mbed-os/features/lorawan/lorastack/mac/LoRaMac.cpp

2754 lines
90 KiB
C++

/**
/ _____) _ | |
( (____ _____ ____ _| |_ _____ ____| |__
\____ \| ___ | (_ _) ___ |/ ___) _ \
_____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
(C)2013 Semtech
___ _____ _ ___ _ _____ ___ ___ ___ ___
/ __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __|
\__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _|
|___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
embedded.connectivity.solutions===============
Description: LoRa MAC layer implementation
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Miguel Luis ( Semtech ), Gregory Cristian ( Semtech ) and Daniel Jaeckle ( STACKFORCE )
Copyright (c) 2017, Arm Limited and affiliates.
SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdlib.h>
#include "LoRaMac.h"
#include "LoRaMacCrypto.h"
#if defined(FEATURE_COMMON_PAL)
#include "mbed_trace.h"
#define TRACE_GROUP "LMAC"
#else
#define tr_debug(...) (void(0)) //dummies if feature common pal is not added
#define tr_info(...) (void(0)) //dummies if feature common pal is not added
#define tr_error(...) (void(0)) //dummies if feature common pal is not added
#endif //defined(FEATURE_COMMON_PAL)
using namespace events;
/**
* EventQueue object storage
*/
static EventQueue *ev_queue;
/*!
* TODO: We should get rid of this
*
* Static handle to LoRaMac object. This is needed for static callback methods.
*/
static LoRaMac* isrHandler = NULL;
/*!
* Maximum length of the fOpts field
*/
#define LORA_MAC_COMMAND_MAX_FOPTS_LENGTH 15
/*!
* LoRaMac duty cycle for the back-off procedure during the first hour.
*/
#define BACKOFF_DC_1_HOUR 100
/*!
* LoRaMac duty cycle for the back-off procedure during the next 10 hours.
*/
#define BACKOFF_DC_10_HOURS 1000
/*!
* LoRaMac duty cycle for the back-off procedure during the next 24 hours.
*/
#define BACKOFF_DC_24_HOURS 10000
/*!
* Check the MAC layer state every MAC_STATE_CHECK_TIMEOUT in ms.
*/
#define MAC_STATE_CHECK_TIMEOUT 1000
/*!
* The maximum number of times the MAC layer tries to get an acknowledge.
*/
#define MAX_ACK_RETRIES 8
/*!
* The frame direction definition for uplink communications.
*/
#define UP_LINK 0
/*!
* The frame direction definition for downlink communications.
*/
#define DOWN_LINK 1
LoRaMac::LoRaMac()
: mac_commands(*this)
{
isrHandler = this;
lora_phy = NULL;
//radio_events_t RadioEvents;
LoRaMacDevEui = NULL;
LoRaMacAppEui = NULL;
LoRaMacAppKey = NULL;
memset(LoRaMacNwkSKey, 0, sizeof(LoRaMacNwkSKey));
memset(LoRaMacAppSKey, 0, sizeof(LoRaMacAppSKey));
LoRaMacDevNonce = 0;
LoRaMacNetID = 0;
LoRaMacDevAddr = 0;
MulticastChannels = NULL;
//DeviceClass_t LoRaMacDeviceClass;
//bool PublicNetwork;
//bool RepeaterSupport;
//uint8_t LoRaMacBuffer[LORAMAC_PHY_MAXPAYLOAD];
LoRaMacBufferPktLen = 0;
LoRaMacTxPayloadLen = 0;
//uint8_t LoRaMacRxPayload[LORAMAC_PHY_MAXPAYLOAD];
UpLinkCounter = 0;
DownLinkCounter = 0;
IsUpLinkCounterFixed = false;
IsRxWindowsEnabled = true;
IsLoRaMacNetworkJoined = false;
LoRaMacParams.AdrCtrlOn = false;
AdrAckCounter = 0;
NodeAckRequested = false;
SrvAckRequested = false;
//LoRaMacParams_t LoRaMacParams;
//LoRaMacParams_t LoRaMacParamsDefaults;
ChannelsNbRepCounter = 0;
LoRaMacParams.MaxDCycle = 0;
//uint16_t AggregatedDCycle;
//TimerTime_t AggregatedLastTxDoneTime;
//TimerTime_t AggregatedTimeOff;
//bool DutyCycleOn;
//uint8_t Channel;
//uint8_t LastTxChannel;
//bool LastTxIsJoinRequest;
LoRaMacInitializationTime = 0;
LoRaMacState = LORAMAC_IDLE;
//TimerEvent_t MacStateCheckTimer;
//TimerEvent_t TxNextPacketTimer;
//LoRaMacPrimitives_t *LoRaMacPrimitives;
//LoRaMacCallback_t *LoRaMacCallbacks;
//TimerEvent_t TxDelayedTimer;
//TimerEvent_t RxWindowTimer1;
//TimerEvent_t RxWindowTimer2;
//uint32_t RxWindow1Delay;
//uint32_t RxWindow2Delay;
//RxConfigParams_t RxWindow1Config;
//RxConfigParams_t RxWindow2Config;
//TimerEvent_t AckTimeoutTimer;
AckTimeoutRetries = 1;
AckTimeoutRetriesCounter = 1;
AckTimeoutRetry = false;
TxTimeOnAir = 0;
//uint8_t JoinRequestTrials;
//uint8_t MaxJoinRequestTrials;
//McpsIndication_t McpsIndication;
//McpsConfirm_t McpsConfirm;
//MlmeConfirm_t MlmeConfirm;
//LoRaMacRxSlot_t RxSlot;
//LoRaMacFlags_t LoRaMacFlags;
}
LoRaMac::~LoRaMac()
{
}
/***************************************************************************
* ISRs - Handlers *
**************************************************************************/
void LoRaMac::handle_tx_done(void)
{
ev_queue->call(isrHandler, &LoRaMac::OnRadioTxDone);
}
void LoRaMac::handle_rx_done(uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr)
{
ev_queue->call(isrHandler, &LoRaMac::OnRadioRxDone, payload, size, rssi, snr);
}
void LoRaMac::handle_rx_error(void)
{
ev_queue->call(isrHandler, &LoRaMac::OnRadioRxError);
}
void LoRaMac::handle_rx_timeout(void)
{
ev_queue->call(isrHandler, &LoRaMac::OnRadioRxTimeout);
}
void LoRaMac::handle_tx_timeout(void)
{
ev_queue->call(isrHandler, &LoRaMac::OnRadioTxTimeout);
}
void LoRaMac::handle_cad_done(bool cad)
{
//TODO Not implemented yet
//ev_queue->call(isrHandler, &LoRaMac::OnRadioCadDone, cad);
}
void LoRaMac::handle_fhss_change_channel(uint8_t cur_channel)
{
// TODO Not implemented yet
//ev_queue->call(isrHandler, &LoRaMac::OnRadioFHSSChangeChannel, cur_channel);
}
void LoRaMac::handle_mac_state_check_timer_event(void)
{
ev_queue->call(isrHandler, &LoRaMac::OnMacStateCheckTimerEvent);
}
void LoRaMac::handle_delayed_tx_timer_event(void)
{
ev_queue->call(isrHandler, &LoRaMac::OnTxDelayedTimerEvent);
}
void LoRaMac::handle_ack_timeout()
{
ev_queue->call(isrHandler, &LoRaMac::OnAckTimeoutTimerEvent);
}
void LoRaMac::handle_rx1_timer_event(void)
{
ev_queue->call(isrHandler, &LoRaMac::OnRxWindow1TimerEvent);
}
void LoRaMac::handle_rx2_timer_event(void)
{
ev_queue->call(isrHandler, &LoRaMac::OnRxWindow2TimerEvent);
}
/***************************************************************************
* Radio event callbacks - delegated to Radio driver *
**************************************************************************/
void LoRaMac::OnRadioTxDone( void )
{
GetPhyParams_t getPhy;
PhyParam_t phyParam;
SetBandTxDoneParams_t txDone;
TimerTime_t curTime = TimerGetCurrentTime( );
if( LoRaMacDeviceClass != CLASS_C )
{
lora_phy->put_radio_to_sleep();
}
else
{
OpenContinuousRx2Window( );
}
// Setup timers
if( IsRxWindowsEnabled == true )
{
TimerSetValue( &RxWindowTimer1, RxWindow1Delay );
TimerStart( &RxWindowTimer1 );
if( LoRaMacDeviceClass != CLASS_C )
{
TimerSetValue( &RxWindowTimer2, RxWindow2Delay );
TimerStart( &RxWindowTimer2 );
}
if( ( LoRaMacDeviceClass == CLASS_C ) || ( NodeAckRequested == true ) )
{
getPhy.Attribute = PHY_ACK_TIMEOUT;
phyParam = lora_phy->get_phy_params(&getPhy);
TimerSetValue( &AckTimeoutTimer, RxWindow2Delay + phyParam.Value );
TimerStart( &AckTimeoutTimer );
}
}
else
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
if( LoRaMacFlags.Value == 0 )
{
LoRaMacFlags.Bits.McpsReq = 1;
}
LoRaMacFlags.Bits.MacDone = 1;
}
// Verify if the last uplink was a join request
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) )
{
LastTxIsJoinRequest = true;
}
else
{
LastTxIsJoinRequest = false;
}
// Store last Tx channel
LastTxChannel = Channel;
// Update last tx done time for the current channel
txDone.Channel = Channel;
txDone.Joined = IsLoRaMacNetworkJoined;
txDone.LastTxDoneTime = curTime;
lora_phy->set_band_tx_done(&txDone);
// Update Aggregated last tx done time
AggregatedLastTxDoneTime = curTime;
if( NodeAckRequested == false )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
ChannelsNbRepCounter++;
}
}
void LoRaMac::PrepareRxDoneAbort( void )
{
LoRaMacState |= LORAMAC_RX_ABORT;
if( NodeAckRequested )
{
handle_ack_timeout();
}
LoRaMacFlags.Bits.McpsInd = 1;
LoRaMacFlags.Bits.MacDone = 1;
// Trig OnMacCheckTimerEvent call as soon as possible
TimerSetValue( &MacStateCheckTimer, 1 );
TimerStart( &MacStateCheckTimer );
}
void LoRaMac::OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr )
{
LoRaMacHeader_t macHdr;
LoRaMacFrameCtrl_t fCtrl;
ApplyCFListParams_t applyCFList;
GetPhyParams_t getPhy;
PhyParam_t phyParam;
bool skipIndication = false;
uint8_t pktHeaderLen = 0;
uint32_t address = 0;
uint8_t appPayloadStartIndex = 0;
uint8_t port = 0xFF;
uint8_t frameLen = 0;
uint32_t mic = 0;
uint32_t micRx = 0;
uint16_t sequenceCounter = 0;
uint16_t sequenceCounterPrev = 0;
uint16_t sequenceCounterDiff = 0;
uint32_t downLinkCounter = 0;
MulticastParams_t *curMulticastParams = NULL;
uint8_t *nwkSKey = LoRaMacNwkSKey;
uint8_t *appSKey = LoRaMacAppSKey;
uint8_t multicast = 0;
bool isMicOk = false;
McpsConfirm.AckReceived = false;
McpsIndication.Rssi = rssi;
McpsIndication.Snr = snr;
McpsIndication.RxSlot = RxSlot;
McpsIndication.Port = 0;
McpsIndication.Multicast = 0;
McpsIndication.FramePending = 0;
McpsIndication.Buffer = NULL;
McpsIndication.BufferSize = 0;
McpsIndication.RxData = false;
McpsIndication.AckReceived = false;
McpsIndication.DownLinkCounter = 0;
