mbed-os/events/equeue/equeue.c

575 lines
14 KiB
C

/*
* Flexible event queue for dispatching events
*
* Copyright (c) 2016 Christopher Haster
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "equeue/equeue.h"
#include <stdlib.h>
#include <string.h>
// calculate the relative-difference between absolute times while
// correctly handling overflow conditions
static inline int equeue_tickdiff(unsigned a, unsigned b) {
return (int)(unsigned)(a - b);
}
// calculate the relative-difference between absolute times, but
// also clamp to zero, resulting in only non-zero values.
static inline int equeue_clampdiff(unsigned a, unsigned b) {
int diff = equeue_tickdiff(a, b);
return ~(diff >> (8*sizeof(int)-1)) & diff;
}
// Increment the unique id in an event, hiding the event from cancel
static inline void equeue_incid(equeue_t *q, struct equeue_event *e) {
e->id += 1;
if (!(e->id << q->npw2)) {
e->id = 1;
}
}
// equeue lifetime management
int equeue_create(equeue_t *q, size_t size) {
// dynamically allocate the specified buffer
void *buffer = malloc(size);
if (!buffer) {
return -1;
}
int err = equeue_create_inplace(q, size, buffer);
q->allocated = buffer;
return err;
}
int equeue_create_inplace(equeue_t *q, size_t size, void *buffer) {
// setup queue around provided buffer
q->buffer = buffer;
q->allocated = 0;
q->npw2 = 0;
for (unsigned s = size; s; s >>= 1) {
q->npw2++;
}
q->chunks = 0;
q->slab.size = size;
q->slab.data = buffer;
q->queue = 0;
q->tick = equeue_tick();
q->generation = 0;
q->breaks = 0;
q->background.active = false;
q->background.update = 0;
q->background.timer = 0;
// initialize platform resources
int err;
err = equeue_sema_create(&q->eventsema);
if (err < 0) {
return err;
}
err = equeue_mutex_create(&q->queuelock);
if (err < 0) {
return err;
}
err = equeue_mutex_create(&q->memlock);
if (err < 0) {
return err;
}
return 0;
}
void equeue_destroy(equeue_t *q) {
// call destructors on pending events
for (struct equeue_event *es = q->queue; es; es = es->next) {
for (struct equeue_event *e = q->queue; e; e = e->sibling) {
if (e->dtor) {
e->dtor(e + 1);
}
}
}
// notify background timer
if (q->background.update) {
q->background.update(q->background.timer, -1);
}
// clean up platform resources + memory
equeue_mutex_destroy(&q->memlock);
equeue_mutex_destroy(&q->queuelock);
equeue_sema_destroy(&q->eventsema);
free(q->allocated);
}
// equeue chunk allocation functions
static struct equeue_event *equeue_mem_alloc(equeue_t *q, size_t size) {
// add event overhead
size += sizeof(struct equeue_event);
size = (size + sizeof(void*)-1) & ~(sizeof(void*)-1);
equeue_mutex_lock(&q->memlock);
// check if a good chunk is available
for (struct equeue_event **p = &q->chunks; *p; p = &(*p)->next) {
if ((*p)->size >= size) {
struct equeue_event *e = *p;
if (e->sibling) {
*p = e->sibling;
(*p)->next = e->next;
} else {
*p = e->next;
}
equeue_mutex_unlock(&q->memlock);
return e;
}
}
// otherwise allocate a new chunk out of the slab
if (q->slab.size >= size) {
struct equeue_event *e = (struct equeue_event *)q->slab.data;
q->slab.data += size;
q->slab.size -= size;
e->size = size;
e->id = 1;
equeue_mutex_unlock(&q->memlock);
return e;
}
equeue_mutex_unlock(&q->memlock);
return 0;
}
static void equeue_mem_dealloc(equeue_t *q, struct equeue_event *e) {
equeue_mutex_lock(&q->memlock);
// stick chunk into list of chunks
struct equeue_event **p = &q->chunks;
while (*p && (*p)->size < e->size) {
p = &(*p)->next;
}
if (*p && (*p)->size == e->size) {
e->sibling = *p;
e->next = (*p)->next;
} else {
e->sibling = 0;
e->next = *p;
}
*p = e;
equeue_mutex_unlock(&q->memlock);
}
void *equeue_alloc(equeue_t *q, size_t size) {
struct equeue_event *e = equeue_mem_alloc(q, size);
if (!e) {
return 0;
}
e->target = 0;
e->period = -1;
e->dtor = 0;
return e + 1;
}
void equeue_dealloc(equeue_t *q, void *p) {
