mirror of https://github.com/ARMmbed/mbed-os.git
576 lines
18 KiB
C++
576 lines
18 KiB
C++
/* mbed Microcontroller Library
|
|
* Copyright (c) 2018 ARM Limited
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#ifndef MBED_CRC_API_H
|
|
#define MBED_CRC_API_H
|
|
|
|
#include "drivers/internal/TableCRC.h"
|
|
#include "hal/crc_api.h"
|
|
#include "platform/mbed_assert.h"
|
|
#include "platform/SingletonPtr.h"
|
|
#include "platform/PlatformMutex.h"
|
|
|
|
/* This is an invalid warning from the compiler for the below section of code
|
|
if ((width < 8) && (NULL == _crc_table)) {
|
|
p_crc = (uint32_t)(p_crc << (8 - width));
|
|
}
|
|
Compiler warns of the shift operation with width as it is width=(std::uint8_t),
|
|
but we check for ( width < 8) before performing shift, so it should not be an issue.
|
|
*/
|
|
#if defined ( __CC_ARM )
|
|
#pragma diag_suppress 62 // Shift count is negative
|
|
#elif defined ( __GNUC__ )
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wshift-count-negative"
|
|
#elif defined (__ICCARM__)
|
|
#pragma diag_suppress=Pe062 // Shift count is negative
|
|
#endif
|
|
|
|
namespace mbed {
|
|
/** \addtogroup drivers-public-api */
|
|
/** @{*/
|
|
/**
|
|
* \defgroup drivers_MbedCRC MbedCRC class
|
|
* @{
|
|
*/
|
|
|
|
extern SingletonPtr<PlatformMutex> mbed_crc_mutex;
|
|
|
|
/** CRC object provides CRC generation through hardware or software
|
|
*
|
|
* CRC sums can be generated using three different methods: hardware, software ROM tables
|
|
* and bitwise computation. The mode used is selected automatically based on required
|
|
* polynomial and hardware capabilities. Any polynomial in standard form (`x^3 + x + 1`)
|
|
* can be used for computation, but custom ones can affect the performance.
|
|
*
|
|
* First choice is the hardware mode. The supported polynomials are hardware specific, and
|
|
* you need to consult your MCU manual to discover them. Next, ROM polynomial tables
|
|
* are tried (you can find list of supported polynomials here ::crc_polynomial). If the selected
|
|
* configuration is supported, it will accelerate the software computations. If ROM tables
|
|
* are not available for the selected polynomial, then CRC is computed at run time bit by bit
|
|
* for all data input.
|
|
* @note Synchronization level: Thread safe
|
|
*
|
|
* @tparam polynomial CRC polynomial value in hex
|
|
* @tparam width CRC polynomial width
|
|
*
|
|
* Example: Compute CRC data
|
|
* @code
|
|
*
|
|
* #include "mbed.h"
|
|
*
|
|
* int main() {
|
|
* MbedCRC<POLY_32BIT_ANSI, 32> ct;
|
|
*
|
|
* char test[] = "123456789";
|
|
* uint32_t crc = 0;
|
|
*
|
|
* printf("\nPolynomial = 0x%lx Width = %d \n", ct.get_polynomial(), ct.get_width());
|
|
*
|
|
* ct.compute((void *)test, strlen((const char*)test), &crc);
|
|
*
|
|
* printf("The CRC of data \"123456789\" is : 0x%lx\n", crc);
|
|
* return 0;
|
|
* }
|
|
* @endcode
|
|
* Example: Compute CRC with data available in parts
|
|
* @code
|
|
*
|
|
* #include "mbed.h"
|
|
* int main() {
|
|
* MbedCRC<POLY_32BIT_ANSI, 32> ct;
|
|
*
|
|
* char test[] = "123456789";
|
|
* uint32_t crc = 0;
|
|
*
|
|
* printf("\nPolynomial = 0x%lx Width = %d \n", ct.get_polynomial(), ct.get_width());
|
|
* ct.compute_partial_start(&crc);
|
|
* ct.compute_partial((void *)&test, 4, &crc);
|
|
* ct.compute_partial((void *)&test[4], 5, &crc);
|
|
* ct.compute_partial_stop(&crc);
|
|
* printf("The CRC of data \"123456789\" is : 0x%lx\n", crc);
|
|
* return 0;
|
|
* }
|
|
* @endcode
|
|
*/
|
|
template <uint32_t polynomial = POLY_32BIT_ANSI, uint8_t width = 32>
|
|
class MbedCRC {
|
|
|
|
public:
|
|
enum CrcMode {
|
|
#if DEVICE_CRC
