mbed-os/features/netsocket/nsapi_dns.cpp

856 lines
24 KiB
C++

/* nsapi_dns.cpp
* Original work Copyright (c) 2013 Henry Leinen (henry[dot]leinen [at] online [dot] de)
* Modified work Copyright (c) 2015 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nsapi_dns.h"
#include "netsocket/UDPSocket.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "mbed_shared_queues.h"
#include "EventQueue.h"
#include "OnboardNetworkStack.h"
#include "Kernel.h"
#define CLASS_IN 1
#define RR_A 1
#define RR_AAAA 28
// DNS options
#define DNS_BUFFER_SIZE 512
#define DNS_TIMEOUT 5000
#define DNS_SERVERS_SIZE 5
#define DNS_RESPONSE_MIN_SIZE 12
#define DNS_MAX_TTL 604800
#define DNS_CACHE_SIZE 3
#define DNS_STACK_SERVERS_NUM 5
#define DNS_QUERY_QUEUE_SIZE 5
struct DNS_CACHE {
SocketAddress address;
char host[128];
uint64_t expires; /*!< time to live in milliseconds */
uint64_t accessed; /*!< last accessed */
};
struct DNS_QUERY {
int unique_id;
NetworkStack *stack;
char host[128];
NetworkStack::hostbyname_cb_t callback;
void *cb_data;
nsapi_size_t addr_count;
nsapi_version_t version;
UDPSocket *socket;
int dns_server;
int retries;
int dns_message_id;
};
typedef nsapi_error_t (*nsapi_dns_call_t)(mbed::Callback<void()> func);
typedef nsapi_error_t (*nsapi_dns_call_in_t)(int delay, mbed::Callback<void()> func);
static void nsapi_dns_cache_add(const char *host, SocketAddress *address, uint32_t ttl);
static nsapi_size_or_error_t nsapi_dns_cache_find(const char *host, nsapi_version_t version, SocketAddress *address);
static nsapi_error_t nsapi_dns_get_server_addr(NetworkStack *stack, int *index, SocketAddress *dns_addr);
static void nsapi_dns_query_async_create(DNS_QUERY *query);
static void nsapi_dns_query_async_send(void *ptr);
static void nsapi_dns_query_async_resp(DNS_QUERY *query, nsapi_error_t status, SocketAddress *address);
static void nsapi_dns_query_async_socket_callback(NetworkStack *stack);
static void nsapi_dns_query_async_socket_callback_handle(NetworkStack *stack);
static nsapi_error_t nsapi_dns_call_default(mbed::Callback<void()> func);
static nsapi_error_t nsapi_dns_call_in_default(int delay, mbed::Callback<void()> func);
static nsapi_addr_t dns_servers[DNS_SERVERS_SIZE] = {
{NSAPI_IPv4, {8, 8, 8, 8}}, // Google
{NSAPI_IPv4, {209, 244, 0, 3}}, // Level 3
{NSAPI_IPv4, {84, 200, 69, 80}}, // DNS.WATCH
{NSAPI_IPv6, {0x20,0x01, 0x48,0x60, 0x48,0x60, 0,0, // Google
0,0, 0,0, 0,0, 0x88,0x88}},
{NSAPI_IPv6, {0x20,0x01, 0x16,0x08, 0,0x10, 0,0x25, // DNS.WATCH
0,0, 0,0, 0x1c,0x04, 0xb1,0x2f}},
};
static DNS_CACHE *dns_cache[DNS_CACHE_SIZE];
static uint16_t dns_message_id = 0;
static int dns_unique_id = 0;
static DNS_QUERY *dns_query_queue[DNS_QUERY_QUEUE_SIZE];
static rtos::Mutex dns_cache_mutex;
static nsapi_dns_call_t dns_call = nsapi_dns_call_default;
static nsapi_dns_call_in_t dns_call_in = nsapi_dns_call_in_default;
// DNS server configuration
extern "C" nsapi_error_t nsapi_dns_add_server(nsapi_addr_t addr)
{
memmove(&dns_servers[1], &dns_servers[0],
(DNS_SERVERS_SIZE-1)*sizeof(nsapi_addr_t));
dns_servers[0] = addr;
return NSAPI_ERROR_OK;
}
// DNS packet parsing
static void dns_append_byte(uint8_t **p, uint8_t byte)
{
*(*p)++ = byte;
}
static void dns_append_word(uint8_t **p, uint16_t word)
{
dns_append_byte(p, 0xff & (word >> 8));
