mbed-os/TESTS/mbed_hal/common_tickers/main.cpp

608 lines
20 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed.h"
#include "greentea-client/test_env.h"
#include "unity.h"
#include "utest.h"
#include "ticker_api_tests.h"
#include "hal/us_ticker_api.h"
#include "hal/lp_ticker_api.h"
#include "hal/mbed_lp_ticker_wrapper.h"
#ifdef __cplusplus
extern "C" {
#endif
#include "os_tick.h"
#ifdef __cplusplus
}
#endif // __cplusplus
#if !DEVICE_USTICKER
#error [NOT_SUPPORTED] test not supported
#endif
#define US_PER_S 1000000
#define FORCE_OVERFLOW_TEST (false)
#define TICKER_INT_VAL 500
#define TICKER_DELTA 10
#define LP_TICKER_OVERFLOW_DELTA1 0 // this will allow to detect that ticker counter rollovers to 0
#define LP_TICKER_OVERFLOW_DELTA2 0
#define US_TICKER_OVERFLOW_DELTA1 50
#define US_TICKER_OVERFLOW_DELTA2 60
#define TICKER_100_TICKS 100
#define TICKER_500_TICKS 500
#define MAX_FUNC_EXEC_TIME_US 30
#define DELTA_FUNC_EXEC_TIME_US 5
#define NUM_OF_CALLS 100
#define NUM_OF_CYCLES 100000
#define US_TICKER_OV_LIMIT 35000
#define LP_TICKER_OV_LIMIT 4000
using namespace utest::v1;
volatile int intFlag = 0;
const ticker_interface_t *intf;
ticker_irq_handler_type prev_irq_handler;
/* Some targets might fail overflow test uncertainly due to getting trapped in busy
* intf->read() loop. In the loop, some ticker values wouldn't get caught in time
* because of:
* 1. Lower CPU clock
* 2. Compiled code with worse performance
* 3. Interrupt at that time
*
* We fix it by checking small ticker value range rather than one exact ticker point
* in near overflow check.
*/
unsigned int ticker_overflow_delta1;
unsigned int ticker_overflow_delta2;
/* Auxiliary function to count ticker ticks elapsed during execution of N cycles of empty while loop.
* Parameter <step> is used to disable compiler optimisation. */
MBED_NOINLINE
uint32_t count_ticks(uint32_t cycles, uint32_t step)
{
register uint32_t reg_cycles = cycles;
const ticker_info_t *p_ticker_info = intf->get_info();
const uint32_t max_count = ((1 << p_ticker_info->bits) - 1);
core_util_critical_section_enter();
const uint32_t start = intf->read();
while (reg_cycles -= step) {
/* Just wait. */
}
const uint32_t stop = intf->read();
core_util_critical_section_exit();
/* Handle overflow - overflow protection may not work in this case. */
uint32_t diff = (start <= stop) ? (stop - start) : (uint32_t)(max_count - start + stop + 1);
return (diff);
}
/* Since according to the ticker requirements min acceptable counter size is
* - 12 bits for low power timer - max count = 4095,
* - 16 bits for high frequency timer - max count = 65535
* then all test cases must be executed in this time windows.
* HAL ticker layer handles counter overflow and it is not handled in the target
* ticker drivers. Ensure we have enough time to execute test case without overflow.
*/
void overflow_protect()
{
uint32_t time_window;
if (intf == get_us_ticker_data()->interface) {
time_window = US_TICKER_OV_LIMIT;
} else {
time_window = LP_TICKER_OV_LIMIT;
}
const uint32_t ticks_now = intf->read();
const ticker_info_t *p_ticker_info = intf->get_info();
const uint32_t max_count = ((1 << p_ticker_info->bits) - 1);
if ((max_count - ticks_now) > time_window) {
return;
}
while (intf->read() > ticks_now);
}
void ticker_event_handler_stub(const ticker_data_t *const ticker)
{
if (ticker == get_us_ticker_data()) {
us_ticker_clear_interrupt();
} else {
#if DEVICE_LPTICKER
lp_ticker_clear_interrupt();
#endif
}
/* Indicate that ISR has been executed in interrupt context. */
if (core_util_is_isr_active()) {
intFlag++;
}
}
void wait_cycles(volatile unsigned int cycles)
{
while (cycles--);
}
/* Auxiliary function to determine how long ticker function are executed.