|
|
HARDWARE = 0,
|
|
#endif
|
|
TABLE = 1,
|
|
BITWISE
|
|
};
|
|
|
|
typedef uint64_t crc_data_size_t;
|
|
|
|
/** Lifetime of CRC object
|
|
*
|
|
* @param initial_xor Inital value/seed to Xor
|
|
* @param final_xor Final Xor value
|
|
* @param reflect_data
|
|
* @param reflect_remainder
|
|
* @note Default constructor without any arguments is valid only for supported CRC polynomials. :: crc_polynomial_t
|
|
* MbedCRC <POLY_7BIT_SD, 7> ct; --- Valid POLY_7BIT_SD
|
|
* MbedCRC <0x1021, 16> ct; --- Valid POLY_16BIT_CCITT
|
|
* MbedCRC <POLY_16BIT_CCITT, 32> ct; --- Invalid, compilation error
|
|
* MbedCRC <POLY_16BIT_CCITT, 32> ct (i,f,rd,rr) Constructor can be used for not supported polynomials
|
|
* MbedCRC<POLY_16BIT_CCITT, 16> sd(0, 0, false, false); Constructor can also be used for supported
|
|
* polynomials with different intial/final/reflect values
|
|
*
|
|
*/
|
|
MbedCRC(uint32_t initial_xor, uint32_t final_xor, bool reflect_data, bool reflect_remainder) :
|
|
_initial_value(initial_xor), _final_xor(final_xor), _reflect_data(reflect_data),
|
|
_reflect_remainder(reflect_remainder)
|
|
{
|
|
mbed_crc_ctor();
|
|
}
|
|
MbedCRC();
|
|
virtual ~MbedCRC()
|
|
{
|
|
// Do nothing
|
|
}
|
|
|
|
/** Compute CRC for the data input
|
|
* Compute CRC performs the initialization, computation and collection of
|
|
* final CRC.
|
|
*
|
|
* @param buffer Data bytes
|
|
* @param size Size of data
|
|
* @param crc CRC is the output value
|
|
* @return 0 on success, negative error code on failure
|
|
*/
|
|
int32_t compute(const void *buffer, crc_data_size_t size, uint32_t *crc)
|
|
{
|
|
MBED_ASSERT(crc != NULL);
|
|
int32_t status = 0;
|
|
|
|
status = compute_partial_start(crc);
|
|
if (0 != status) {
|
|
unlock();
|
|
return status;
|
|
}
|
|
|
|
status = compute_partial(buffer, size, crc);
|
|
if (0 != status) {
|
|
unlock();
|
|
return status;
|
|
}
|
|
|
|
status = compute_partial_stop(crc);
|
|
if (0 != status) {
|
|
*crc = 0;
|
|
}
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
/** Compute partial CRC for the data input.
|
|
*
|
|
* CRC data if not available fully, CRC can be computed in parts with available data.
|
|
*
|
|
* In case of hardware, intermediate values and states are saved by hardware. Mutex
|
|
* locking is used to serialize access to hardware CRC.
|
|
*
|
|
* In case of software CRC, previous CRC output should be passed as argument to the
|
|
* current compute_partial call. Please note the intermediate CRC value is maintained by
|
|
* application and not the driver.
|
|
*
|
|
* @pre: Call `compute_partial_start` to start the partial CRC calculation.
|
|
* @post: Call `compute_partial_stop` to get the final CRC value.
|
|
*
|
|
* @param buffer Data bytes
|
|
* @param size Size of data
|
|
* @param crc CRC value is intermediate CRC value filled by API.
|
|
* @return 0 on success or a negative error code on failure
|
|
* @note: CRC as output in compute_partial is not final CRC value, call `compute_partial_stop`
|
|
* to get final correct CRC value.
|
|
*/
|
|
int32_t compute_partial(const void *buffer, crc_data_size_t size, uint32_t *crc)
|
|
{
|
|
int32_t status = 0;
|
|
|
|
switch (_mode) {
|
|
#if DEVICE_CRC
|
|
case HARDWARE:
|
|
hal_crc_compute_partial(static_cast<const uint8_t *>(buffer), size);
|
|
*crc = 0;
|
|
break;
|
|
#endif
|
|
case TABLE:
|
|
status = table_compute_partial(buffer, size, crc);
|
|
break;
|
|
case BITWISE:
|
|
status = bitwise_compute_partial(buffer, size, crc);
|
|
break;
|
|
default:
|
|
status = -1;
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/** Compute partial start, indicate start of partial computation.