dns_append_byte(p, 0xff & (word >> 0));
}
static void dns_append_name(uint8_t **p, const char *name, uint8_t len)
{
dns_append_byte(p, len);
memcpy(*p, name, len);
*p += len;
}
static uint8_t dns_scan_byte(const uint8_t **p)
{
return *(*p)++;
}
static uint16_t dns_scan_word(const uint8_t **p)
{
uint16_t a = dns_scan_byte(p);
uint16_t b = dns_scan_byte(p);
return (a << 8) | b;
}
static uint32_t dns_scan_word32(const uint8_t **p)
{
uint32_t value = dns_scan_byte(p) << 24;
value |= dns_scan_byte(p) << 16;
value |= dns_scan_byte(p) << 8;
value |= dns_scan_byte(p);
return value;
}
static int dns_append_question(uint8_t *ptr, uint16_t id, const char *host, nsapi_version_t version)
{
uint8_t *s_ptr = ptr;
uint8_t **p = &ptr;
// fill the header
dns_append_word(p, id); // id = 1
dns_append_word(p, 0x0100); // flags = recursion required
dns_append_word(p, 1); // qdcount = 1
dns_append_word(p, 0); // ancount = 0
dns_append_word(p, 0); // nscount = 0
dns_append_word(p, 0); // arcount = 0
// fill out the question names
while (host[0]) {
size_t label_len = strcspn(host, ".");
dns_append_name(p, host, label_len);
host += label_len + (host[label_len] == '.');
}
dns_append_byte(p, 0);
// fill out question footer
if (version != NSAPI_IPv6) {
dns_append_word(p, RR_A); // qtype = ipv4
} else {
dns_append_word(p, RR_AAAA); // qtype = ipv6
}
dns_append_word(p, CLASS_IN);
return *p - s_ptr;
}
static int dns_scan_response(const uint8_t *ptr, uint16_t exp_id, uint32_t *ttl, nsapi_addr_t *addr, unsigned addr_count)
{
const uint8_t **p = &ptr;
// scan header
uint16_t id = dns_scan_word(p);
uint16_t flags = dns_scan_word(p);
bool qr = 0x1 & (flags >> 15);
uint8_t opcode = 0xf & (flags >> 11);
uint8_t rcode = 0xf & (flags >> 0);
uint16_t qdcount = dns_scan_word(p); // qdcount
uint16_t ancount = dns_scan_word(p); // ancount
dns_scan_word(p); // nscount
dns_scan_word(p); // arcount
// verify header is response to query
if (!(id == exp_id && qr && opcode == 0 && rcode == 0)) {
return 0;
}
// skip questions
for (int i = 0; i < qdcount; i++) {
while (true) {
uint8_t len = dns_scan_byte(p);
if (len == 0) {
break;
}
*p += len;
}
dns_scan_word(p); // qtype
dns_scan_word(p); // qclass
}
// scan each response
unsigned count = 0;
for (int i = 0; i < ancount && count < addr_count; i++) {
while (true) {
uint8_t len = dns_scan_byte(p);
if (len == 0) {
break;
} else if (len & 0xc0) { // this is link
dns_scan_byte(p);
break;
}
*p += len;
}
uint16_t rtype = dns_scan_word(p); // rtype
uint16_t rclass = dns_scan_word(p); // rclass
uint32_t ttl_val = dns_scan_word32(p); // ttl
uint16_t rdlength = dns_scan_word(p); // rdlength
if (i == 0) {
// Is interested only on first address that is stored to cache
if (ttl_val > DNS_MAX_TTL) {
ttl_val = DNS_MAX_TTL;
}
*ttl = ttl_val;
}
if (rtype == RR_A && rclass == CLASS_IN && rdlength == NSAPI_IPv4_BYTES) {
// accept A record
addr->version = NSAPI_IPv4;
for (int i = 0; i < NSAPI_IPv4_BYTES; i++) {
addr->bytes[i] = dns_scan_byte(p);
}
addr += 1;
count += 1;
} else if (rtype == RR_AAAA && rclass == CLASS_IN && rdlength == NSAPI_IPv6_BYTES) {
// accept AAAA record
addr->version = NSAPI_IPv6;
for (int i = 0; i < NSAPI_IPv6_BYTES; i++) {
addr->bytes[i] = dns_scan_byte(p);
}
addr += 1;
count += 1;
} else {
// skip unrecognized records