* This function returns number of us between <start_ticks> and <stop_ticks>
* taking into account counter roll-over, counter size and frequency.
*/
uint32_t diff_us(uint32_t start_ticks, uint32_t stop_ticks, const ticker_info_t *info)
{
uint32_t counter_mask = ((1 << info->bits) - 1);
uint32_t diff_ticks = ((stop_ticks - start_ticks) & counter_mask);
return (uint32_t)((uint64_t) diff_ticks * US_PER_S / info->frequency);
}
/* Test that ticker_init can be called multiple times and
* ticker_init allows the ticker to keep counting and disables the ticker interrupt.
*/
void ticker_init_test()
{
overflow_protect();
intFlag = 0;
intf->init();
/* Wait a while - let the ticker to count. */
wait_cycles(10000);
const uint32_t ticks_start = intf->read();
intf->set_interrupt(ticks_start + TICKER_INT_VAL);
/* Re-initialise the ticker. */
intf->init();
const uint32_t ticks_after_reinit = intf->read();
/* Wait long enough to fire ticker interrupt (should not be fired). */
while (intf->read() < (ticks_start + 2 * TICKER_INT_VAL)) {
/* Just wait. */
}
TEST_ASSERT(intf->read() >= (ticks_start + 2 * TICKER_INT_VAL));
TEST_ASSERT(ticks_start <= ticks_after_reinit);
TEST_ASSERT_EQUAL(0, intFlag);
}
/* Test that ticker frequency is non-zero and counter is at least 8 bits */
void ticker_info_test(void)
{
const ticker_info_t *p_ticker_info = intf->get_info();
TEST_ASSERT(p_ticker_info->frequency != 0);
TEST_ASSERT(p_ticker_info->bits >= 8);
}
/* Test that ticker interrupt fires only when the ticker counter increments to the value set by ticker_set_interrupt. */
void ticker_interrupt_test(void)
{
uint32_t ticker_timeout[] = { 100, 200, 300, 500 };
overflow_protect();
for (uint32_t i = 0; i < (sizeof(ticker_timeout) / sizeof(uint32_t)); i++) {
intFlag = 0;
const uint32_t tick_count = intf->read();
/* Set interrupt. Interrupt should be fired when tick count is equal to:
* tick_count + ticker_timeout[i]. */
intf->set_interrupt(tick_count + ticker_timeout[i]);
/* Wait until ticker count reach value: tick_count + ticker_timeout[i] - TICKER_DELTA.
* Interrupt should not be fired. */
while (intf->read() < (tick_count + ticker_timeout[i] - TICKER_DELTA)) {
/* Indicate failure if interrupt has fired earlier. */
TEST_ASSERT_EQUAL_INT_MESSAGE(0, intFlag, "Interrupt fired too early");
}
/* Wait until ticker count reach value: tick_count + ticker_timeout[i] + TICKER_DELTA.
* Interrupt should be fired after this time. */
while (intf->read() < (tick_count + ticker_timeout[i] + TICKER_DELTA)) {
/* Just wait. */
}
TEST_ASSERT_EQUAL(1, intFlag);
/* Wait until ticker count reach value: tick_count + 2 * ticker_timeout[i] + TICKER_DELTA.
* Interrupt should not be triggered again. */
while (intf->read() < (tick_count + 2 * ticker_timeout[i] + TICKER_DELTA)) {
/* Just wait. */
}
TEST_ASSERT_EQUAL(1, intFlag);
}
}
/* Test that ticker interrupt is not triggered when ticker_set_interrupt */
void ticker_past_test(void)
{
intFlag = 0;
const uint32_t tick_count = intf->read();
/* Set interrupt tick count to value in the past.
* Interrupt should not be fired. */
intf->set_interrupt(tick_count - TICKER_DELTA);
wait_cycles(1000);
TEST_ASSERT_EQUAL(0, intFlag);
}
/* Test that ticker can be rescheduled repeatedly before the handler has been called. */
void ticker_repeat_reschedule_test(void)
{
overflow_protect();
intFlag = 0;
const uint32_t tick_count = intf->read();
/* Set interrupt. Interrupt should be fired when tick count is equal to:
* tick_count + TICKER_INT_VAL. */
intf->set_interrupt(tick_count + TICKER_INT_VAL);
/* Reschedule interrupt - it should not be fired yet.