struct equeue_event *e = (struct equeue_event*)p - 1;
if (e->dtor) {
e->dtor(e+1);
}
equeue_mem_dealloc(q, e);
}
// equeue scheduling functions
static int equeue_enqueue(equeue_t *q, struct equeue_event *e, unsigned tick) {
// setup event and hash local id with buffer offset for unique id
int id = (e->id << q->npw2) | ((unsigned char *)e - q->buffer);
e->target = tick + equeue_clampdiff(e->target, tick);
e->generation = q->generation;
equeue_mutex_lock(&q->queuelock);
// find the event slot
struct equeue_event **p = &q->queue;
while (*p && equeue_tickdiff((*p)->target, e->target) < 0) {
p = &(*p)->next;
}
// insert at head in slot
if (*p && (*p)->target == e->target) {
e->next = (*p)->next;
if (e->next) {
e->next->ref = &e->next;
}
e->sibling = *p;
e->sibling->ref = &e->sibling;
} else {
e->next = *p;
if (e->next) {
e->next->ref = &e->next;
}
e->sibling = 0;
}
*p = e;
e->ref = p;
// notify background timer
if ((q->background.update && q->background.active) &&
(q->queue == e && !e->sibling)) {
q->background.update(q->background.timer,
equeue_clampdiff(e->target, tick));
}
equeue_mutex_unlock(&q->queuelock);
return id;
}
static struct equeue_event *equeue_unqueue(equeue_t *q, int id) {
// decode event from unique id and check that the local id matches
struct equeue_event *e = (struct equeue_event *)
&q->buffer[id & ((1 << q->npw2)-1)];
equeue_mutex_lock(&q->queuelock);
if (e->id != id >> q->npw2) {
equeue_mutex_unlock(&q->queuelock);
return 0;
}
// clear the event and check if already in-flight
e->cb = 0;
e->period = -1;
int diff = equeue_tickdiff(e->target, q->tick);
if (diff < 0 || (diff == 0 && e->generation != q->generation)) {
equeue_mutex_unlock(&q->queuelock);
return 0;
}
// disentangle from queue
if (e->sibling) {
e->sibling->next = e->next;
if (e->sibling->next) {
e->sibling->next->ref = &e->sibling->next;
}
*e->ref = e->sibling;
e->sibling->ref = e->ref;
} else {
*e->ref = e->next;
if (e->next) {
e->next->ref = e->ref;
}
}
equeue_incid(q, e);
equeue_mutex_unlock(&q->queuelock);
return e;
}
static struct equeue_event *equeue_dequeue(equeue_t *q, unsigned target) {
equeue_mutex_lock(&q->queuelock);
// find all expired events and mark a new generation
q->generation += 1;
if (equeue_tickdiff(q->tick, target) <= 0) {
q->tick = target;
}
struct equeue_event *head = q->queue;
struct equeue_event **p = &head;
while (*p && equeue_tickdiff((*p)->target, target) <= 0) {
p = &(*p)->next;
}
q->queue = *p;
if (q->queue) {
q->queue->ref = &q->queue;
}
*p = 0;
equeue_mutex_unlock(&q->queuelock);
// reverse and flatten each slot to match insertion order
struct equeue_event **tail = &head;
struct equeue_event *ess = head;
while (ess) {
struct equeue_event *es = ess;
ess = es->next;
struct equeue_event *prev = 0;
for (struct equeue_event *e = es; e; e = e->sibling) {
e->next = prev;
prev = e;
}
*tail = prev;
tail = &es->next;
}
return head;
}
int equeue_post(equeue_t *q, void (*cb)(void*), void *p) {
struct equeue_event *e = (struct equeue_event*)p - 1;
unsigned tick = equeue_tick();
e->cb = cb;
e->target = tick + e->target;
int id = equeue_enqueue(q, e, tick);
equeue_sema_signal(&q->eventsema);
return id;
}
void equeue_cancel(equeue_t *q, int id) {
if (!id) {
return;
}
struct equeue_event *e = equeue_unqueue(q, id);
if (e) {
equeue_dealloc(q, e + 1);
}
}
void equeue_break(equeue_t *q) {
equeue_mutex_lock(&q->queuelock);
q->breaks++;
equeue_mutex_unlock(&q->queuelock);
equeue_sema_signal(&q->eventsema);
}
void equeue_dispatch(equeue_t *q, int ms) {
unsigned tick = equeue_tick();
unsigned timeout = tick + ms;
q->background.active = false;
while (1) {
// collect all the available events and next deadline
struct equeue_event *es = equeue_dequeue(q, tick);
// dispatch events
while (es) {
struct equeue_event *e = es;
es = e->next;
// actually dispatch the callbacks
