mbed-os/features/storage/blockdevice/BufferedBlockDevice.cpp

330 lines
8.4 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "BufferedBlockDevice.h"
#include "platform/mbed_assert.h"
#include "platform/mbed_critical.h"
#include <algorithm>
#include <string.h>
static inline uint32_t align_down(bd_size_t val, bd_size_t size)
{
return val / size * size;
}
BufferedBlockDevice::BufferedBlockDevice(BlockDevice *bd)
: _bd(bd), _bd_program_size(0), _bd_read_size(0), _write_cache_addr(0), _write_cache_valid(false),
_write_cache(0), _read_buf(0), _init_ref_count(0), _is_initialized(false)
{
}
BufferedBlockDevice::~BufferedBlockDevice()
{
deinit();
}
int BufferedBlockDevice::init()
{
uint32_t val = core_util_atomic_incr_u32(&_init_ref_count, 1);
if (val != 1) {
return BD_ERROR_OK;
}
int err = _bd->init();
if (err) {
return err;
}
_bd_read_size = _bd->get_read_size();
_bd_program_size = _bd->get_program_size();
_bd_size = _bd->size();
if (!_write_cache) {
_write_cache = new uint8_t[_bd_program_size];
}
if (!_read_buf) {
_read_buf = new uint8_t[_bd_read_size];
}
invalidate_write_cache();
_is_initialized = true;
return BD_ERROR_OK;
}
int BufferedBlockDevice::deinit()
{
if (!_is_initialized) {
return BD_ERROR_OK;
}
uint32_t val = core_util_atomic_decr_u32(&_init_ref_count, 1);
if (val) {
return BD_ERROR_OK;
}
delete[] _write_cache;
_write_cache = 0;
delete[] _read_buf;
_read_buf = 0;
_is_initialized = false;
return _bd->deinit();
}
int BufferedBlockDevice::flush()
{
MBED_ASSERT(_write_cache);
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
if (_write_cache_valid) {
int ret = _bd->program(_write_cache, _write_cache_addr, _bd_program_size);
if (ret) {
return ret;
}
invalidate_write_cache();
}
return 0;
}
void BufferedBlockDevice::invalidate_write_cache()
{
_write_cache_addr = _bd_size;
_write_cache_valid = false;
}
int BufferedBlockDevice::sync()
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
MBED_ASSERT(_write_cache);
int ret = flush();
if (ret) {
return ret;
}
return _bd->sync();
}
int BufferedBlockDevice::read(void *b, bd_addr_t addr, bd_size_t size)
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
MBED_ASSERT(_write_cache && _read_buf);
// Common case - no need to involve write cache or read buffer
if (_bd->is_valid_read(addr, size) &&
((addr + size <= _write_cache_addr) || (addr > _write_cache_addr + _bd_program_size))) {
return _bd->read(b, addr, size);
}
uint8_t *buf = static_cast<uint8_t *>(b);
// Read logic: Split read to chunks, according to whether we cross the write cache
while (size) {
bd_size_t chunk;
bool read_from_bd = true;
if (addr < _write_cache_addr) {
chunk = std::min(size, _write_cache_addr - addr);
} else if ((addr >= _write_cache_addr) && (addr < _write_cache_addr + _bd_program_size)) {
// One case we need to take our data from cache
chunk = std::min(size, _bd_program_size - addr % _bd_program_size);
memcpy(buf, _write_cache + addr % _bd_program_size, chunk);
read_from_bd = false;
} else {
chunk = size;
}
// Now, in case we read from the BD, make sure we are aligned with its read size.
// If not, use read buffer as a helper.
if (read_from_bd) {
bd_size_t offs_in_read_buf = addr % _bd_read_size;
int ret;
if (offs_in_read_buf || (chunk < _bd_read_size)) {
chunk = std::min(chunk, _bd_read_size - offs_in_read_buf);
ret = _bd->read(_read_buf, addr - offs_in_read_buf, _bd_read_size);
memcpy(buf, _read_buf + offs_in_read_buf, chunk);
} else {
chunk = align_down(chunk, _bd_read_size);
ret = _bd->read(buf, addr, chunk);
}
if (ret) {
return ret;
}
}
buf += chunk;
addr += chunk;
size -= chunk;
}
return 0;
}
int BufferedBlockDevice::program(const void *b, bd_addr_t addr, bd_size_t size)
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
MBED_ASSERT(_write_cache);
int ret;
bd_addr_t aligned_addr = align_down(addr, _bd_program_size);
const uint8_t *buf = static_cast <const uint8_t *>(b);
// Need to flush if moved to another program unit
if (aligned_addr != _write_cache_addr) {
ret = flush();
if (ret) {
return ret;
}
_write_cache_addr = aligned_addr;
}
// Write logic: Keep data in cache as long as we don't reach the end of the program unit.
// Otherwise, program to the underlying BD.
while (size) {
_write_cache_addr = align_down(addr, _bd_program_size);
bd_addr_t offs_in_buf = addr - _write_cache_addr;
bd_size_t chunk;
if (offs_in_buf) {
chunk = std::min(_bd_program_size - offs_in_buf, size);
} else if (size >= _bd_program_size) {
chunk = align_down(size, _bd_program_size);
} else {
chunk = size;
}
const uint8_t *prog_buf;
if (chunk < _bd_program_size) {
// If cache not valid, and program doesn't cover an entire unit, it means we need to
// read it from the underlying BD
if (!_write_cache_valid) {
ret = _bd->read(_write_cache, _write_cache_addr, _bd_program_size);
if (ret) {
return ret;
}
}
memcpy(_write_cache + offs_in_buf, buf, chunk);
prog_buf = _write_cache;
} else {
prog_buf = buf;
}
// Only program if we reached the end of a program unit
if (!((offs_in_buf + chunk) % _bd_program_size)) {
ret = _bd->program(prog_buf, _write_cache_addr, std::max(chunk, _bd_program_size));
if (ret) {
return ret;
}
ret = _bd->sync();
if (ret) {
return ret;
}
invalidate_write_cache();
} else {
_write_cache_valid = true;
}
buf += chunk;
addr += chunk;
size -= chunk;
}
return 0;
}
int BufferedBlockDevice::erase(bd_addr_t addr, bd_size_t size)
{
MBED_ASSERT(is_valid_erase(addr, size));
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
if ((_write_cache_addr >= addr) && (_write_cache_addr <= addr + size)) {
invalidate_write_cache();
}
return _bd->erase(addr, size);
}
int BufferedBlockDevice::trim(bd_addr_t addr, bd_size_t size)
{
MBED_ASSERT(is_valid_erase(addr, size));
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
if ((_write_cache_addr >= addr) && (_write_cache_addr <= addr + size)) {
invalidate_write_cache();
}
return _bd->trim(addr, size);
}
bd_size_t BufferedBlockDevice::get_read_size() const
{
return 1;
}
bd_size_t BufferedBlockDevice::get_program_size() const
{
return 1;
}
bd_size_t BufferedBlockDevice::get_erase_size() const
{
if (!_is_initialized) {
return 0;
}
return _bd->get_erase_size();
}
bd_size_t BufferedBlockDevice::get_erase_size(bd_addr_t addr) const
{
if (!_is_initialized) {
return 0;
}
return _bd->get_erase_size(addr);
}
int BufferedBlockDevice::get_erase_value() const
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
return _bd->get_erase_value();
}
bd_size_t BufferedBlockDevice::size() const
{
if (!_is_initialized) {
return 0;
}
return _bd_size;
}