t t[1];
t[0] = 2;
object->get_phy_params().datarates.table = t;
object->get_phy_params().ul_dwell_time_setting = 0;
EXPECT_TRUE(true == object->verify_tx_datarate(0));
object->get_phy_params().ul_dwell_time_setting = 1;
EXPECT_TRUE(true == object->verify_tx_datarate(0));
object->get_phy_params().ul_dwell_time_setting = 1;
EXPECT_TRUE(true == object->verify_tx_datarate(0, true));
}
TEST_F(Test_LoRaPHY, verify_tx_power)
{
EXPECT_TRUE(true == object->verify_tx_power(0));
}
TEST_F(Test_LoRaPHY, verify_duty_cycle)
{
EXPECT_TRUE(true == object->verify_duty_cycle(false));
EXPECT_TRUE(false == object->verify_duty_cycle(true));
}
TEST_F(Test_LoRaPHY, verify_nb_join_trials)
{
EXPECT_TRUE(false == object->verify_nb_join_trials(0));
EXPECT_TRUE(true == object->verify_nb_join_trials(100));
}