*p += rdlength;
}
}
return count;
}
static void nsapi_dns_cache_add(const char *host, SocketAddress *address, uint32_t ttl)
{
// RFC 1034: if TTL is zero, entry is not added to cache
if (!ttl) {
return;
}
// Checks if already cached
if (nsapi_dns_cache_find(host, address->get_ip_version(), NULL) == NSAPI_ERROR_OK) {
return;
}
dns_cache_mutex.lock();
int index = -1;
uint64_t accessed = -1;
// Finds free or last accessed entry
for (int i = 0; i < DNS_CACHE_SIZE; i++) {
if (!dns_cache[i]) {
index = i;
break;
} else if (dns_cache[i]->accessed <= accessed) {
accessed = dns_cache[i]->accessed;
index = i;
}
}
if (index < 0) {
return;
}
// Allocates in case entry is free, otherwise reuses
if (!dns_cache[index]) {
dns_cache[index] = new DNS_CACHE;
}
if (dns_cache[index]) {
dns_cache[index]->address = *address;
strncpy(dns_cache[index]->host, host, 127);
uint64_t ms_count = rtos::Kernel::get_ms_count();
dns_cache[index]->expires = ms_count + ttl * 1000;
dns_cache[index]->accessed = ms_count;
}
dns_cache_mutex.unlock();
}
static nsapi_error_t nsapi_dns_cache_find(const char *host, nsapi_version_t version, SocketAddress *address)
{
nsapi_error_t ret_val = NSAPI_ERROR_NO_ADDRESS;
dns_cache_mutex.lock();
for (int i = 0; i < DNS_CACHE_SIZE; i++) {
if (dns_cache[i]) {
uint64_t ms_count = rtos::Kernel::get_ms_count();
// Checks all entries for expired entries
if (ms_count > dns_cache[i]->expires) {
delete dns_cache[i];
dns_cache[i] = NULL;
} else if (((version == NSAPI_UNSPEC) || (version == dns_cache[i]->address.get_ip_version())) &&
(strncmp(dns_cache[i]->host, host, 127) == 0)) {
if (address) {
*address = dns_cache[i]->address;
}
dns_cache[i]->accessed = ms_count;
ret_val = NSAPI_ERROR_OK;
}
}
}
dns_cache_mutex.unlock();
return ret_val;
}
static nsapi_error_t nsapi_dns_get_server_addr(NetworkStack *stack, int *index, SocketAddress *dns_addr)
{
bool dns_addr_set = false;
if (*index >= DNS_SERVERS_SIZE + DNS_STACK_SERVERS_NUM) {
return NSAPI_ERROR_NO_ADDRESS;
}
if (*index < DNS_STACK_SERVERS_NUM) {
nsapi_error_t ret = stack->get_dns_server(*index, dns_addr);
if (ret < 0) {
*index = DNS_STACK_SERVERS_NUM;
} else {
dns_addr_set = true;
}
}
if (!dns_addr_set) {
dns_addr->set_addr(dns_servers[*index - DNS_STACK_SERVERS_NUM]);
}
dns_addr->set_port(53);
return NSAPI_ERROR_OK;
}
// core query function
static nsapi_size_or_error_t nsapi_dns_query_multiple(NetworkStack *stack, const char *host,
nsapi_addr_t *addr, unsigned addr_count, nsapi_version_t version)
{
// check for valid host name
int host_len = host ? strlen(host) : 0;
if (host_len > 128 || host_len == 0) {
return NSAPI_ERROR_PARAMETER;
}
// check cache
SocketAddress address;
if (nsapi_dns_cache_find(host, version, &address) == NSAPI_ERROR_OK) {
*addr = address.get_addr();
return 1;
}
// create a udp socket
UDPSocket socket;
int err = socket.open(stack);
if (err) {
return err;
}
socket.set_timeout(DNS_TIMEOUT);
// create network packet
uint8_t * const packet = (uint8_t *)malloc(DNS_BUFFER_SIZE);
if (!packet) {
return NSAPI_ERROR_NO_MEMORY;
}
nsapi_size_or_error_t result = NSAPI_ERROR_DNS_FAILURE;
bool retry = false;
int index = 0;
// check against each dns server
while (true) {
SocketAddress dns_addr;
err = nsapi_dns_get_server_addr(stack, &index, &dns_addr);
if (err != NSAPI_ERROR_OK) {