|
|
*
|
|
* This API should be called before performing any partial computation
|
|
* with compute_partial API.
|
|
*
|
|
* @param crc Initial CRC value set by the API
|
|
* @return 0 on success or a negative in case of failure
|
|
* @note: CRC is an out parameter and must be reused with compute_partial
|
|
* and `compute_partial_stop` without any modifications in application.
|
|
*/
|
|
int32_t compute_partial_start(uint32_t *crc)
|
|
{
|
|
MBED_ASSERT(crc != NULL);
|
|
|
|
#if DEVICE_CRC
|
|
if (_mode == HARDWARE) {
|
|
lock();
|
|
crc_mbed_config_t config;
|
|
config.polynomial = polynomial;
|
|
config.width = width;
|
|
config.initial_xor = _initial_value;
|
|
config.final_xor = _final_xor;
|
|
config.reflect_in = _reflect_data;
|
|
config.reflect_out = _reflect_remainder;
|
|
|
|
hal_crc_compute_partial_start(&config);
|
|
}
|
|
#endif
|
|
|
|
*crc = _initial_value;
|
|
return 0;
|
|
}
|
|
|
|
/** Get the final CRC value of partial computation.
|
|
*
|
|
* CRC value available in partial computation is not correct CRC, as some
|
|
* algorithms require remainder to be reflected and final value to be XORed
|
|
* This API is used to perform final computation to get correct CRC value.
|
|
*
|
|
* @param crc CRC result
|
|
* @return 0 on success or a negative in case of failure.
|
|
*/
|
|
int32_t compute_partial_stop(uint32_t *crc)
|
|
{
|
|
MBED_ASSERT(crc != NULL);
|
|
|
|
#if DEVICE_CRC
|
|
if (_mode == HARDWARE) {
|
|
*crc = hal_crc_get_result();
|
|
unlock();
|
|
return 0;
|
|
}
|
|
#endif
|
|
uint32_t p_crc = *crc;
|
|
if ((width < 8) && (NULL == _crc_table)) {
|
|
p_crc = (uint32_t)(p_crc << (8 - width));
|
|
}
|
|
// Optimized algorithm for 32BitANSI does not need additional reflect_remainder
|
|
if ((TABLE == _mode) && (POLY_32BIT_REV_ANSI == polynomial)) {
|
|
*crc = (p_crc ^ _final_xor) & get_crc_mask();
|
|
} else {
|
|
*crc = (reflect_remainder(p_crc) ^ _final_xor) & get_crc_mask();
|
|
}
|
|
unlock();
|
|
return 0;
|
|
}
|
|
|
|
/** Get the current CRC polynomial.
|
|
*
|
|
* @return Polynomial value
|
|
*/
|
|
uint32_t get_polynomial(void) const
|
|
{
|
|
return polynomial;
|
|
}
|
|
|
|
/** Get the current CRC width
|
|
*
|
|
* @return CRC width
|
|
*/
|
|
uint8_t get_width(void) const
|
|
{
|
|
return width;
|
|
}
|
|
|
|
#if !defined(DOXYGEN_ONLY)
|
|
private:
|
|
uint32_t _initial_value;
|
|
uint32_t _final_xor;
|
|
bool _reflect_data;
|
|
bool _reflect_remainder;
|
|
uint32_t *_crc_table;
|
|
CrcMode _mode;
|
|
|
|
/** Acquire exclusive access to CRC hardware/software.
|
|
*/
|
|
void lock()
|
|
{
|
|
#if DEVICE_CRC
|
|
if (_mode == HARDWARE) {
|
|
mbed_crc_mutex->lock();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/** Release exclusive access to CRC hardware/software.
|
|
*/
|
|
virtual void unlock()
|
|
{
|
|
#if DEVICE_CRC
|
|
if (_mode == HARDWARE) {
|
|
mbed_crc_mutex->unlock();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/** Get the current CRC data size.
|
|
*
|
|
* @return CRC data size in bytes
|
|
*/
|
|
uint8_t get_data_size(void) const
|
|
{
|
|
return (width <= 8 ? 1 : (width <= 16 ? 2 : 4));
|
|
}
|
|
|
|
/** Get the top bit of current CRC.