McpsIndication.McpsIndication = MCPS_UNCONFIRMED;
lora_phy->put_radio_to_sleep();
TimerStop( &RxWindowTimer2 );
macHdr.Value = payload[pktHeaderLen++];
switch( macHdr.Bits.MType )
{
case FRAME_TYPE_JOIN_ACCEPT:
if( IsLoRaMacNetworkJoined == true )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
PrepareRxDoneAbort( );
return;
}
if (0 != LoRaMacJoinDecrypt( payload + 1, size - 1, LoRaMacAppKey, LoRaMacRxPayload + 1 )) {
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_CRYPTO_FAIL;
return;
}
LoRaMacRxPayload[0] = macHdr.Value;
if (0 != LoRaMacJoinComputeMic( LoRaMacRxPayload, size - LORAMAC_MFR_LEN, LoRaMacAppKey, &mic )) {
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_CRYPTO_FAIL;
return;
}
micRx |= ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN];
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 1] << 8 );
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 2] << 16 );
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 3] << 24 );
if( micRx == mic )
{
if (0 != LoRaMacJoinComputeSKeys( LoRaMacAppKey, LoRaMacRxPayload + 1, LoRaMacDevNonce, LoRaMacNwkSKey, LoRaMacAppSKey )) {
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_CRYPTO_FAIL;
return;
}
LoRaMacNetID = ( uint32_t )LoRaMacRxPayload[4];
LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[5] << 8 );
LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[6] << 16 );
LoRaMacDevAddr = ( uint32_t )LoRaMacRxPayload[7];
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[8] << 8 );
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[9] << 16 );
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[10] << 24 );
// DLSettings
LoRaMacParams.Rx1DrOffset = ( LoRaMacRxPayload[11] >> 4 ) & 0x07;
LoRaMacParams.Rx2Channel.Datarate = LoRaMacRxPayload[11] & 0x0F;
// RxDelay
LoRaMacParams.ReceiveDelay1 = ( LoRaMacRxPayload[12] & 0x0F );
if( LoRaMacParams.ReceiveDelay1 == 0 )
{
LoRaMacParams.ReceiveDelay1 = 1;
}
LoRaMacParams.ReceiveDelay1 *= 1000;
LoRaMacParams.ReceiveDelay2 = LoRaMacParams.ReceiveDelay1 + 1000;
// Apply CF list
applyCFList.Payload = &LoRaMacRxPayload[13];
// Size of the regular payload is 12. Plus 1 byte MHDR and 4 bytes MIC
applyCFList.Size = size - 17;
lora_phy->apply_cf_list(&applyCFList);
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
IsLoRaMacNetworkJoined = true;
}
else
{
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL;
}
break;
case FRAME_TYPE_DATA_CONFIRMED_DOWN:
case FRAME_TYPE_DATA_UNCONFIRMED_DOWN:
{
// Check if the received payload size is valid
getPhy.UplinkDwellTime = LoRaMacParams.DownlinkDwellTime;
getPhy.Datarate = McpsIndication.RxDatarate;
getPhy.Attribute = PHY_MAX_PAYLOAD;
// Get the maximum payload length
if( RepeaterSupport == true )
{
getPhy.Attribute = PHY_MAX_PAYLOAD_REPEATER;
}
phyParam = lora_phy->get_phy_params(&getPhy);
if( MAX( 0, ( int16_t )( ( int16_t )size - ( int16_t )LORA_MAC_FRMPAYLOAD_OVERHEAD ) ) > phyParam.Value )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
PrepareRxDoneAbort( );
return;
}
address = payload[pktHeaderLen++];
address |= ( (uint32_t)payload[pktHeaderLen++] << 8 );
address |= ( (uint32_t)payload[pktHeaderLen++] << 16 );
address |= ( (uint32_t)payload[pktHeaderLen++] << 24 );
if( address != LoRaMacDevAddr )
{
curMulticastParams = MulticastChannels;
while( curMulticastParams != NULL )
{
if( address == curMulticastParams->Address )
{
multicast = 1;
nwkSKey = curMulticastParams->NwkSKey;
appSKey = curMulticastParams->AppSKey;
downLinkCounter = curMulticastParams->DownLinkCounter;
break;
}
curMulticastParams = curMulticastParams->Next;
}
if( multicast == 0 )
{
// We are not the destination of this frame.
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ADDRESS_FAIL;
PrepareRxDoneAbort( );
return;
}
}
else
{
multicast = 0;
nwkSKey = LoRaMacNwkSKey;
appSKey = LoRaMacAppSKey;
downLinkCounter = DownLinkCounter;
}
fCtrl.Value = payload[pktHeaderLen++];
sequenceCounter = ( uint16_t )payload[pktHeaderLen++];
sequenceCounter |= ( uint16_t )payload[pktHeaderLen++] << 8;
appPayloadStartIndex = 8 + fCtrl.Bits.FOptsLen;
micRx |= ( uint32_t )payload[size - LORAMAC_MFR_LEN];
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 1] << 8 );
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 2] << 16 );
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 3] << 24 );
sequenceCounterPrev = ( uint16_t )downLinkCounter;
sequenceCounterDiff = ( sequenceCounter - sequenceCounterPrev );
if( sequenceCounterDiff < ( 1 << 15 ) )
{
downLinkCounter += sequenceCounterDiff;
LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounter, &mic );
if( micRx == mic )
{
isMicOk = true;
}
}
else
{
// check for sequence roll-over
uint32_t downLinkCounterTmp = downLinkCounter + 0x10000 + ( int16_t )sequenceCounterDiff;
LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounterTmp, &mic );
if( micRx == mic )
{
isMicOk = true;
downLinkCounter = downLinkCounterTmp;
}
}
// Check for a the maximum allowed counter difference
getPhy.Attribute = PHY_MAX_FCNT_GAP;
phyParam = lora_phy->get_phy_params( &getPhy );
if( sequenceCounterDiff >= phyParam.Value )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_TOO_MANY_FRAMES_LOSS;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
if( isMicOk == true )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK;
McpsIndication.Multicast = multicast;
McpsIndication.FramePending = fCtrl.Bits.FPending;
McpsIndication.Buffer = NULL;
McpsIndication.BufferSize = 0;
McpsIndication.DownLinkCounter = downLinkCounter;
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
AdrAckCounter = 0;
mac_commands.ClearRepeatBuffer();
// Update 32 bits downlink counter
if( multicast == 1 )
{
McpsIndication.McpsIndication = MCPS_MULTICAST;
if( ( curMulticastParams->DownLinkCounter == downLinkCounter ) &&
( curMulticastParams->DownLinkCounter != 0 ) )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
curMulticastParams->DownLinkCounter = downLinkCounter;
}
else
{
if( macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_DOWN )
{
SrvAckRequested = true;
McpsIndication.McpsIndication = MCPS_CONFIRMED;
if( ( DownLinkCounter == downLinkCounter ) &&
( DownLinkCounter != 0 ) )
{
// Duplicated confirmed downlink. Skip indication.
// In this case, the MAC layer shall accept the MAC commands
// which are included in the downlink retransmission.
// It should not provide the same frame to the application
// layer again.
skipIndication = true;
}
}
else
{
SrvAckRequested = false;
McpsIndication.McpsIndication = MCPS_UNCONFIRMED;
if( ( DownLinkCounter == downLinkCounter ) &&
( DownLinkCounter != 0 ) )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
}
DownLinkCounter = downLinkCounter;
}
// This must be done before parsing the payload and the MAC commands.
// We need to reset the MacCommandsBufferIndex here, since we need
// to take retransmissions and repetitions into account. Error cases
// will be handled in function OnMacStateCheckTimerEvent.
if( McpsConfirm.McpsRequest == MCPS_CONFIRMED )
{
if( fCtrl.Bits.Ack == 1 )
{// Reset MacCommandsBufferIndex when we have received an ACK.
mac_commands.ClearCommandBuffer();
}
}
else
{// Reset the variable if we have received any valid frame.
mac_commands.ClearCommandBuffer();
}
// Process payload and MAC commands
if( ( ( size - 4 ) - appPayloadStartIndex ) > 0 )
{
port = payload[appPayloadStartIndex++];
frameLen = ( size - 4 ) - appPayloadStartIndex;
McpsIndication.Port = port;
if( port == 0 )
{
// Only allow frames which do not have fOpts
if( fCtrl.Bits.FOptsLen == 0 )
{
if (0 != LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
frameLen,
nwkSKey,
address,
DOWN_LINK,
downLinkCounter,
LoRaMacRxPayload )) {
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_CRYPTO_FAIL;
}
// Decode frame payload MAC commands
mac_commands.ProcessMacCommands( LoRaMacRxPayload, 0, frameLen, snr,
MlmeConfirm, LoRaMacCallbacks,
LoRaMacParams, *lora_phy );
}
else
{
skipIndication = true;
}
}
else
{
if( fCtrl.Bits.FOptsLen > 0 )
{
// Decode Options field MAC commands. Omit the fPort.
mac_commands.ProcessMacCommands( payload, 8, appPayloadStartIndex - 1, snr,
MlmeConfirm, LoRaMacCallbacks,
LoRaMacParams, *lora_phy );
}
if (0 != LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
frameLen,
appSKey,
address,
DOWN_LINK,
downLinkCounter,
LoRaMacRxPayload )) {
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_CRYPTO_FAIL;
}
if( skipIndication == false )
{
McpsIndication.Buffer = LoRaMacRxPayload;
McpsIndication.BufferSize = frameLen;
McpsIndication.RxData = true;
}
}
}
else
{
if( fCtrl.Bits.FOptsLen > 0 )
{
// Decode Options field MAC commands
mac_commands.ProcessMacCommands( payload, 8, appPayloadStartIndex, snr,
MlmeConfirm, LoRaMacCallbacks,
LoRaMacParams, *lora_phy );
}
}
if( skipIndication == false )
{
// Check if the frame is an acknowledgement
if( fCtrl.Bits.Ack == 1 )
{
McpsConfirm.AckReceived = true;
McpsIndication.AckReceived = true;
// Stop the AckTimeout timer as no more retransmissions
// are needed.