break;
}
// send the question
int len = dns_append_question(packet, 1, host, version);
err = socket.sendto(dns_addr, packet, len);
// send may fail for various reasons, including wrong address type - move on
if (err < 0) {
// goes to next dns server
retry = false;
index++;
continue;
}
// recv the response
err = socket.recvfrom(NULL, packet, DNS_BUFFER_SIZE);
if (err == NSAPI_ERROR_WOULD_BLOCK) {
if (!retry) {
// retries once
retry = true;
} else {
// goes to next dns server
retry = false;
index++;
}
continue;
} else if (err < 0) {
result = err;
break;
}
const uint8_t *response = packet;
uint32_t ttl;
int count = dns_scan_response(response, 1, &ttl, addr, addr_count);
if (count > 0) {
// Adds address to cache
SocketAddress address(*addr);
nsapi_dns_cache_add(host, &address, ttl);
result = count;
}
/* The DNS response is final, no need to check other servers */
break;
}
// clean up packet
free(packet);
// clean up udp
err = socket.close();
if (err) {
return err;
}
// return result
return result;
}
// convenience functions for other forms of queries
extern "C" nsapi_size_or_error_t nsapi_dns_query_multiple(nsapi_stack_t *stack, const char *host,
nsapi_addr_t *addr, nsapi_size_t addr_count, nsapi_version_t version)
{
NetworkStack *nstack = nsapi_create_stack(stack);
return nsapi_dns_query_multiple(nstack, host, addr, addr_count, version);
}
nsapi_size_or_error_t nsapi_dns_query_multiple(NetworkStack *stack, const char *host,
SocketAddress *addresses, nsapi_size_t addr_count, nsapi_version_t version)
{
nsapi_addr_t *addrs = new nsapi_addr_t[addr_count];
nsapi_size_or_error_t result = nsapi_dns_query_multiple(stack, host, addrs, addr_count, version);
if (result > 0) {
for (int i = 0; i < result; i++) {
addresses[i].set_addr(addrs[i]);
}
}
delete[] addrs;
return result;
}
extern "C" nsapi_error_t nsapi_dns_query(nsapi_stack_t *stack, const char *host,
nsapi_addr_t *addr, nsapi_version_t version)
{
NetworkStack *nstack = nsapi_create_stack(stack);
nsapi_size_or_error_t result = nsapi_dns_query_multiple(nstack, host, addr, 1, version);
return (nsapi_error_t)((result > 0) ? 0 : result);
}
nsapi_error_t nsapi_dns_query(NetworkStack *stack, const char *host,
SocketAddress *address, nsapi_version_t version)
{
nsapi_addr_t addr;
nsapi_size_or_error_t result = nsapi_dns_query_multiple(stack, host, &addr, 1, version);
address->set_addr(addr);
return (nsapi_error_t)((result > 0) ? 0 : result);
}
nsapi_error_t nsapi_dns_query_async(NetworkStack *stack, const char *host,
NetworkStack::hostbyname_cb_t callback, void *data, nsapi_version_t version)
{
nsapi_size_or_error_t result = nsapi_dns_query_multiple_async(stack, host, callback, data, 1, version);
return (nsapi_error_t)((result > 0) ? 0 : result);
}
static nsapi_error_t nsapi_dns_call_default(mbed::Callback<void()> func)
{
events::EventQueue *event_queue = mbed::mbed_event_queue();
if (!event_queue) {
return NSAPI_ERROR_NO_MEMORY;
}
if (event_queue->call(func) == 0) {
return NSAPI_ERROR_NO_MEMORY;
}
return NSAPI_ERROR_OK ;
}
static nsapi_error_t nsapi_dns_call_in_default(int delay, mbed::Callback<void()> func)
{
events::EventQueue *event_queue = mbed::mbed_event_queue();
if (!event_queue) {
return NSAPI_ERROR_NO_MEMORY;
}
if (event_queue->call_in(delay, func) == 0) {