|
|
*
|
|
* @return Top bit is set high for respective data width of current CRC
|
|
* Top bit for CRC width less then 8 bits will be set as 8th bit.
|
|
*/
|
|
uint32_t get_top_bit(void) const
|
|
{
|
|
return (width < 8 ? (1u << 7) : (uint32_t)(1ul << (width - 1)));
|
|
}
|
|
|
|
/** Get the CRC data mask.
|
|
*
|
|
* @return CRC data mask is generated based on current CRC width
|
|
*/
|
|
uint32_t get_crc_mask(void) const
|
|
{
|
|
return (width < 8 ? ((1u << 8) - 1) : (uint32_t)((uint64_t)(1ull << width) - 1));
|
|
}
|
|
|
|
/** Final value of CRC is reflected.
|
|
*
|
|
* @param data final crc value, which should be reflected
|
|
* @return Reflected CRC value
|
|
*/
|
|
uint32_t reflect_remainder(uint32_t data) const
|
|
{
|
|
if (_reflect_remainder) {
|
|
uint32_t reflection = 0x0;
|
|
uint8_t const nBits = (width < 8 ? 8 : width);
|
|
|
|
for (uint8_t bit = 0; bit < nBits; ++bit) {
|
|
if (data & 0x01) {
|
|
reflection |= (1 << ((nBits - 1) - bit));
|
|
}
|
|
data = (data >> 1);
|
|
}
|
|
return (reflection);
|
|
} else {
|
|
return data;
|
|
}
|
|
}
|
|
|
|
/** Data bytes are reflected.
|
|
*
|
|
* @param data value to be reflected
|
|
* @return Reflected data value
|
|
*/
|
|
uint32_t reflect_bytes(uint32_t data) const
|
|
{
|
|
if (_reflect_data) {
|
|
uint32_t reflection = 0x0;
|
|
|
|
for (uint8_t bit = 0; bit < 8; ++bit) {
|
|
if (data & 0x01) {
|
|
reflection |= (1 << (7 - bit));
|
|
}
|
|
data = (data >> 1);
|
|
}
|
|
return (reflection);
|
|
} else {
|
|
return data;
|
|
}
|
|
}
|
|
|
|
/** Bitwise CRC computation.
|
|
*
|
|
* @param buffer data buffer
|
|
* @param size size of the data
|
|
* @param crc CRC value is filled in, but the value is not the final
|
|
* @return 0 on success or a negative error code on failure
|
|
*/
|
|
int32_t bitwise_compute_partial(const void *buffer, crc_data_size_t size, uint32_t *crc) const
|
|
{
|
|
MBED_ASSERT(crc != NULL);
|
|
|
|
const uint8_t *data = static_cast<const uint8_t *>(buffer);
|
|
uint32_t p_crc = *crc;
|
|
|
|
if (width < 8) {
|
|
uint8_t data_byte;
|
|
for (crc_data_size_t byte = 0; byte < size; byte++) {
|
|
data_byte = reflect_bytes(data[byte]);
|
|
for (uint8_t bit = 8; bit > 0; --bit) {
|
|
p_crc <<= 1;
|
|
if ((data_byte ^ p_crc) & get_top_bit()) {
|
|
p_crc ^= polynomial;
|
|
}
|
|
data_byte <<= 1;
|
|
}
|
|
}
|
|
} else {
|
|
for (crc_data_size_t byte = 0; byte < size; byte++) {
|
|
p_crc ^= (reflect_bytes(data[byte]) << (width - 8));
|
|
|
|
// Perform modulo-2 division, a bit at a time
|
|
for (uint8_t bit = 8; bit > 0; --bit) {
|
|
if (p_crc & get_top_bit()) {
|
|
p_crc = (p_crc << 1) ^ polynomial;
|
|
} else {
|
|
p_crc = (p_crc << 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
*crc = p_crc & get_crc_mask();
|
|
return 0;
|
|
}
|
|
|
|
/** CRC computation using ROM tables.