TimerStop( &AckTimeoutTimer );
}
else
{
McpsConfirm.AckReceived = false;
if( AckTimeoutRetriesCounter > AckTimeoutRetries )
{
// Stop the AckTimeout timer as no more retransmissions
// are needed.
TimerStop( &AckTimeoutTimer );
}
}
}
// Provide always an indication, skip the callback to the user application,
// in case of a confirmed downlink retransmission.
LoRaMacFlags.Bits.McpsInd = 1;
LoRaMacFlags.Bits.McpsIndSkip = skipIndication;
}
else
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_MIC_FAIL;
PrepareRxDoneAbort( );
return;
}
}
break;
case FRAME_TYPE_PROPRIETARY:
{
memcpy( LoRaMacRxPayload, &payload[pktHeaderLen], size );
McpsIndication.McpsIndication = MCPS_PROPRIETARY;
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK;
McpsIndication.Buffer = LoRaMacRxPayload;
McpsIndication.BufferSize = size - pktHeaderLen;
LoRaMacFlags.Bits.McpsInd = 1;
break;
}
default:
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
PrepareRxDoneAbort( );
break;
}
LoRaMacFlags.Bits.MacDone = 1;
// Trig OnMacCheckTimerEvent call as soon as possible
TimerSetValue( &MacStateCheckTimer, 1 );
TimerStart( &MacStateCheckTimer );
}
void LoRaMac::OnRadioTxTimeout( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
lora_phy->put_radio_to_sleep();
}
else
{
OpenContinuousRx2Window( );
}
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
LoRaMacFlags.Bits.MacDone = 1;
}
void LoRaMac::OnRadioRxError( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
lora_phy->put_radio_to_sleep();
}
else
{
OpenContinuousRx2Window( );
}
if( RxSlot == RX_SLOT_WIN_1 )
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_ERROR;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_ERROR;
if( TimerGetElapsedTime( AggregatedLastTxDoneTime ) >= RxWindow2Delay )
{
TimerStop( &RxWindowTimer2 );
LoRaMacFlags.Bits.MacDone = 1;
}
}
else
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR;
LoRaMacFlags.Bits.MacDone = 1;
}
}
void LoRaMac::OnRadioRxTimeout( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
lora_phy->put_radio_to_sleep();
}
else
{
OpenContinuousRx2Window( );
}
if( RxSlot == RX_SLOT_WIN_1 )
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_TIMEOUT;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_TIMEOUT;
if( TimerGetElapsedTime( AggregatedLastTxDoneTime ) >= RxWindow2Delay )
{
TimerStop( &RxWindowTimer2 );
LoRaMacFlags.Bits.MacDone = 1;
}
}
else
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
if( LoRaMacDeviceClass != CLASS_C )
{
LoRaMacFlags.Bits.MacDone = 1;
}
}
}
/***************************************************************************
* Timer event callbacks - deliberated locally *
**************************************************************************/
void LoRaMac::OnMacStateCheckTimerEvent( void )
{
GetPhyParams_t getPhy;
PhyParam_t phyParam;
bool txTimeout = false;
TimerStop( &MacStateCheckTimer );
if( LoRaMacFlags.Bits.MacDone == 1 )
{
if( ( LoRaMacState & LORAMAC_RX_ABORT ) == LORAMAC_RX_ABORT )
{
LoRaMacState &= ~LORAMAC_RX_ABORT;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
{
if( ( McpsConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) ||
( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) )
{
// Stop transmit cycle due to tx timeout.
LoRaMacState &= ~LORAMAC_TX_RUNNING;
mac_commands.ClearCommandBuffer();
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
McpsConfirm.AckReceived = false;
McpsConfirm.TxTimeOnAir = 0;
txTimeout = true;
}
}
if( ( NodeAckRequested == false ) && ( txTimeout == false ) )
{
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
{
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) )
{// Procedure for the join request
MlmeConfirm.NbRetries = JoinRequestTrials;
if( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_OK )
{// Node joined successfully
UpLinkCounter = 0;
ChannelsNbRepCounter = 0;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
else
{
if( JoinRequestTrials >= MaxJoinRequestTrials )
{
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
else
{
LoRaMacFlags.Bits.MacDone = 0;
// Sends the same frame again
handle_delayed_tx_timer_event();
}
}
}
else
{// Procedure for all other frames
if( ( ChannelsNbRepCounter >= LoRaMacParams.ChannelsNbRep ) || ( LoRaMacFlags.Bits.McpsInd == 1 ) )
{
if( LoRaMacFlags.Bits.McpsInd == 0 )
{ // Maximum repetitions without downlink. Reset MacCommandsBufferIndex. Increase ADR Ack counter.
// Only process the case when the MAC did not receive a downlink.
mac_commands.ClearCommandBuffer();
AdrAckCounter++;
}
ChannelsNbRepCounter = 0;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
else
{
LoRaMacFlags.Bits.MacDone = 0;
// Sends the same frame again
handle_delayed_tx_timer_event();
}
}
}
}
if( LoRaMacFlags.Bits.McpsInd == 1 )
{// Procedure if we received a frame
if( ( McpsConfirm.AckReceived == true ) || ( AckTimeoutRetriesCounter > AckTimeoutRetries ) )
{
AckTimeoutRetry = false;
NodeAckRequested = false;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
}
if( ( AckTimeoutRetry == true ) && ( ( LoRaMacState & LORAMAC_TX_DELAYED ) == 0 ) )
{// Retransmissions procedure for confirmed uplinks
AckTimeoutRetry = false;
if( ( AckTimeoutRetriesCounter < AckTimeoutRetries ) && ( AckTimeoutRetriesCounter <= MAX_ACK_RETRIES ) )
{
AckTimeoutRetriesCounter++;
if( ( AckTimeoutRetriesCounter % 2 ) == 1 )
{
getPhy.Attribute = PHY_NEXT_LOWER_TX_DR;
getPhy.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
getPhy.Datarate = LoRaMacParams.ChannelsDatarate;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParams.ChannelsDatarate = phyParam.Value;
}
// Try to send the frame again
if( ScheduleTx( ) == LORAMAC_STATUS_OK )
{
LoRaMacFlags.Bits.MacDone = 0;
}
else
{
// The DR is not applicable for the payload size
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_DR_PAYLOAD_SIZE_ERROR;
mac_commands.ClearCommandBuffer();
LoRaMacState &= ~LORAMAC_TX_RUNNING;
NodeAckRequested = false;
McpsConfirm.AckReceived = false;
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
McpsConfirm.Datarate = LoRaMacParams.ChannelsDatarate;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
}
}
else
{
lora_phy->load_defaults(INIT_TYPE_RESTORE);
LoRaMacState &= ~LORAMAC_TX_RUNNING;
mac_commands.ClearCommandBuffer();
NodeAckRequested = false;
McpsConfirm.AckReceived = false;
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
}
}
}
// Handle reception for Class B and Class C
if( ( LoRaMacState & LORAMAC_RX ) == LORAMAC_RX )
{
LoRaMacState &= ~LORAMAC_RX;
}
if( LoRaMacState == LORAMAC_IDLE )
{
if( LoRaMacFlags.Bits.McpsReq == 1 )
{
LoRaMacFlags.Bits.McpsReq = 0;
LoRaMacPrimitives->MacMcpsConfirm( &McpsConfirm );
}
if( LoRaMacFlags.Bits.MlmeReq == 1 )
{
LoRaMacFlags.Bits.MlmeReq = 0;
LoRaMacPrimitives->MacMlmeConfirm( &MlmeConfirm );
}
// Verify if sticky MAC commands are pending or not
if( mac_commands.IsStickyMacCommandPending( ) == true )
{// Setup MLME indication
SetMlmeScheduleUplinkIndication( );
}
// Procedure done. Reset variables.