* Re-schedule interrupt. */
intf->set_interrupt(tick_count + (2 * TICKER_INT_VAL));
intf->set_interrupt(tick_count + (3 * TICKER_INT_VAL));
/* Wait until ticker count reach value: tick_count + 3*TICKER_INT_VAL - TICKER_DELTA.
* Interrupt should not be fired. */
while (intf->read() < (tick_count + 3 * TICKER_INT_VAL - TICKER_DELTA)) {
/* Indicate failure if interrupt has fired earlier. */
TEST_ASSERT_EQUAL_INT_MESSAGE(0, intFlag, "Interrupt fired too early");
}
/* Wait until ticker count reach value: tick_count + 3*TICKER_INT_VAL + TICKER_DELTA.
* Interrupt should be fired after this time. */
while (intf->read() < (tick_count + 3 * TICKER_INT_VAL + TICKER_DELTA)) {
/* Just wait. */
}
TEST_ASSERT_EQUAL(1, intFlag);
}
/* Test that ticker_fire_interrupt causes and interrupt to get fired immediately. */
void ticker_fire_now_test(void)
{
intFlag = 0;
intf->fire_interrupt();
/* On some platforms set_interrupt function sets interrupt in the nearest feature. */
wait_cycles(1000);
TEST_ASSERT_EQUAL(1, intFlag);
}
/* Test that the ticker correctly handles overflow. */
void ticker_overflow_test(void)
{
const ticker_info_t *p_ticker_info = intf->get_info();
/* We need to check how long it will take to overflow.
* We will perform this test only if this time is no longer than 30 sec.
*/
const uint32_t max_count = (1 << p_ticker_info->bits) - 1;
const uint32_t required_time_sec = (max_count / p_ticker_info->frequency);
if (required_time_sec > 30 && !FORCE_OVERFLOW_TEST) {
TEST_ASSERT_TRUE(true);
printf("Test has been skipped.\n");
return;
}
intFlag = 0;
/* Wait for max count. */
while (intf->read() >= (max_count - ticker_overflow_delta2) &&
intf->read() <= (max_count - ticker_overflow_delta1)) {
/* Just wait. */
}
/* Now we are near/at the overflow point. Detect rollover. */
while (intf->read() > ticker_overflow_delta1);
const uint32_t after_overflow = intf->read();
/* Now we are just after overflow. Wait a while assuming that ticker still counts. */
while (intf->read() < TICKER_100_TICKS) {
/* Just wait. */
}
const uint32_t next_after_overflow = intf->read();
/* Check that after the overflow ticker continue count. */
TEST_ASSERT(after_overflow <= ticker_overflow_delta1);
TEST_ASSERT(next_after_overflow >= TICKER_100_TICKS);
TEST_ASSERT_EQUAL(0, intFlag);
const uint32_t tick_count = intf->read();
/* Check if interrupt scheduling still works. */
intf->set_interrupt(tick_count + TICKER_INT_VAL);
/* Wait for the interrupt. */
while (intf->read() < (tick_count + TICKER_INT_VAL + TICKER_DELTA)) {
/* Just wait. */
}
TEST_ASSERT_EQUAL(1, intFlag);
}
/* Test that the ticker increments by one on each tick. */
void ticker_increment_test(void)
{
const ticker_info_t *p_ticker_info = intf->get_info();
/* Perform test based on ticker speed. */
if (p_ticker_info->frequency <= 250000) { // low frequency tickers
const uint32_t base_tick_count = intf->read();
uint32_t next_tick_count = base_tick_count;
while (next_tick_count == base_tick_count) {
next_tick_count = intf->read();
}
TEST_ASSERT_UINT32_WITHIN(1, next_tick_count, base_tick_count);
} else { // high frequency tickers
uint32_t num_of_cycles = NUM_OF_CYCLES;
const uint32_t repeat_count = 20;
const uint32_t max_inc_val = 100;
uint32_t base_tick_count = count_ticks(num_of_cycles, 1);
uint32_t next_tick_count = base_tick_count;
uint32_t inc_val = 0;
uint32_t repeat_cnt = 0;
while (inc_val < max_inc_val) {
next_tick_count = count_ticks(num_of_cycles + inc_val, 1);
if (next_tick_count == base_tick_count) {
/* Same tick count, so repeat 20 times and than
* increase num of cycles by 1.