|
|
*
|
|
* @param buffer data buffer
|
|
* @param size size of the data
|
|
* @param crc CRC value is filled in, but the value is not the final
|
|
* @return 0 on success or a negative error code on failure
|
|
*/
|
|
int32_t table_compute_partial(const void *buffer, crc_data_size_t size, uint32_t *crc) const
|
|
{
|
|
MBED_ASSERT(crc != NULL);
|
|
|
|
const uint8_t *data = static_cast<const uint8_t *>(buffer);
|
|
uint32_t p_crc = *crc;
|
|
uint8_t data_byte = 0;
|
|
|
|
if (width <= 8) {
|
|
uint8_t *crc_table = (uint8_t *)_crc_table;
|
|
for (crc_data_size_t byte = 0; byte < size; byte++) {
|
|
data_byte = reflect_bytes(data[byte]) ^ p_crc;
|
|
p_crc = crc_table[data_byte];
|
|
}
|
|
} else if (width <= 16) {
|
|
uint16_t *crc_table = (uint16_t *)_crc_table;
|
|
for (crc_data_size_t byte = 0; byte < size; byte++) {
|
|
data_byte = reflect_bytes(data[byte]) ^ (p_crc >> (width - 8));
|
|
p_crc = crc_table[data_byte] ^ (p_crc << 8);
|
|
}
|
|
} else {
|
|
uint32_t *crc_table = (uint32_t *)_crc_table;
|
|
if (POLY_32BIT_REV_ANSI == polynomial) {
|
|
for (crc_data_size_t i = 0; i < size; i++) {
|
|
p_crc = (p_crc >> 4) ^ crc_table[(p_crc ^ (data[i] >> 0)) & 0xf];
|
|
p_crc = (p_crc >> 4) ^ crc_table[(p_crc ^ (data[i] >> 4)) & 0xf];
|
|
}
|
|
} else {
|
|
for (crc_data_size_t byte = 0; byte < size; byte++) {
|
|
data_byte = reflect_bytes(data[byte]) ^ (p_crc >> (width - 8));
|
|
p_crc = crc_table[data_byte] ^ (p_crc << 8);
|
|
}
|
|
}
|
|
}
|
|
*crc = p_crc & get_crc_mask();
|
|
return 0;
|
|
}
|
|
|
|
/** Constructor init called from all specialized cases of constructor.
|
|
* Note: All constructor common code should be in this function.
|
|
*/
|
|
void mbed_crc_ctor(void)
|
|
{
|
|
MBED_STATIC_ASSERT(width <= 32, "Max 32-bit CRC supported");
|
|
|
|
#if DEVICE_CRC
|
|
if (POLY_32BIT_REV_ANSI == polynomial) {
|
|
_crc_table = (uint32_t *)Table_CRC_32bit_Rev_ANSI;
|
|
_mode = TABLE;
|
|
return;
|
|
}
|
|
crc_mbed_config_t config;
|
|
config.polynomial = polynomial;
|
|
config.width = width;
|
|
config.initial_xor = _initial_value;
|
|
config.final_xor = _final_xor;
|
|
config.reflect_in = _reflect_data;
|
|
config.reflect_out = _reflect_remainder;
|
|
|
|
if (hal_crc_is_supported(&config)) {
|
|
_mode = HARDWARE;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
switch (polynomial) {
|
|
case POLY_32BIT_ANSI:
|
|
_crc_table = (uint32_t *)Table_CRC_32bit_ANSI;
|
|
break;
|
|
case POLY_32BIT_REV_ANSI:
|
|
_crc_table = (uint32_t *)Table_CRC_32bit_Rev_ANSI;
|
|
break;
|
|
case POLY_8BIT_CCITT:
|
|
_crc_table = (uint32_t *)Table_CRC_8bit_CCITT;
|
|
break;
|
|
case POLY_7BIT_SD:
|
|
_crc_table = (uint32_t *)Table_CRC_7Bit_SD;
|
|
break;
|
|
case POLY_16BIT_CCITT:
|
|
_crc_table = (uint32_t *)Table_CRC_16bit_CCITT;
|
|
break;
|
|
case POLY_16BIT_IBM:
|
|
_crc_table = (uint32_t *)Table_CRC_16bit_IBM;
|
|
break;
|
|
default:
|
|
_crc_table = NULL;
|
|
break;
|
|
}
|
|
_mode = (_crc_table != NULL) ? TABLE : BITWISE;
|
|
}
|
|
#endif
|
|
};
|
|
|
|
#if defined ( __CC_ARM )
|
|
#elif defined ( __GNUC__ )
|
|
#pragma GCC diagnostic pop
|
|
#elif defined (__ICCARM__)
|
|
#endif
|
|
|
|
/** @}*/
|
|
/** @}*/
|
|
|
|
} // namespace mbed
|
|
|
|
#endif
|