LoRaMacFlags.Bits.MacDone = 0;
}
else
{
// Operation not finished restart timer
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerStart( &MacStateCheckTimer );
}
// Handle MCPS indication
if( LoRaMacFlags.Bits.McpsInd == 1 )
{
LoRaMacFlags.Bits.McpsInd = 0;
if( LoRaMacDeviceClass == CLASS_C )
{// Activate RX2 window for Class C
OpenContinuousRx2Window( );
}
if( LoRaMacFlags.Bits.McpsIndSkip == 0 )
{
LoRaMacPrimitives->MacMcpsIndication( &McpsIndication );
}
LoRaMacFlags.Bits.McpsIndSkip = 0;
}
// Handle MLME indication
if( LoRaMacFlags.Bits.MlmeInd == 1 )
{
LoRaMacFlags.Bits.MlmeInd = 0;
LoRaMacPrimitives->MacMlmeIndication( &MlmeIndication );
}
}
void LoRaMac::OnTxDelayedTimerEvent( void )
{
LoRaMacHeader_t macHdr;
LoRaMacFrameCtrl_t fCtrl;
AlternateDrParams_t altDr;
TimerStop( &TxDelayedTimer );
LoRaMacState &= ~LORAMAC_TX_DELAYED;
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) )
{
ResetMacParameters( );
altDr.NbTrials = JoinRequestTrials + 1;
LoRaMacParams.ChannelsDatarate = lora_phy->get_alternate_DR(&altDr);
macHdr.Value = 0;
macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ;
fCtrl.Value = 0;
fCtrl.Bits.Adr = LoRaMacParams.AdrCtrlOn;
/* In case of join request retransmissions, the stack must prepare
* the frame again, because the network server keeps track of the random
* LoRaMacDevNonce values to prevent reply attacks. */
PrepareFrame( &macHdr, &fCtrl, 0, NULL, 0 );
}
ScheduleTx( );
}
void LoRaMac::OnRxWindow1TimerEvent( void )
{
TimerStop( &RxWindowTimer1 );
RxSlot = RX_SLOT_WIN_1;
RxWindow1Config.Channel = Channel;
RxWindow1Config.DrOffset = LoRaMacParams.Rx1DrOffset;
RxWindow1Config.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime;
RxWindow1Config.RepeaterSupport = RepeaterSupport;
RxWindow1Config.RxContinuous = false;
RxWindow1Config.RxSlot = RxSlot;
if( LoRaMacDeviceClass == CLASS_C )
{
lora_phy->put_radio_to_standby();
}
lora_phy->rx_config(&RxWindow1Config, ( int8_t* )&McpsIndication.RxDatarate);
RxWindowSetup( RxWindow1Config.RxContinuous, LoRaMacParams.MaxRxWindow );
}
void LoRaMac::OnRxWindow2TimerEvent( void )
{
TimerStop( &RxWindowTimer2 );
RxWindow2Config.Channel = Channel;
RxWindow2Config.Frequency = LoRaMacParams.Rx2Channel.Frequency;
RxWindow2Config.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime;
RxWindow2Config.RepeaterSupport = RepeaterSupport;
RxWindow2Config.RxSlot = RX_SLOT_WIN_2;
if( LoRaMacDeviceClass != CLASS_C )
{
RxWindow2Config.RxContinuous = false;
}
else
{
// Setup continuous listening for class c
RxWindow2Config.RxContinuous = true;
}
if(lora_phy->rx_config(&RxWindow2Config, ( int8_t* )&McpsIndication.RxDatarate) == true )
{
RxWindowSetup( RxWindow2Config.RxContinuous, LoRaMacParams.MaxRxWindow );
RxSlot = RX_SLOT_WIN_2;
}
}
void LoRaMac::OnAckTimeoutTimerEvent( void )
{
TimerStop( &AckTimeoutTimer );
if( NodeAckRequested == true )
{
AckTimeoutRetry = true;
LoRaMacState &= ~LORAMAC_ACK_REQ;
}
if( LoRaMacDeviceClass == CLASS_C )
{
LoRaMacFlags.Bits.MacDone = 1;
}
}
void LoRaMac::RxWindowSetup( bool rxContinuous, uint32_t maxRxWindow )
{
lora_phy->setup_rx_window(rxContinuous, maxRxWindow);
}
bool LoRaMac::ValidatePayloadLength( uint8_t lenN, int8_t datarate, uint8_t fOptsLen )
{
GetPhyParams_t getPhy;
PhyParam_t phyParam;
uint16_t maxN = 0;
uint16_t payloadSize = 0;
// Setup PHY request
getPhy.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
getPhy.Datarate = datarate;
getPhy.Attribute = PHY_MAX_PAYLOAD;
// Get the maximum payload length
if( RepeaterSupport == true )
{
getPhy.Attribute = PHY_MAX_PAYLOAD_REPEATER;
}
phyParam = lora_phy->get_phy_params(&getPhy);
maxN = phyParam.Value;
// Calculate the resulting payload size
payloadSize = ( lenN + fOptsLen );
// Validation of the application payload size
if( ( payloadSize <= maxN ) && ( payloadSize <= LORAMAC_PHY_MAXPAYLOAD ) )
{
return true;
}
return false;
}
void LoRaMac::SetMlmeScheduleUplinkIndication( void )
{
MlmeIndication.MlmeIndication = MLME_SCHEDULE_UPLINK;
LoRaMacFlags.Bits.MlmeInd = 1;
}
// This is not actual transmission. It just schedules a message in response
// to MCPS request
LoRaMacStatus_t LoRaMac::Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
LoRaMacFrameCtrl_t fCtrl;
LoRaMacStatus_t status = LORAMAC_STATUS_PARAMETER_INVALID;
fCtrl.Value = 0;
fCtrl.Bits.FOptsLen = 0;
fCtrl.Bits.FPending = 0;
fCtrl.Bits.Ack = false;
fCtrl.Bits.AdrAckReq = false;
fCtrl.Bits.Adr = LoRaMacParams.AdrCtrlOn;
// Prepare the frame
status = PrepareFrame( macHdr, &fCtrl, fPort, fBuffer, fBufferSize );
// Validate status
if( status != LORAMAC_STATUS_OK )
{
return status;
}
// Reset confirm parameters
McpsConfirm.NbRetries = 0;
McpsConfirm.AckReceived = false;
McpsConfirm.UpLinkCounter = UpLinkCounter;
status = ScheduleTx( );
return status;
}
LoRaMacStatus_t LoRaMac::ScheduleTx( void )
{
TimerTime_t dutyCycleTimeOff = 0;
NextChanParams_t nextChan;
// Check if the device is off
if( LoRaMacParams.MaxDCycle == 255 )
{
return LORAMAC_STATUS_DEVICE_OFF;
}
if( LoRaMacParams.MaxDCycle == 0 )
{
AggregatedTimeOff = 0;
}
// Update Backoff
CalculateBackOff( LastTxChannel );
nextChan.AggrTimeOff = AggregatedTimeOff;
nextChan.Datarate = LoRaMacParams.ChannelsDatarate;
DutyCycleOn = LORAWAN_DUTYCYCLE_ON;
nextChan.DutyCycleEnabled = DutyCycleOn;
nextChan.Joined = IsLoRaMacNetworkJoined;
nextChan.LastAggrTx = AggregatedLastTxDoneTime;
// Select channel
while( lora_phy->set_next_channel(&nextChan, &Channel, &dutyCycleTimeOff, &AggregatedTimeOff ) == false )
{
// Set the default datarate
LoRaMacParams.ChannelsDatarate = LoRaMacParamsDefaults.ChannelsDatarate;
// Update datarate in the function parameters
nextChan.Datarate = LoRaMacParams.ChannelsDatarate;
}
tr_debug("Next Channel Idx=%d, DR=%d", Channel, nextChan.Datarate);
// Compute Rx1 windows parameters
uint8_t dr_offset = lora_phy->apply_DR_offset(LoRaMacParams.DownlinkDwellTime,
LoRaMacParams.ChannelsDatarate,
LoRaMacParams.Rx1DrOffset);
lora_phy->compute_rx_win_params(dr_offset, LoRaMacParams.MinRxSymbols,
LoRaMacParams.SystemMaxRxError,
&RxWindow1Config );
// Compute Rx2 windows parameters
lora_phy->compute_rx_win_params(LoRaMacParams.Rx2Channel.Datarate,
LoRaMacParams.MinRxSymbols,
LoRaMacParams.SystemMaxRxError,
&RxWindow2Config );
if( IsLoRaMacNetworkJoined == false )
{
RxWindow1Delay = LoRaMacParams.JoinAcceptDelay1 + RxWindow1Config.WindowOffset;
RxWindow2Delay = LoRaMacParams.JoinAcceptDelay2 + RxWindow2Config.WindowOffset;
}
else
{
if( ValidatePayloadLength( LoRaMacTxPayloadLen, LoRaMacParams.ChannelsDatarate, mac_commands.GetLength() ) == false )
{
return LORAMAC_STATUS_LENGTH_ERROR;
}
RxWindow1Delay = LoRaMacParams.ReceiveDelay1 + RxWindow1Config.WindowOffset;
RxWindow2Delay = LoRaMacParams.ReceiveDelay2 + RxWindow2Config.WindowOffset;
}
// Schedule transmission of frame
if( dutyCycleTimeOff == 0 )
{
// Try to send now
return SendFrameOnChannel( Channel );
}
else
{
// Send later - prepare timer
LoRaMacState |= LORAMAC_TX_DELAYED;
tr_debug("Next Transmission in %lu ms", dutyCycleTimeOff);
TimerSetValue( &TxDelayedTimer, dutyCycleTimeOff );
TimerStart( &TxDelayedTimer );
return LORAMAC_STATUS_OK;
}
}
void LoRaMac::CalculateBackOff( uint8_t channel )
{
CalcBackOffParams_t calcBackOff;
calcBackOff.Joined = IsLoRaMacNetworkJoined;
DutyCycleOn = LORAWAN_DUTYCYCLE_ON;
calcBackOff.DutyCycleEnabled = DutyCycleOn;
calcBackOff.Channel = channel;
calcBackOff.ElapsedTime = TimerGetElapsedTime( LoRaMacInitializationTime );
calcBackOff.TxTimeOnAir = TxTimeOnAir;
calcBackOff.LastTxIsJoinRequest = LastTxIsJoinRequest;
// Update regional back-off
lora_phy->calculate_backoff(&calcBackOff);
// Update aggregated time-off
AggregatedTimeOff = AggregatedTimeOff + ( TxTimeOnAir * LoRaMacParams.AggregatedDCycle - TxTimeOnAir );
}
void LoRaMac::ResetMacParameters( void )
{
IsLoRaMacNetworkJoined = false;
// Counters
UpLinkCounter = 0;
DownLinkCounter = 0;
AdrAckCounter = 0;
ChannelsNbRepCounter = 0;
AckTimeoutRetries = 1;
AckTimeoutRetriesCounter = 1;
AckTimeoutRetry = false;
LoRaMacParams.MaxDCycle = 0;
LoRaMacParams.AggregatedDCycle = 1;
mac_commands.ClearCommandBuffer();
mac_commands.ClearRepeatBuffer();
mac_commands.ClearMacCommandsInNextTx();
IsRxWindowsEnabled = true;
LoRaMacParams.ChannelsTxPower = LoRaMacParamsDefaults.ChannelsTxPower;
LoRaMacParams.ChannelsDatarate = LoRaMacParamsDefaults.ChannelsDatarate;
LoRaMacParams.Rx1DrOffset = LoRaMacParamsDefaults.Rx1DrOffset;
LoRaMacParams.Rx2Channel = LoRaMacParamsDefaults.Rx2Channel;
LoRaMacParams.UplinkDwellTime = LoRaMacParamsDefaults.UplinkDwellTime;
LoRaMacParams.DownlinkDwellTime = LoRaMacParamsDefaults.DownlinkDwellTime;
LoRaMacParams.MaxEirp = LoRaMacParamsDefaults.MaxEirp;
LoRaMacParams.AntennaGain = LoRaMacParamsDefaults.AntennaGain;
NodeAckRequested = false;
SrvAckRequested = false;
// Reset Multicast downlink counters
MulticastParams_t *cur = MulticastChannels;
while( cur != NULL )
{
cur->DownLinkCounter = 0;
cur = cur->Next;
}
// Initialize channel index.
