mbed-os/TESTS/mbedmicro-rtos-mbed/mutex/main.cpp

111 lines
3.5 KiB
C++

#include "mbed.h"
#include "greentea-client/test_env.h"
#include "rtos.h"
#if defined(MBED_RTOS_SINGLE_THREAD)
#error [NOT_SUPPORTED] test not supported
#endif
#define THREAD_DELAY 50
#define SIGNALS_TO_EMIT 100
/*
* The stack size is defined in cmsis_os.h mainly dependent on the underlying toolchain and
* the C standard library. For GCC, ARM_STD and IAR it is defined with a size of 2048 bytes
* and for ARM_MICRO 512. Because of reduce RAM size some targets need a reduced stacksize.
*/
#if (defined(TARGET_STM32L053R8) || defined(TARGET_STM32L053C8)) && defined(TOOLCHAIN_GCC)
#define STACK_SIZE DEFAULT_STACK_SIZE/4
#elif (defined(TARGET_STM32F030R8) || defined(TARGET_STM32F070RB)) && defined(TOOLCHAIN_GCC)
#define STACK_SIZE DEFAULT_STACK_SIZE/4
#elif defined(TARGET_STM32F334R8) && defined(TOOLCHAIN_IAR)
#define STACK_SIZE DEFAULT_STACK_SIZE/4
#elif defined(TARGET_STM32F030R8) && defined(TOOLCHAIN_IAR)
#define STACK_SIZE DEFAULT_STACK_SIZE/4
#elif defined(TARGET_STM32F070RB) && defined(TOOLCHAIN_IAR)
#define STACK_SIZE DEFAULT_STACK_SIZE/2
#elif defined(TARGET_STM32F072RB) && defined(TOOLCHAIN_IAR)
#define STACK_SIZE DEFAULT_STACK_SIZE/2
#elif defined(TARGET_STM32F302R8) && defined(TOOLCHAIN_IAR)
#define STACK_SIZE DEFAULT_STACK_SIZE/2
#elif defined(TARGET_STM32F303K8) && defined(TOOLCHAIN_IAR)
#define STACK_SIZE DEFAULT_STACK_SIZE/2
#elif (defined(TARGET_EFM32HG_STK3400)) && !defined(TOOLCHAIN_ARM_MICRO)
#define STACK_SIZE 512
#elif (defined(TARGET_EFM32LG_STK3600) || defined(TARGET_EFM32WG_STK3800) || defined(TARGET_EFM32PG_STK3401)) && !defined(TOOLCHAIN_ARM_MICRO)
#define STACK_SIZE 768
#elif (defined(TARGET_EFM32GG_STK3700)) && !defined(TOOLCHAIN_ARM_MICRO)
#define STACK_SIZE 1536
#elif defined(TARGET_MCU_NRF51822) || defined(TARGET_MCU_NRF52832)
#define STACK_SIZE 1024
#else
#define STACK_SIZE DEFAULT_STACK_SIZE
#endif
void print_char(char c = '*') {
printf("%c", c);
fflush(stdout);
}
Mutex stdio_mutex;
DigitalOut led(LED1);
volatile int change_counter = 0;
volatile bool changing_counter = false;
volatile bool mutex_defect = false;
bool manipulate_protected_zone(const int thread_delay) {
bool result = true;
stdio_mutex.lock(); // LOCK
if (changing_counter == true) {
// 'e' stands for error. If changing_counter is true access is not exclusively
print_char('e');
result = false;
mutex_defect = true;
}
changing_counter = true;
// Some action on protected
led = !led;
change_counter++;
print_char('.');
Thread::wait(thread_delay);
changing_counter = false;
stdio_mutex.unlock(); // UNLOCK
return result;
}
void test_thread(void const *args) {
const int thread_delay = int(args);
while (true) {
manipulate_protected_zone(thread_delay);
}
}
int main() {
GREENTEA_SETUP(20, "default_auto");
const int t1_delay = THREAD_DELAY * 1;
const int t2_delay = THREAD_DELAY * 2;
const int t3_delay = THREAD_DELAY * 3;
Thread t2(test_thread, (void *)t2_delay, osPriorityNormal, STACK_SIZE);
Thread t3(test_thread, (void *)t3_delay, osPriorityNormal, STACK_SIZE);
while (true) {
// Thread 1 action
Thread::wait(t1_delay);
manipulate_protected_zone(t1_delay);
if (change_counter >= SIGNALS_TO_EMIT or mutex_defect == true) {
t2.terminate();
t3.terminate();
break;
}
}
fflush(stdout);
GREENTEA_TESTSUITE_RESULT(!mutex_defect);
return 0;
}