*/
if (repeat_cnt == repeat_count) {
inc_val++;
repeat_cnt = 0;
}
repeat_cnt++;
} else {
/* Check if we got 1 tick diff. */
if (next_tick_count - base_tick_count == 1 ||
base_tick_count - next_tick_count == 1) {
break;
}
/* It is possible that the difference between base and next
* tick count on some platforms is greater that 1, in this case we need
* to repeat counting with the reduced number of cycles (for slower boards).
* In cases if difference is exactly 1 we can exit the loop.
*/
num_of_cycles /= 2;
inc_val = 0;
repeat_cnt = 0;
base_tick_count = count_ticks(num_of_cycles, 1);
}
}
/* Since we are here we know that next_tick_count != base_tick_count.
* The accuracy of our measurement method is +/- 1 tick, so it is possible that
* next_tick_count == base_tick_count - 1. This is also valid result.
*/
TEST_ASSERT_UINT32_WITHIN(1, next_tick_count, base_tick_count);
}
}
/* Test that common ticker functions complete with the required amount of time. */
void ticker_speed_test(void)
{
int counter = NUM_OF_CALLS;
uint32_t start;
uint32_t stop;
const ticker_info_t *us_ticker_info = get_us_ticker_data()->interface->get_info();
/* ---- Test ticker_read function. ---- */
start = us_ticker_read();
while (counter--) {
intf->read();
}
stop = us_ticker_read();
TEST_ASSERT(diff_us(start, stop, us_ticker_info) < (NUM_OF_CALLS * (MAX_FUNC_EXEC_TIME_US + DELTA_FUNC_EXEC_TIME_US)));
/* ---- Test ticker_clear_interrupt function. ---- */
counter = NUM_OF_CALLS;
start = us_ticker_read();
while (counter--) {
intf->clear_interrupt();
}
stop = us_ticker_read();
TEST_ASSERT(diff_us(start, stop, us_ticker_info) < (NUM_OF_CALLS * (MAX_FUNC_EXEC_TIME_US + DELTA_FUNC_EXEC_TIME_US)));
/* ---- Test ticker_set_interrupt function. ---- */
counter = NUM_OF_CALLS;
start = us_ticker_read();
while (counter--) {
intf->set_interrupt(0);
}
stop = us_ticker_read();
TEST_ASSERT(diff_us(start, stop, us_ticker_info) < (NUM_OF_CALLS * (MAX_FUNC_EXEC_TIME_US + DELTA_FUNC_EXEC_TIME_US)));
/* ---- Test fire_interrupt function. ---- */
counter = NUM_OF_CALLS;
/* Disable ticker interrupt which would interfere with speed test */
core_util_critical_section_enter();
start = us_ticker_read();
while (counter--) {
intf->fire_interrupt();
}
stop = us_ticker_read();
core_util_critical_section_exit();
TEST_ASSERT(diff_us(start, stop, us_ticker_info) < (NUM_OF_CALLS * (MAX_FUNC_EXEC_TIME_US + DELTA_FUNC_EXEC_TIME_US)));
/* ---- Test disable_interrupt function. ---- */
counter = NUM_OF_CALLS;
start = us_ticker_read();
while (counter--) {
intf->disable_interrupt();
}
stop = us_ticker_read();
TEST_ASSERT(diff_us(start, stop, us_ticker_info) < (NUM_OF_CALLS * (MAX_FUNC_EXEC_TIME_US + DELTA_FUNC_EXEC_TIME_US)));
}
utest::v1::status_t us_ticker_setup(const Case *const source, const size_t index_of_case)
{
intf = get_us_ticker_data()->interface;
/* OS, common ticker and low power ticker wrapper
* may make use of us ticker so suspend them for this test */
osKernelSuspend();
#if DEVICE_LPTICKER && (LPTICKER_DELAY_TICKS > 0)
/* Suspend the lp ticker wrapper since it makes use of the us ticker */
ticker_suspend(get_lp_ticker_data());
lp_ticker_wrapper_suspend();
#endif
ticker_suspend(get_us_ticker_data());
intf->init();
prev_irq_handler = set_us_ticker_irq_handler(ticker_event_handler_stub);
ticker_overflow_delta1 = US_TICKER_OVERFLOW_DELTA1;
ticker_overflow_delta2 = US_TICKER_OVERFLOW_DELTA2;
return greentea_case_setup_handler(source, index_of_case);