Channel = 0;
LastTxChannel = Channel;
}
bool LoRaMac::IsFPortAllowed( uint8_t fPort )
{
if( ( fPort == 0 ) || ( fPort > 224 ) )
{
return false;
}
return true;
}
void LoRaMac::OpenContinuousRx2Window( void )
{
handle_rx2_timer_event( );
RxSlot = RX_SLOT_WIN_CLASS_C;
}
static void memcpy_convert_endianess( uint8_t *dst, const uint8_t *src, uint16_t size )
{
dst = dst + ( size - 1 );
while( size-- )
{
*dst-- = *src++;
}
}
LoRaMacStatus_t LoRaMac::PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
AdrNextParams_t adrNext;
uint16_t i;
uint8_t pktHeaderLen = 0;
uint32_t mic = 0;
const void* payload = fBuffer;
uint8_t framePort = fPort;
LoRaMacStatus_t status = LORAMAC_STATUS_OK;
LoRaMacBufferPktLen = 0;
NodeAckRequested = false;
if( fBuffer == NULL )
{
fBufferSize = 0;
}
LoRaMacTxPayloadLen = fBufferSize;
LoRaMacBuffer[pktHeaderLen++] = macHdr->Value;
switch( macHdr->Bits.MType )
{
case FRAME_TYPE_JOIN_REQ:
LoRaMacBufferPktLen = pktHeaderLen;
memcpy_convert_endianess( LoRaMacBuffer + LoRaMacBufferPktLen, LoRaMacAppEui, 8 );
LoRaMacBufferPktLen += 8;
memcpy_convert_endianess( LoRaMacBuffer + LoRaMacBufferPktLen, LoRaMacDevEui, 8 );
LoRaMacBufferPktLen += 8;
LoRaMacDevNonce = lora_phy->get_radio_rng();
LoRaMacBuffer[LoRaMacBufferPktLen++] = LoRaMacDevNonce & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( LoRaMacDevNonce >> 8 ) & 0xFF;
if (0 != LoRaMacJoinComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen & 0xFF, LoRaMacAppKey, &mic )) {
return LORAMAC_STATUS_CRYPTO_FAIL;
}
LoRaMacBuffer[LoRaMacBufferPktLen++] = mic & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 8 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 16 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 24 ) & 0xFF;
break;
case FRAME_TYPE_DATA_CONFIRMED_UP:
NodeAckRequested = true;
//Intentional fallthrough
case FRAME_TYPE_DATA_UNCONFIRMED_UP:
{
if( IsLoRaMacNetworkJoined == false )
{
return LORAMAC_STATUS_NO_NETWORK_JOINED; // No network has been joined yet
}
// Adr next request
adrNext.UpdateChanMask = true;
adrNext.AdrEnabled = fCtrl->Bits.Adr;
adrNext.AdrAckCounter = AdrAckCounter;
adrNext.Datarate = LoRaMacParams.ChannelsDatarate;
adrNext.TxPower = LoRaMacParams.ChannelsTxPower;
adrNext.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
fCtrl->Bits.AdrAckReq = lora_phy->get_next_ADR(&adrNext,
&LoRaMacParams.ChannelsDatarate,
&LoRaMacParams.ChannelsTxPower,
&AdrAckCounter);
if( SrvAckRequested == true )
{
SrvAckRequested = false;
fCtrl->Bits.Ack = 1;
}
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 8 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 16 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 24 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = fCtrl->Value;
LoRaMacBuffer[pktHeaderLen++] = UpLinkCounter & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( UpLinkCounter >> 8 ) & 0xFF;
// Copy the MAC commands which must be re-send into the MAC command buffer
mac_commands.CopyRepeatCommandsToBuffer();
const uint8_t mac_commands_len = mac_commands.GetLength();
if( ( payload != NULL ) && ( LoRaMacTxPayloadLen > 0 ) )
{
if( mac_commands.IsMacCommandsInNextTx() == true )
{
if( mac_commands_len <= LORA_MAC_COMMAND_MAX_FOPTS_LENGTH )
{
fCtrl->Bits.FOptsLen += mac_commands_len;
// Update FCtrl field with new value of OptionsLength
LoRaMacBuffer[0x05] = fCtrl->Value;
const uint8_t *buffer = mac_commands.GetMacCommandsBuffer();
for( i = 0; i < mac_commands_len; i++ )
{
LoRaMacBuffer[pktHeaderLen++] = buffer[i];
}
}
else
{
LoRaMacTxPayloadLen = mac_commands_len;
payload = mac_commands.GetMacCommandsBuffer();
framePort = 0;
}
}
}
else
{
if( ( mac_commands_len > 0 ) && ( mac_commands.IsMacCommandsInNextTx() == true ) )
{
LoRaMacTxPayloadLen = mac_commands_len;
payload = mac_commands.GetMacCommandsBuffer();
framePort = 0;
}
}
// Store MAC commands which must be re-send in case the device does not receive a downlink anymore
mac_commands.ParseMacCommandsToRepeat();
if( ( payload != NULL ) && ( LoRaMacTxPayloadLen > 0 ) )
{
LoRaMacBuffer[pktHeaderLen++] = framePort;
if( framePort == 0 )
{
// Reset buffer index as the mac commands are being sent on port 0
mac_commands.ClearCommandBuffer();
if (0 != LoRaMacPayloadEncrypt( (uint8_t* ) payload, LoRaMacTxPayloadLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &LoRaMacBuffer[pktHeaderLen] )) {
status = LORAMAC_STATUS_CRYPTO_FAIL;
}
}
else
{
if (0 != LoRaMacPayloadEncrypt( (uint8_t* ) payload, LoRaMacTxPayloadLen, LoRaMacAppSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &LoRaMacBuffer[pktHeaderLen] )) {
status = LORAMAC_STATUS_CRYPTO_FAIL;
}
}
}
LoRaMacBufferPktLen = pktHeaderLen + LoRaMacTxPayloadLen;
if (0 != LoRaMacComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &mic )) {
status = LORAMAC_STATUS_CRYPTO_FAIL;
}
LoRaMacBuffer[LoRaMacBufferPktLen + 0] = mic & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 1] = ( mic >> 8 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 2] = ( mic >> 16 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 3] = ( mic >> 24 ) & 0xFF;
LoRaMacBufferPktLen += LORAMAC_MFR_LEN;
}
break;
case FRAME_TYPE_PROPRIETARY:
if( ( fBuffer != NULL ) && ( LoRaMacTxPayloadLen > 0 ) )
{
memcpy( LoRaMacBuffer + pktHeaderLen, ( uint8_t* ) fBuffer, LoRaMacTxPayloadLen );
LoRaMacBufferPktLen = pktHeaderLen + LoRaMacTxPayloadLen;
}
break;
default:
status = LORAMAC_STATUS_SERVICE_UNKNOWN;
}
return status;
}
LoRaMacStatus_t LoRaMac::SendFrameOnChannel( uint8_t channel )
{
TxConfigParams_t txConfig;
int8_t txPower = 0;
txConfig.Channel = channel;
txConfig.Datarate = LoRaMacParams.ChannelsDatarate;
txConfig.TxPower = LoRaMacParams.ChannelsTxPower;
txConfig.MaxEirp = LoRaMacParams.MaxEirp;
txConfig.AntennaGain = LoRaMacParams.AntennaGain;
txConfig.PktLen = LoRaMacBufferPktLen;
lora_phy->tx_config(&txConfig, &txPower, &TxTimeOnAir);
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
McpsConfirm.Datarate = LoRaMacParams.ChannelsDatarate;
McpsConfirm.TxPower = txPower;
// Store the time on air
McpsConfirm.TxTimeOnAir = TxTimeOnAir;
MlmeConfirm.TxTimeOnAir = TxTimeOnAir;
// Starts the MAC layer status check timer
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerStart( &MacStateCheckTimer );
if( IsLoRaMacNetworkJoined == false )
{
JoinRequestTrials++;
}
// Send now
lora_phy->handle_send(LoRaMacBuffer, LoRaMacBufferPktLen);
LoRaMacState |= LORAMAC_TX_RUNNING;
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMac::SetTxContinuousWave( uint16_t timeout )
{
ContinuousWaveParams_t continuousWave;
continuousWave.Channel = Channel;
continuousWave.Datarate = LoRaMacParams.ChannelsDatarate;
continuousWave.TxPower = LoRaMacParams.ChannelsTxPower;
continuousWave.MaxEirp = LoRaMacParams.MaxEirp;
continuousWave.AntennaGain = LoRaMacParams.AntennaGain;
continuousWave.Timeout = timeout;
lora_phy->set_tx_cont_mode(&continuousWave);
// Starts the MAC layer status check timer
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerStart( &MacStateCheckTimer );
LoRaMacState |= LORAMAC_TX_RUNNING;
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMac::SetTxContinuousWave1( uint16_t timeout, uint32_t frequency, uint8_t power )
{
lora_phy->setup_tx_cont_wave_mode(frequency, power, timeout);
// Starts the MAC layer status check timer
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerStart( &MacStateCheckTimer );
LoRaMacState |= LORAMAC_TX_RUNNING;
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMac::LoRaMacInitialization(LoRaMacPrimitives_t *primitives,
LoRaMacCallback_t *callbacks,
LoRaPHY *phy,
EventQueue *queue)
{
GetPhyParams_t getPhy;
PhyParam_t phyParam;
//store event queue pointer
ev_queue = queue;
if(!primitives || !callbacks)
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
lora_phy = phy;
LoRaMacPrimitives = primitives;
LoRaMacCallbacks = callbacks;
LoRaMacFlags.Value = 0;
LoRaMacDeviceClass = CLASS_A;
LoRaMacState = LORAMAC_IDLE;