return NSAPI_ERROR_NO_MEMORY;
}
return NSAPI_ERROR_OK ;
}
void nsapi_dns_call_set(nsapi_dns_call_t callback)
{
dns_call = callback;
}
void nsapi_dns_call_in_set(nsapi_dns_call_in_t callback)
{
dns_call_in = callback;
}
static nsapi_error_t nsapi_dns_call(NetworkStack *stack, mbed::Callback<void()> func)
{
if (stack->onboardNetworkStack()) {
OnboardNetworkStack *onboard_stack = reinterpret_cast<OnboardNetworkStack *>(stack);
return onboard_stack->call(func);
} else {
dns_call(func);
}
return NSAPI_ERROR_OK;
}
static nsapi_error_t nsapi_dns_call_in(NetworkStack *stack, int delay, mbed::Callback<void()> func)
{
if (stack->onboardNetworkStack()) {
OnboardNetworkStack *onboard_stack = reinterpret_cast<OnboardNetworkStack *>(stack);
return onboard_stack->call_in(delay, func);
} else {
dns_call_in(delay, func);
}
return NSAPI_ERROR_OK;
}
nsapi_error_t nsapi_dns_query_multiple_async(NetworkStack *stack, const char *host,
NetworkStack::hostbyname_cb_t callback, void *data, nsapi_size_t addr_count, nsapi_version_t version)
{
if (!stack) {
return NSAPI_ERROR_PARAMETER;
}
// check for valid host name
int host_len = host ? strlen(host) : 0;
if (host_len > 128 || host_len == 0) {
return NSAPI_ERROR_PARAMETER;
}
DNS_QUERY *query = new DNS_QUERY;
if (!query) {
return NSAPI_ERROR_NO_MEMORY;
}
query->unique_id = 0;
strcpy(query->host, host);
query->callback = callback;
query->cb_data = data;
query->stack = stack;
query->addr_count = addr_count;
query->version = version;
query->socket = NULL;
query->dns_server = 0;
query->retries = 2;
query->dns_message_id = -1;
if (nsapi_dns_call(stack, mbed::callback(nsapi_dns_query_async_create, query)) != NSAPI_ERROR_OK) {
delete query;
return NSAPI_ERROR_NO_MEMORY;
}
return NSAPI_ERROR_IN_PROGRESS ;
}
static void nsapi_dns_query_async_create(DNS_QUERY *query)
{
SocketAddress address;
if (nsapi_dns_cache_find(query->host, query->version, &address) == NSAPI_ERROR_OK) {
nsapi_dns_query_async_resp(query, NSAPI_ERROR_OK, &address);
return;
}
int index = -1;
for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) {
if (dns_query_queue[i]) {
if (dns_query_queue[i]->stack == query->stack) {
query->socket = dns_query_queue[i]->socket;
}
} else if (index < 0) {
index = i;
}
}
if (index < 0) {
nsapi_dns_query_async_resp(query, NSAPI_ERROR_NO_MEMORY, NULL);
return;
}
UDPSocket *socket;
if (query->socket) {
socket = query->socket;
} else {
socket = new UDPSocket;
if (!socket) {
nsapi_dns_query_async_resp(query, NSAPI_ERROR_NO_MEMORY, NULL);
return;
}
int err = socket->open(query->stack);
if (err) {
delete socket;
nsapi_dns_query_async_resp(query, err, NULL);
return;
}
socket->set_timeout(0);
socket->sigio(mbed::callback(nsapi_dns_query_async_socket_callback, query->stack));
query->socket = socket;
}
query->unique_id = dns_unique_id++;
dns_query_queue[index] = query;
nsapi_dns_query_async_send(reinterpret_cast<void *>(query->unique_id));
}
static void nsapi_dns_query_async_delete(DNS_QUERY *query)
{
int index = -1;
bool close_socket = true;
for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) {
if (dns_query_queue[i]) {
if (dns_query_queue[i] == query) {
index = i;
} else if (dns_query_queue[i]->stack == query->stack) {
close_socket = false;
}
}
}
if (index < 0) {
return;
}
if (close_socket) {
query->socket->close();