void (*cb)(void *) = e->cb;
if (cb) {
cb(e + 1);
}
// reenqueue periodic events or deallocate
if (e->period >= 0) {
e->target += e->period;
equeue_enqueue(q, e, equeue_tick());
} else {
equeue_incid(q, e);
equeue_dealloc(q, e+1);
}
}
int deadline = -1;
tick = equeue_tick();
// check if we should stop dispatching soon
if (ms >= 0) {
deadline = equeue_tickdiff(timeout, tick);
if (deadline <= 0) {
// update background timer if necessary
if (q->background.update) {
equeue_mutex_lock(&q->queuelock);
if (q->background.update && q->queue) {
q->background.update(q->background.timer,
equeue_clampdiff(q->queue->target, tick));
}
q->background.active = true;
equeue_mutex_unlock(&q->queuelock);
}
return;
}
}
// find closest deadline
equeue_mutex_lock(&q->queuelock);
if (q->queue) {
int diff = equeue_clampdiff(q->queue->target, tick);
if ((unsigned)diff < (unsigned)deadline) {
deadline = diff;
}
}
equeue_mutex_unlock(&q->queuelock);
// wait for events
equeue_sema_wait(&q->eventsema, deadline);
// check if we were notified to break out of dispatch
if (q->breaks) {
equeue_mutex_lock(&q->queuelock);
if (q->breaks > 0) {
q->breaks--;
equeue_mutex_unlock(&q->queuelock);
return;
}
equeue_mutex_unlock(&q->queuelock);
}
// update tick for next iteration
tick = equeue_tick();
}
}
// event functions
void equeue_event_delay(void *p, int ms) {
struct equeue_event *e = (struct equeue_event*)p - 1;
e->target = ms;
}
void equeue_event_period(void *p, int ms) {
struct equeue_event *e = (struct equeue_event*)p - 1;
e->period = ms;
}
void equeue_event_dtor(void *p, void (*dtor)(void *)) {
struct equeue_event *e = (struct equeue_event*)p - 1;
e->dtor = dtor;
}
// simple callbacks
struct ecallback {
void (*cb)(void*);
void *data;
};
static void ecallback_dispatch(void *p) {
struct ecallback *e = (struct ecallback*)p;
e->cb(e->data);
}
int equeue_call(equeue_t *q, void (*cb)(void*), void *data) {
struct ecallback *e = equeue_alloc(q, sizeof(struct ecallback));
if (!e) {
return 0;
}
e->cb = cb;
e->data = data;
return equeue_post(q, ecallback_dispatch, e);
}
int equeue_call_in(equeue_t *q, int ms, void (*cb)(void*), void *data) {
struct ecallback *e = equeue_alloc(q, sizeof(struct ecallback));
if (!e) {
return 0;
}
equeue_event_delay(e, ms);
e->cb = cb;
e->data = data;
return equeue_post(q, ecallback_dispatch, e);
}
int equeue_call_every(equeue_t *q, int ms, void (*cb)(void*), void *data) {
struct ecallback *e = equeue_alloc(q, sizeof(struct ecallback));
if (!e) {
return 0;
}
equeue_event_delay(e, ms);
equeue_event_period(e, ms);
e->cb = cb;
e->data = data;
return equeue_post(q, ecallback_dispatch, e);
}
// backgrounding
void equeue_background(equeue_t *q,
void (*update)(void *timer, int ms), void *timer) {
equeue_mutex_lock(&q->queuelock);
if (q->background.update) {
q->background.update(q->background.timer, -1);
}
q->background.update = update;
q->background.timer = timer;
if (q->background.update && q->queue) {
q->background.update(q->background.timer,
equeue_clampdiff(q->queue->target, equeue_tick()));
}
q->background.active = true;
equeue_mutex_unlock(&q->queuelock);
}
struct equeue_chain_context {
equeue_t *q;
equeue_t *target;
int id;
};
static void equeue_chain_dispatch(void *p) {
equeue_dispatch((equeue_t *)p, 0);
}
static void equeue_chain_update(void *p, int ms) {
struct equeue_chain_context *c = (struct equeue_chain_context *)p;
equeue_cancel(c->target, c->id);
if (ms >= 0) {
c->id = equeue_call_in(c->target, ms, equeue_chain_dispatch, c->q);
} else {
equeue_dealloc(c->target, c);
}
}
void equeue_chain(equeue_t *q, equeue_t *target) {
if (!target) {
equeue_background(q, 0, 0);
return;
}
struct equeue_chain_context *c = equeue_alloc(q,
sizeof(struct equeue_chain_context));
c->q = q;
c->target = target;
c->id = 0;
equeue_background(q, equeue_chain_update, c);
}