JoinRequestTrials = 0;
MaxJoinRequestTrials = 1;
RepeaterSupport = false;
// Reset duty cycle times
AggregatedLastTxDoneTime = 0;
AggregatedTimeOff = 0;
// Reset to defaults
getPhy.Attribute = PHY_DUTY_CYCLE;
phyParam = lora_phy->get_phy_params(&getPhy);
// load default at this moment. Later can be changed using json
DutyCycleOn = ( bool ) phyParam.Value;
getPhy.Attribute = PHY_DEF_TX_POWER;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.ChannelsTxPower = phyParam.Value;
getPhy.Attribute = PHY_DEF_TX_DR;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.ChannelsDatarate = phyParam.Value;
getPhy.Attribute = PHY_MAX_RX_WINDOW;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.MaxRxWindow = phyParam.Value;
getPhy.Attribute = PHY_RECEIVE_DELAY1;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.ReceiveDelay1 = phyParam.Value;
getPhy.Attribute = PHY_RECEIVE_DELAY2;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.ReceiveDelay2 = phyParam.Value;
getPhy.Attribute = PHY_JOIN_ACCEPT_DELAY1;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.JoinAcceptDelay1 = phyParam.Value;
getPhy.Attribute = PHY_JOIN_ACCEPT_DELAY2;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.JoinAcceptDelay2 = phyParam.Value;
getPhy.Attribute = PHY_DEF_DR1_OFFSET;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.Rx1DrOffset = phyParam.Value;
getPhy.Attribute = PHY_DEF_RX2_FREQUENCY;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.Rx2Channel.Frequency = phyParam.Value;
getPhy.Attribute = PHY_DEF_RX2_DR;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.Rx2Channel.Datarate = phyParam.Value;
getPhy.Attribute = PHY_DEF_UPLINK_DWELL_TIME;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.UplinkDwellTime = phyParam.Value;
getPhy.Attribute = PHY_DEF_DOWNLINK_DWELL_TIME;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.DownlinkDwellTime = phyParam.Value;
getPhy.Attribute = PHY_DEF_MAX_EIRP;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.MaxEirp = phyParam.fValue;
getPhy.Attribute = PHY_DEF_ANTENNA_GAIN;
phyParam = lora_phy->get_phy_params( &getPhy );
LoRaMacParamsDefaults.AntennaGain = phyParam.fValue;
lora_phy->load_defaults(INIT_TYPE_INIT);
// Init parameters which are not set in function ResetMacParameters
LoRaMacParamsDefaults.ChannelsNbRep = 1;
LoRaMacParamsDefaults.SystemMaxRxError = 10;
LoRaMacParamsDefaults.MinRxSymbols = 6;
LoRaMacParams.SystemMaxRxError = LoRaMacParamsDefaults.SystemMaxRxError;
LoRaMacParams.MinRxSymbols = LoRaMacParamsDefaults.MinRxSymbols;
LoRaMacParams.MaxRxWindow = LoRaMacParamsDefaults.MaxRxWindow;
LoRaMacParams.ReceiveDelay1 = LoRaMacParamsDefaults.ReceiveDelay1;
LoRaMacParams.ReceiveDelay2 = LoRaMacParamsDefaults.ReceiveDelay2;
LoRaMacParams.JoinAcceptDelay1 = LoRaMacParamsDefaults.JoinAcceptDelay1;
LoRaMacParams.JoinAcceptDelay2 = LoRaMacParamsDefaults.JoinAcceptDelay2;
LoRaMacParams.ChannelsNbRep = LoRaMacParamsDefaults.ChannelsNbRep;
ResetMacParameters( );
// Random seed initialization
srand(lora_phy->get_radio_rng());
PublicNetwork = LORAWAN_PUBLIC_NETWORK;
lora_phy->setup_public_network_mode(PublicNetwork);
lora_phy->put_radio_to_sleep();
// Initialize timers
TimerInit(&MacStateCheckTimer, handle_mac_state_check_timer_event);
TimerSetValue(&MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT);
TimerInit(&TxDelayedTimer, handle_delayed_tx_timer_event);
TimerInit(&RxWindowTimer1, handle_rx1_timer_event);
TimerInit(&RxWindowTimer2, handle_rx2_timer_event);
TimerInit(&AckTimeoutTimer, handle_ack_timeout);
// Store the current initialization time
LoRaMacInitializationTime = TimerGetCurrentTime();
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMac::LoRaMacQueryTxPossible( uint8_t size, LoRaMacTxInfo_t* txInfo )
{
AdrNextParams_t adrNext;
GetPhyParams_t getPhy;
PhyParam_t phyParam;
int8_t datarate = LoRaMacParamsDefaults.ChannelsDatarate;
int8_t txPower = LoRaMacParamsDefaults.ChannelsTxPower;
uint8_t fOptLen = mac_commands.GetLength() + mac_commands.GetRepeatLength();
if( txInfo == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
// Setup ADR request
adrNext.UpdateChanMask = false;
adrNext.AdrEnabled = LoRaMacParams.AdrCtrlOn;
adrNext.AdrAckCounter = AdrAckCounter;
adrNext.Datarate = LoRaMacParams.ChannelsDatarate;
adrNext.TxPower = LoRaMacParams.ChannelsTxPower;
adrNext.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
// We call the function for information purposes only. We don't want to
// apply the datarate, the tx power and the ADR ack counter.
lora_phy->get_next_ADR(&adrNext, &datarate, &txPower, &AdrAckCounter);
// Setup PHY request
getPhy.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
getPhy.Datarate = datarate;
getPhy.Attribute = PHY_MAX_PAYLOAD;
// Change request in case repeater is supported
if( RepeaterSupport == true )
{
getPhy.Attribute = PHY_MAX_PAYLOAD_REPEATER;
}
phyParam = lora_phy->get_phy_params( &getPhy );
txInfo->CurrentPayloadSize = phyParam.Value;
// Verify if the fOpts fit into the maximum payload
if( txInfo->CurrentPayloadSize >= fOptLen )
{
txInfo->MaxPossiblePayload = txInfo->CurrentPayloadSize - fOptLen;
}
else
{
txInfo->MaxPossiblePayload = txInfo->CurrentPayloadSize;
// The fOpts don't fit into the maximum payload. Omit the MAC commands to
// ensure that another uplink is possible.
fOptLen = 0;
mac_commands.ClearCommandBuffer();
mac_commands.ClearRepeatBuffer();
}
// Verify if the fOpts and the payload fit into the maximum payload
if( ValidatePayloadLength( size, datarate, fOptLen ) == false )
{
return LORAMAC_STATUS_LENGTH_ERROR;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMac::LoRaMacMibGetRequestConfirm( MibRequestConfirm_t *mibGet )
{
LoRaMacStatus_t status = LORAMAC_STATUS_OK;
GetPhyParams_t getPhy;
PhyParam_t phyParam;
if( mibGet == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
switch( mibGet->Type )
{
case MIB_DEVICE_CLASS:
{
mibGet->Param.Class = LoRaMacDeviceClass;
break;
}
case MIB_NETWORK_JOINED:
{
mibGet->Param.IsNetworkJoined = IsLoRaMacNetworkJoined;
break;
}
case MIB_ADR:
{
mibGet->Param.AdrEnable = LoRaMacParams.AdrCtrlOn;
break;
}
case MIB_NET_ID:
{
mibGet->Param.NetID = LoRaMacNetID;
break;
}
case MIB_DEV_ADDR:
{
mibGet->Param.DevAddr = LoRaMacDevAddr;
break;
}
case MIB_NWK_SKEY:
{
mibGet->Param.NwkSKey = LoRaMacNwkSKey;
break;
}
case MIB_APP_SKEY:
{
mibGet->Param.AppSKey = LoRaMacAppSKey;
break;
}
case MIB_PUBLIC_NETWORK:
{
mibGet->Param.EnablePublicNetwork = PublicNetwork;
break;
}
case MIB_REPEATER_SUPPORT:
{
mibGet->Param.EnableRepeaterSupport = RepeaterSupport;
break;
}
case MIB_CHANNELS:
{
getPhy.Attribute = PHY_CHANNELS;
phyParam = lora_phy->get_phy_params( &getPhy );
mibGet->Param.ChannelList = phyParam.Channels;
break;
}
case MIB_RX2_CHANNEL:
{
mibGet->Param.Rx2Channel = LoRaMacParams.Rx2Channel;
break;
}
case MIB_RX2_DEFAULT_CHANNEL:
{
mibGet->Param.Rx2Channel = LoRaMacParamsDefaults.Rx2Channel;
break;
}
case MIB_CHANNELS_DEFAULT_MASK:
{
getPhy.Attribute = PHY_CHANNELS_DEFAULT_MASK;
phyParam = lora_phy->get_phy_params( &getPhy );
mibGet->Param.ChannelsDefaultMask = phyParam.ChannelsMask;
break;
}
case MIB_CHANNELS_MASK:
{
getPhy.Attribute = PHY_CHANNELS_MASK;
phyParam = lora_phy->get_phy_params( &getPhy );
mibGet->Param.ChannelsMask = phyParam.ChannelsMask;
break;
}
case MIB_CHANNELS_NB_REP:
{
mibGet->Param.ChannelNbRep = LoRaMacParams.ChannelsNbRep;
break;
}
case MIB_MAX_RX_WINDOW_DURATION:
{
mibGet->Param.MaxRxWindow = LoRaMacParams.MaxRxWindow;
break;
}
case MIB_RECEIVE_DELAY_1:
{
mibGet->Param.ReceiveDelay1 = LoRaMacParams.ReceiveDelay1;
break;
}
case MIB_RECEIVE_DELAY_2:
{
mibGet->Param.ReceiveDelay2 = LoRaMacParams.ReceiveDelay2;
break;
}
case MIB_JOIN_ACCEPT_DELAY_1:
{
mibGet->Param.JoinAcceptDelay1 = LoRaMacParams.JoinAcceptDelay1;
break;
}
case MIB_JOIN_ACCEPT_DELAY_2:
{
mibGet->Param.JoinAcceptDelay2 = LoRaMacParams.JoinAcceptDelay2;
break;
}
case MIB_CHANNELS_DEFAULT_DATARATE:
{