delete query->socket;
}
dns_query_queue[index] = NULL;
delete query;
}
static void nsapi_dns_query_async_resp(DNS_QUERY *query, nsapi_error_t status, SocketAddress *address)
{
query->callback(status, address, query->cb_data);
nsapi_dns_query_async_delete(query);
}
static void nsapi_dns_query_async_send(void *ptr)
{
int unique_id = reinterpret_cast<int>(ptr);
DNS_QUERY *query = NULL;
for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) {
if (dns_query_queue[i] && dns_query_queue[i]->unique_id == unique_id) {
query = dns_query_queue[i];
break;
}
}
if (!query) {
nsapi_dns_query_async_resp(query, NSAPI_ERROR_NO_MEMORY, NULL);
return;
}
if (query->retries) {
query->retries--;
} else {
query->dns_server++;
query->retries = 1;
}
query->dns_message_id = dns_message_id++;
// create network packet
uint8_t *packet = (uint8_t *)malloc(DNS_BUFFER_SIZE);
if (!packet) {
nsapi_dns_query_async_resp(query, NSAPI_ERROR_NO_MEMORY, NULL);
return;
}
// send the question
int len = dns_append_question(packet, query->dns_message_id, query->host, query->version);
while (true) {
SocketAddress dns_addr;
nsapi_size_or_error_t err = nsapi_dns_get_server_addr(query->stack, &(query->dns_server), &dns_addr);
if (err != NSAPI_ERROR_OK) {
nsapi_dns_query_async_resp(query, NSAPI_ERROR_DNS_FAILURE, NULL);
free(packet);
return;
}
err = query->socket->sendto(dns_addr, packet, len);
if (err < 0) {
query->dns_server++;
} else {
break;
}
}
free(packet);
if (nsapi_dns_call_in(query->stack, DNS_TIMEOUT,
mbed::callback(nsapi_dns_query_async_send, reinterpret_cast<void *>(unique_id))) != NSAPI_ERROR_OK) {
nsapi_dns_query_async_resp(query, NSAPI_ERROR_NO_MEMORY, NULL);
}
}
static void nsapi_dns_query_async_socket_callback(NetworkStack *stack)
{
nsapi_dns_call(stack, mbed::callback(nsapi_dns_query_async_socket_callback_handle, stack));
}
static void nsapi_dns_query_async_socket_callback_handle(NetworkStack *stack)
{
UDPSocket *socket = NULL;
for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) {
if (dns_query_queue[i] && dns_query_queue[i]->stack == stack) {
socket = dns_query_queue[i]->socket;
break;
}
}
if (socket) {
// create network packet
uint8_t *packet = (uint8_t *)malloc(DNS_BUFFER_SIZE);
if (!packet) {
return;
}
// recv the response
nsapi_size_or_error_t size = socket->recvfrom(NULL, packet, DNS_BUFFER_SIZE);
if (size < DNS_RESPONSE_MIN_SIZE) {
free(packet);
return;
}
// gets id from response to associate with correct query
uint16_t id = (*packet << 8) | *(packet + 1);
DNS_QUERY *query = NULL;
for (int i = 0; i < DNS_QUERY_QUEUE_SIZE; i++) {
if (dns_query_queue[i] && dns_query_queue[i]->dns_message_id == id) {
query = dns_query_queue[i];
break;
}
}
if (!query) {
free(packet);
return;
}
nsapi_addr_t *addrs = new nsapi_addr_t[query->addr_count];
uint32_t ttl;
int count = dns_scan_response((const uint8_t *) packet, id, &ttl, addrs, query->addr_count);
free(packet);
if (count > 0) {
SocketAddress *addresses = new SocketAddress[count];
for (int i = 0; i < count; i++) {
addresses[i].set_addr(addrs[i]);
}
// Adds address to cache
nsapi_dns_cache_add(query->host, addresses, ttl);
nsapi_dns_query_async_resp(query, NSAPI_ERROR_OK, addresses);
delete[] addresses;
} else {
nsapi_dns_query_async_resp(query, NSAPI_ERROR_DNS_FAILURE, NULL);
}
delete[] addrs;
}
}