}
utest::v1::status_t us_ticker_teardown(const Case *const source, const size_t passed, const size_t failed,
const failure_t reason)
{
set_us_ticker_irq_handler(prev_irq_handler);
prev_irq_handler = NULL;
ticker_resume(get_us_ticker_data());
#if DEVICE_LPTICKER && (LPTICKER_DELAY_TICKS > 0)
lp_ticker_wrapper_resume();
ticker_resume(get_lp_ticker_data());
#endif
osKernelResume(0);
return greentea_case_teardown_handler(source, passed, failed, reason);
}
#if DEVICE_LPTICKER
utest::v1::status_t lp_ticker_setup(const Case *const source, const size_t index_of_case)
{
intf = get_lp_ticker_data()->interface;
/* OS and common ticker may make use of lp ticker so suspend them for this test */
osKernelSuspend();
ticker_suspend(get_lp_ticker_data());
intf->init();
prev_irq_handler = set_lp_ticker_irq_handler(ticker_event_handler_stub);
ticker_overflow_delta1 = LP_TICKER_OVERFLOW_DELTA1;
ticker_overflow_delta2 = LP_TICKER_OVERFLOW_DELTA2;
return greentea_case_setup_handler(source, index_of_case);
}
utest::v1::status_t lp_ticker_teardown(const Case *const source, const size_t passed, const size_t failed,
const failure_t reason)
{
set_lp_ticker_irq_handler(prev_irq_handler);
prev_irq_handler = NULL;
ticker_resume(get_lp_ticker_data());
osKernelResume(0);
return greentea_case_teardown_handler(source, passed, failed, reason);
}
#endif
utest::v1::status_t test_setup(const size_t number_of_cases)
{
GREENTEA_SETUP(80, "default_auto");
return verbose_test_setup_handler(number_of_cases);
}
Case cases[] = {
Case("Microsecond ticker init is safe to call repeatedly", us_ticker_setup, ticker_init_test, us_ticker_teardown),
Case("Microsecond ticker info test", us_ticker_setup, ticker_info_test, us_ticker_teardown),
Case("Microsecond ticker interrupt test", us_ticker_setup, ticker_interrupt_test, us_ticker_teardown),
Case("Microsecond ticker past interrupt test", us_ticker_setup, ticker_past_test, us_ticker_teardown),
Case("Microsecond ticker reschedule test", us_ticker_setup, ticker_repeat_reschedule_test, us_ticker_teardown),
Case("Microsecond ticker fire interrupt", us_ticker_setup, ticker_fire_now_test, us_ticker_teardown),
Case("Microsecond ticker overflow test", us_ticker_setup, ticker_overflow_test, us_ticker_teardown),
Case("Microsecond ticker increment test", us_ticker_setup, ticker_increment_test, us_ticker_teardown),
Case("Microsecond ticker speed test", us_ticker_setup, ticker_speed_test, us_ticker_teardown),
#if DEVICE_LPTICKER
Case("lp ticker init is safe to call repeatedly", lp_ticker_setup, ticker_init_test, lp_ticker_teardown),
Case("lp ticker info test", lp_ticker_setup, ticker_info_test, lp_ticker_teardown),
Case("lp ticker interrupt test", lp_ticker_setup, ticker_interrupt_test, lp_ticker_teardown),
Case("lp ticker past interrupt test", lp_ticker_setup, ticker_past_test, lp_ticker_teardown),
Case("lp ticker reschedule test", lp_ticker_setup, ticker_repeat_reschedule_test, lp_ticker_teardown),
Case("lp ticker fire interrupt", lp_ticker_setup, ticker_fire_now_test, lp_ticker_teardown),
Case("lp ticker overflow test", lp_ticker_setup, ticker_overflow_test, lp_ticker_teardown),
Case("lp ticker increment test", lp_ticker_setup, ticker_increment_test, lp_ticker_teardown),
Case("lp ticker speed test", lp_ticker_setup, ticker_speed_test, lp_ticker_teardown),
#endif
};
Specification specification(test_setup, cases);
int main()
{
return !Harness::run(specification);
}