mibGet->Param.ChannelsDefaultDatarate = LoRaMacParamsDefaults.ChannelsDatarate;
break;
}
case MIB_CHANNELS_DATARATE:
{
mibGet->Param.ChannelsDatarate = LoRaMacParams.ChannelsDatarate;
break;
}
case MIB_CHANNELS_DEFAULT_TX_POWER:
{
mibGet->Param.ChannelsDefaultTxPower = LoRaMacParamsDefaults.ChannelsTxPower;
break;
}
case MIB_CHANNELS_TX_POWER:
{
mibGet->Param.ChannelsTxPower = LoRaMacParams.ChannelsTxPower;
break;
}
case MIB_UPLINK_COUNTER:
{
mibGet->Param.UpLinkCounter = UpLinkCounter;
break;
}
case MIB_DOWNLINK_COUNTER:
{
mibGet->Param.DownLinkCounter = DownLinkCounter;
break;
}
case MIB_MULTICAST_CHANNEL:
{
mibGet->Param.MulticastList = MulticastChannels;
break;
}
case MIB_SYSTEM_MAX_RX_ERROR:
{
mibGet->Param.SystemMaxRxError = LoRaMacParams.SystemMaxRxError;
break;
}
case MIB_MIN_RX_SYMBOLS:
{
mibGet->Param.MinRxSymbols = LoRaMacParams.MinRxSymbols;
break;
}
case MIB_ANTENNA_GAIN:
{
mibGet->Param.AntennaGain = LoRaMacParams.AntennaGain;
break;
}
default:
status = LORAMAC_STATUS_SERVICE_UNKNOWN;
break;
}
return status;
}
LoRaMacStatus_t LoRaMac::LoRaMacMibSetRequestConfirm( MibRequestConfirm_t *mibSet )
{
LoRaMacStatus_t status = LORAMAC_STATUS_OK;
ChanMaskSetParams_t chanMaskSet;
VerifyParams_t verify;
if( mibSet == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
switch( mibSet->Type )
{
case MIB_DEVICE_CLASS:
{
LoRaMacDeviceClass = mibSet->Param.Class;
switch( LoRaMacDeviceClass )
{
case CLASS_A:
{
// Set the radio into sleep to setup a defined state
lora_phy->put_radio_to_sleep();
break;
}
case CLASS_B:
{
break;
}
case CLASS_C:
{
// Set the NodeAckRequested indicator to default
NodeAckRequested = false;
// Set the radio into sleep mode in case we are still in RX mode
lora_phy->put_radio_to_sleep();
// Compute Rx2 windows parameters in case the RX2 datarate has changed
lora_phy->compute_rx_win_params( LoRaMacParams.Rx2Channel.Datarate,
LoRaMacParams.MinRxSymbols,
LoRaMacParams.SystemMaxRxError,
&RxWindow2Config );
OpenContinuousRx2Window( );
break;
}
}
break;
}
case MIB_NETWORK_JOINED:
{
IsLoRaMacNetworkJoined = mibSet->Param.IsNetworkJoined;
break;
}
case MIB_ADR:
{
LoRaMacParams.AdrCtrlOn = mibSet->Param.AdrEnable;
break;
}
case MIB_NET_ID:
{
LoRaMacNetID = mibSet->Param.NetID;
break;
}
case MIB_DEV_ADDR:
{
LoRaMacDevAddr = mibSet->Param.DevAddr;
break;
}
case MIB_NWK_SKEY:
{
if( mibSet->Param.NwkSKey != NULL )
{
memcpy( LoRaMacNwkSKey, mibSet->Param.NwkSKey,
sizeof( LoRaMacNwkSKey ) );
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_APP_SKEY:
{
if( mibSet->Param.AppSKey != NULL )
{
memcpy( LoRaMacAppSKey, mibSet->Param.AppSKey,
sizeof( LoRaMacAppSKey ) );
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_PUBLIC_NETWORK:
{
PublicNetwork = mibSet->Param.EnablePublicNetwork;
lora_phy->setup_public_network_mode(PublicNetwork);
break;
}
case MIB_REPEATER_SUPPORT:
{
RepeaterSupport = mibSet->Param.EnableRepeaterSupport;
break;
}
case MIB_RX2_CHANNEL:
{
verify.DatarateParams.Datarate = mibSet->Param.Rx2Channel.Datarate;
verify.DatarateParams.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime;
if( lora_phy->verify(&verify, PHY_RX_DR) == true )
{
LoRaMacParams.Rx2Channel = mibSet->Param.Rx2Channel;
if( ( LoRaMacDeviceClass == CLASS_C ) && ( IsLoRaMacNetworkJoined == true ) )
{
// We can only compute the RX window parameters directly, if we are already
// in class c mode and joined. We cannot setup an RX window in case of any other
// class type.
// Set the radio into sleep mode in case we are still in RX mode
lora_phy->put_radio_to_sleep();
// Compute Rx2 windows parameters
lora_phy->compute_rx_win_params(LoRaMacParams.Rx2Channel.Datarate,
LoRaMacParams.MinRxSymbols,
LoRaMacParams.SystemMaxRxError,
&RxWindow2Config);
OpenContinuousRx2Window( );
}
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_RX2_DEFAULT_CHANNEL:
{
verify.DatarateParams.Datarate = mibSet->Param.Rx2Channel.Datarate;
verify.DatarateParams.DownlinkDwellTime = LoRaMacParams.DownlinkDwellTime;
if( lora_phy->verify(&verify, PHY_RX_DR) == true )
{
LoRaMacParamsDefaults.Rx2Channel = mibSet->Param.Rx2DefaultChannel;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_DEFAULT_MASK:
{
chanMaskSet.ChannelsMaskIn = mibSet->Param.ChannelsMask;
chanMaskSet.ChannelsMaskType = CHANNELS_DEFAULT_MASK;
if(lora_phy->set_channel_mask(&chanMaskSet) == false )
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_MASK:
{
chanMaskSet.ChannelsMaskIn = mibSet->Param.ChannelsMask;
chanMaskSet.ChannelsMaskType = CHANNELS_MASK;
if(lora_phy->set_channel_mask(&chanMaskSet) == false )
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_NB_REP:
{
if( ( mibSet->Param.ChannelNbRep >= 1 ) &&
( mibSet->Param.ChannelNbRep <= 15 ) )
{
LoRaMacParams.ChannelsNbRep = mibSet->Param.ChannelNbRep;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_MAX_RX_WINDOW_DURATION:
{
LoRaMacParams.MaxRxWindow = mibSet->Param.MaxRxWindow;
break;
}
case MIB_RECEIVE_DELAY_1:
{
LoRaMacParams.ReceiveDelay1 = mibSet->Param.ReceiveDelay1;
break;
}
case MIB_RECEIVE_DELAY_2:
{
LoRaMacParams.ReceiveDelay2 = mibSet->Param.ReceiveDelay2;
break;
}
case MIB_JOIN_ACCEPT_DELAY_1:
{
LoRaMacParams.JoinAcceptDelay1 = mibSet->Param.JoinAcceptDelay1;
break;
}
case MIB_JOIN_ACCEPT_DELAY_2:
{
LoRaMacParams.JoinAcceptDelay2 = mibSet->Param.JoinAcceptDelay2;
break;
}
case MIB_CHANNELS_DEFAULT_DATARATE:
{
verify.DatarateParams.Datarate = mibSet->Param.ChannelsDefaultDatarate;
if(lora_phy->verify(&verify, PHY_DEF_TX_DR) == true)
{
LoRaMacParamsDefaults.ChannelsDatarate = verify.DatarateParams.Datarate;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_DATARATE:
{
verify.DatarateParams.Datarate = mibSet->Param.ChannelsDatarate;
verify.DatarateParams.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
if(lora_phy->verify(&verify, PHY_TX_DR) == true)
{
LoRaMacParams.ChannelsDatarate = verify.DatarateParams.Datarate;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_DEFAULT_TX_POWER:
{
verify.TxPower = mibSet->Param.ChannelsDefaultTxPower;
if(lora_phy->verify(&verify, PHY_DEF_TX_POWER) == true)
{
LoRaMacParamsDefaults.ChannelsTxPower = verify.TxPower;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_TX_POWER:
{
verify.TxPower = mibSet->Param.ChannelsTxPower;
if(lora_phy->verify(&verify, PHY_TX_POWER) == true)
{
LoRaMacParams.ChannelsTxPower = verify.TxPower;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_UPLINK_COUNTER:
{
UpLinkCounter = mibSet->Param.UpLinkCounter;
break;
}
case MIB_DOWNLINK_COUNTER:
{
DownLinkCounter = mibSet->Param.DownLinkCounter;
break;
}
case MIB_SYSTEM_MAX_RX_ERROR:
{
LoRaMacParams.SystemMaxRxError = LoRaMacParamsDefaults.SystemMaxRxError = mibSet->Param.SystemMaxRxError;
break;
}
case MIB_MIN_RX_SYMBOLS:
{
LoRaMacParams.MinRxSymbols = LoRaMacParamsDefaults.MinRxSymbols = mibSet->Param.MinRxSymbols;
break;
}
case MIB_ANTENNA_GAIN:
{
LoRaMacParams.AntennaGain = mibSet->Param.AntennaGain;
break;
}
default:
status = LORAMAC_STATUS_SERVICE_UNKNOWN;
break;
}
return status;
}
LoRaMacStatus_t LoRaMac::LoRaMacChannelAdd( uint8_t id, ChannelParams_t params )
{
ChannelAddParams_t channelAdd;
// Validate if the MAC is in a correct state
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
if( ( LoRaMacState & LORAMAC_TX_CONFIG ) != LORAMAC_TX_CONFIG )
{
return LORAMAC_STATUS_BUSY;
}
}
channelAdd.NewChannel = &params;
channelAdd.ChannelId = id;
return lora_phy->add_channel(&channelAdd);
}
LoRaMacStatus_t LoRaMac::LoRaMacChannelRemove( uint8_t id )
{
ChannelRemoveParams_t channelRemove;
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
if( ( LoRaMacState & LORAMAC_TX_CONFIG ) != LORAMAC_TX_CONFIG )
{
return LORAMAC_STATUS_BUSY;
}
}
channelRemove.ChannelId = id;
if(lora_phy->remove_channel(&channelRemove) == false)
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
lora_phy->put_radio_to_sleep();
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMac::LoRaMacMulticastChannelLink( MulticastParams_t *channelParam )
{
if( channelParam == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
// Reset downlink counter
channelParam->DownLinkCounter = 0;
if( MulticastChannels == NULL )
{
// New node is the fist element
MulticastChannels = channelParam;
}
else
{
MulticastParams_t *cur = MulticastChannels;
// Search the last node in the list
while( cur->Next != NULL )
{
cur = cur->Next;
}
// This function always finds the last node
cur->Next = channelParam;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMac::LoRaMacMulticastChannelUnlink( MulticastParams_t *channelParam )
{
if( channelParam == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
if( MulticastChannels != NULL )
{
if( MulticastChannels == channelParam )
{
// First element
MulticastChannels = channelParam->Next;
}
else
{
MulticastParams_t *cur = MulticastChannels;
// Search the node in the list
while( cur->Next && cur->Next != channelParam )
{
cur = cur->Next;
}
// If we found the node, remove it
if( cur->Next )
{
cur->Next = channelParam->Next;
}
}
channelParam->Next = NULL;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMac::LoRaMacMlmeRequest( MlmeReq_t *mlmeRequest )
{
LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN;
LoRaMacHeader_t macHdr;
AlternateDrParams_t altDr;
VerifyParams_t verify;
GetPhyParams_t getPhy;
PhyParam_t phyParam;
if( mlmeRequest == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( LoRaMacState != LORAMAC_IDLE )
{
return LORAMAC_STATUS_BUSY;
}
memset( ( uint8_t* ) &MlmeConfirm, 0, sizeof( MlmeConfirm ) );
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
switch( mlmeRequest->Type )
{
case MLME_JOIN:
{
if( ( LoRaMacState & LORAMAC_TX_DELAYED ) == LORAMAC_TX_DELAYED )
{
return LORAMAC_STATUS_BUSY;
}
if( ( mlmeRequest->Req.Join.DevEui == NULL ) ||
( mlmeRequest->Req.Join.AppEui == NULL ) ||
( mlmeRequest->Req.Join.AppKey == NULL ) ||
( mlmeRequest->Req.Join.NbTrials == 0 ) )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
// Verify the parameter NbTrials for the join procedure
verify.NbJoinTrials = mlmeRequest->Req.Join.NbTrials;
if(lora_phy->verify(&verify, PHY_NB_JOIN_TRIALS) == false)
{
// Value not supported, get default
getPhy.Attribute = PHY_DEF_NB_JOIN_TRIALS;
phyParam = lora_phy->get_phy_params( &getPhy );
mlmeRequest->Req.Join.NbTrials = ( uint8_t ) phyParam.Value;
}
LoRaMacFlags.Bits.MlmeReq = 1;
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
LoRaMacDevEui = mlmeRequest->Req.Join.DevEui;
LoRaMacAppEui = mlmeRequest->Req.Join.AppEui;
LoRaMacAppKey = mlmeRequest->Req.Join.AppKey;
MaxJoinRequestTrials = mlmeRequest->Req.Join.NbTrials;
// Reset variable JoinRequestTrials
JoinRequestTrials = 0;
// Setup header information
macHdr.Value = 0;
macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ;
ResetMacParameters( );
altDr.NbTrials = JoinRequestTrials + 1;
LoRaMacParams.ChannelsDatarate = lora_phy->get_alternate_DR(&altDr);
status = Send( &macHdr, 0, NULL, 0 );
break;
}
case MLME_LINK_CHECK:
{
LoRaMacFlags.Bits.MlmeReq = 1;
// LoRaMac will send this command piggy-backed
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
status = mac_commands.AddMacCommand( MOTE_MAC_LINK_CHECK_REQ, 0, 0 );
break;
}
case MLME_TXCW:
{
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
LoRaMacFlags.Bits.MlmeReq = 1;
status = SetTxContinuousWave( mlmeRequest->Req.TxCw.Timeout );
break;
}
case MLME_TXCW_1:
{
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
LoRaMacFlags.Bits.MlmeReq = 1;
status = SetTxContinuousWave1( mlmeRequest->Req.TxCw.Timeout, mlmeRequest->Req.TxCw.Frequency, mlmeRequest->Req.TxCw.Power );
break;
}
default:
break;
}
if( status != LORAMAC_STATUS_OK )
{
NodeAckRequested = false;
LoRaMacFlags.Bits.MlmeReq = 0;
}
return status;
}
LoRaMacStatus_t LoRaMac::LoRaMacMcpsRequest( McpsReq_t *mcpsRequest )
{
GetPhyParams_t getPhy;
PhyParam_t phyParam;
LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN;
LoRaMacHeader_t macHdr;
VerifyParams_t verify;
uint8_t fPort = 0;
void *fBuffer;
uint16_t fBufferSize;
int8_t datarate = DR_0;
bool readyToSend = false;
if( mcpsRequest == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( LoRaMacState != LORAMAC_IDLE )
{
return LORAMAC_STATUS_BUSY;
}
macHdr.Value = 0;
memset ( ( uint8_t* ) &McpsConfirm, 0, sizeof( McpsConfirm ) );
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
// AckTimeoutRetriesCounter must be reset every time a new request (unconfirmed or confirmed) is performed.
AckTimeoutRetriesCounter = 1;
switch( mcpsRequest->Type )
{
case MCPS_UNCONFIRMED:
{
readyToSend = true;
AckTimeoutRetries = 1;
macHdr.Bits.MType = FRAME_TYPE_DATA_UNCONFIRMED_UP;
fPort = mcpsRequest->Req.Unconfirmed.fPort;
fBuffer = mcpsRequest->Req.Unconfirmed.fBuffer;
fBufferSize = mcpsRequest->Req.Unconfirmed.fBufferSize;
datarate = mcpsRequest->Req.Unconfirmed.Datarate;
break;
}
case MCPS_CONFIRMED:
{
readyToSend = true;
AckTimeoutRetries = mcpsRequest->Req.Confirmed.NbTrials;
macHdr.Bits.MType = FRAME_TYPE_DATA_CONFIRMED_UP;
fPort = mcpsRequest->Req.Confirmed.fPort;
fBuffer = mcpsRequest->Req.Confirmed.fBuffer;
fBufferSize = mcpsRequest->Req.Confirmed.fBufferSize;
datarate = mcpsRequest->Req.Confirmed.Datarate;
break;
}
case MCPS_PROPRIETARY:
{
readyToSend = true;
AckTimeoutRetries = 1;
macHdr.Bits.MType = FRAME_TYPE_PROPRIETARY;
fBuffer = mcpsRequest->Req.Proprietary.fBuffer;
fBufferSize = mcpsRequest->Req.Proprietary.fBufferSize;
datarate = mcpsRequest->Req.Proprietary.Datarate;
break;
}
default:
break;
}
// Filter fPorts
// TODO: Does not work with PROPRIETARY messages
// if( IsFPortAllowed( fPort ) == false )
// {
// return LORAMAC_STATUS_PARAMETER_INVALID;
// }
// Get the minimum possible datarate
getPhy.Attribute = PHY_MIN_TX_DR;
getPhy.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
phyParam = lora_phy->get_phy_params( &getPhy );
// Apply the minimum possible datarate.
// Some regions have limitations for the minimum datarate.
datarate = MAX( datarate, phyParam.Value );
if( readyToSend == true )
{
if( LoRaMacParams.AdrCtrlOn == false )
{
verify.DatarateParams.Datarate = datarate;
verify.DatarateParams.UplinkDwellTime = LoRaMacParams.UplinkDwellTime;
if(lora_phy->verify(&verify, PHY_TX_DR) == true)
{
LoRaMacParams.ChannelsDatarate = verify.DatarateParams.Datarate;
}
else
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
}
status = Send( &macHdr, fPort, fBuffer, fBufferSize );
if( status == LORAMAC_STATUS_OK )
{
McpsConfirm.McpsRequest = mcpsRequest->Type;
LoRaMacFlags.Bits.McpsReq = 1;
}
else
{
NodeAckRequested = false;
}
}
return status;
}
radio_events_t *LoRaMac::GetPhyEventHandlers()
{
RadioEvents.tx_done = mbed::callback(handle_tx_done);
RadioEvents.rx_done = mbed::callback(handle_rx_done);
RadioEvents.rx_error = mbed::callback(handle_rx_error);
RadioEvents.tx_timeout = mbed::callback(handle_tx_timeout);
RadioEvents.rx_timeout = mbed::callback(handle_rx_timeout);
return &RadioEvents;
}
#if defined(LORAWAN_COMPLIANCE_TEST)
/***************************************************************************
* Compliance testing *
**************************************************************************/
LoRaMacStatus_t LoRaMac::LoRaMacSetTxTimer( uint32_t TxDutyCycleTime )
{
TimerSetValue(&TxNextPacketTimer, TxDutyCycleTime);
TimerStart(&TxNextPacketTimer);
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMac::LoRaMacStopTxTimer( )
{
TimerStop(&TxNextPacketTimer);
return LORAMAC_STATUS_OK;
}
void LoRaMac::LoRaMacTestRxWindowsOn( bool enable )
{
IsRxWindowsEnabled = enable;
}
void LoRaMac::LoRaMacTestSetMic( uint16_t txPacketCounter )
{
UpLinkCounter = txPacketCounter;
IsUpLinkCounterFixed = true;
}
void LoRaMac::LoRaMacTestSetDutyCycleOn( bool enable )
{
VerifyParams_t verify;
verify.DutyCycle = enable;
if(lora_phy->verify(&verify, PHY_DUTY_CYCLE) == true)
{
DutyCycleOn = enable;
}
}
void LoRaMac::LoRaMacTestSetChannel( uint8_t channel )
{
Channel = channel;
}
#endif