mbed-os/platform/source/SysTimer.cpp

358 lines
10 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2006-2019 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "hal/us_ticker_api.h"
#include "hal/lp_ticker_api.h"
#include "mbed_atomic.h"
#include "mbed_critical.h"
#include "mbed_assert.h"
#include "platform/mbed_power_mgmt.h"
#include "platform/CriticalSectionLock.h"
#include "platform/source/SysTimer.h"
extern "C" {
#if MBED_CONF_RTOS_PRESENT
#include "rtx_lib.h"
#endif
}
using namespace std::chrono;
constexpr milliseconds deep_sleep_latency{MBED_CONF_TARGET_DEEP_SLEEP_LATENCY};
#if (defined(NO_SYSTICK))
/**
* Return an IRQ number that can be used in the absence of SysTick
*
* @return Free IRQ number that can be used
*/
extern "C" IRQn_Type mbed_get_m0_tick_irqn(void);
#endif
#if defined(TARGET_CORTEX_A)
extern "C" IRQn_ID_t mbed_get_a9_tick_irqn(void);
#endif
namespace mbed {
namespace internal {
template<class Period, bool IRQ>
SysTimer<Period, IRQ>::SysTimer() :
#if DEVICE_LPTICKER
SysTimer(get_lp_ticker_data())
#else
SysTimer(get_us_ticker_data())
#endif
{
}
template<class Period, bool IRQ>
SysTimer<Period, IRQ>::SysTimer(const ticker_data_t *data) :
TimerEvent(data),
_epoch(_ticker_data.now()),
_time(_epoch),
_tick(0),
_unacknowledged_ticks(0),
_wake_time_set(false),
_wake_time_passed(false),
_wake_early(false),
_ticking(false),
_deep_sleep_locked(false)
{
}
template<class Period, bool IRQ>
SysTimer<Period, IRQ>::~SysTimer()
{
cancel_tick();
cancel_wake();
}
template<class Period, bool IRQ>
void SysTimer<Period, IRQ>::set_wake_time(time_point at)
{
// SysTimer must not be active - we must be in suspend state
MBED_ASSERT(!_ticking);
// There is a potential race here, when called from outside
// a critical section. See function documentation for notes on
// handling it.
if (core_util_atomic_load_bool(&_wake_time_set)) {
return;
}
// Analyse the timers
if (update_and_get_tick() >= at) {
_wake_time_passed = true;
return;
}
duration ticks_to_sleep = at - get_tick();
highres_time_point wake_time = _epoch + at.time_since_epoch();
/* Set this first, before attaching the interrupt that can unset it */
_wake_time_set = true;
_wake_time_passed = false;
if (!_deep_sleep_locked && !_ticker_data->interface->runs_in_deep_sleep) {
_deep_sleep_locked = true;
sleep_manager_lock_deep_sleep();
}
/* Consider whether we will need early or precise wake-up */
if (deep_sleep_latency > deep_sleep_latency.zero() &&
ticks_to_sleep > deep_sleep_latency &&
!_deep_sleep_locked) {
/* If there is deep sleep latency, but we still have enough time,
* and we haven't blocked deep sleep ourselves,
* allow for that latency by requesting early wake-up.
* Actual sleep may or may not be deep, depending on other actors.
*/
_wake_early = true;
insert_absolute(wake_time - deep_sleep_latency);
} else {
/* Otherwise, set up to wake at the precise time.
* If there is a deep sleep latency, ensure that we're holding the lock so the sleep
* is shallow. (If there is no deep sleep latency, we're fine with it being deep).
*/
_wake_early = false;
if (deep_sleep_latency > deep_sleep_latency.zero() && !_deep_sleep_locked) {
_deep_sleep_locked = true;
sleep_manager_lock_deep_sleep();
}
insert_absolute(wake_time);
}
}
template<class Period, bool IRQ>
void SysTimer<Period, IRQ>::cancel_wake()
{
MBED_ASSERT(!_ticking);
// Remove ensures serialized access to SysTimer by stopping timer interrupt
remove();
_wake_time_set = false;
_wake_time_passed = false;
if (_deep_sleep_locked) {
_deep_sleep_locked = false;
sleep_manager_unlock_deep_sleep();
}
}
template<class Period, bool IRQ>
auto SysTimer<Period, IRQ>::_elapsed_ticks() const -> duration
{
highres_duration elapsed_us = _ticker_data.now() - _time;
// Fastest common cases avoiding any division for 0 or 1 ticks
if (elapsed_us < duration(1)) {
return duration(0);
} else if (elapsed_us < duration(2)) {
return duration(1);
} else if (elapsed_us.count() <= 0xFFFFFFFF) {
// Fast common case avoiding 64-bit division
return duration_cast<duration>(highres_duration_u32(elapsed_us));
} else {
// Worst case will require 64-bit division to convert highres to ticks
return duration_cast<duration>(elapsed_us);
}
}
template<class Period, bool IRQ>
void SysTimer<Period, IRQ>::start_tick()
{
_ticking = true;
if (_unacknowledged_ticks > 0) {
_set_irq_pending();
}
_schedule_tick();
}
template<class Period, bool IRQ>
void SysTimer<Period, IRQ>::_schedule_tick()
{
insert_absolute(_time + duration(1));
}
template<class Period, bool IRQ>
void SysTimer<Period, IRQ>::acknowledge_tick()
{
// Try to avoid missed ticks if OS's IRQ level is not keeping
// up with our handler.
// 8-bit counter to save space, and also make sure it we don't
// try TOO hard to resync if something goes really awry -
// resync will reset if the count hits 256.
if (core_util_atomic_decr_u8(&_unacknowledged_ticks, 1) > 0) {
_set_irq_pending();
}
}
template<class Period, bool IRQ>
void SysTimer<Period, IRQ>::cancel_tick()
{
// Underlying call is interrupt safe
remove();
_ticking = false;
_clear_irq_pending();
}
template<class Period, bool IRQ>
auto SysTimer<Period, IRQ>::get_tick() const -> time_point
{
// Atomic is necessary as this can be called from any foreground context,
// while IRQ can update it.
return time_point(duration(core_util_atomic_load_u64(&_tick)));
}
template<class Period, bool IRQ>
auto SysTimer<Period, IRQ>::update_and_get_tick() -> time_point
{
MBED_ASSERT(!_ticking && !_wake_time_set);
// Can only be used when no interrupts are scheduled
// Update counters to reflect elapsed time
duration elapsed_ticks = _elapsed_ticks();
_unacknowledged_ticks = 0;
_time += elapsed_ticks;
_tick += elapsed_ticks.count();
return time_point(duration(_tick));
}
template<class Period, bool IRQ>
auto SysTimer<Period, IRQ>::get_time() const -> highres_time_point
{
// Underlying call is interrupt safe
return _ticker_data.now();
}
template<class Period, bool IRQ>
auto SysTimer<Period, IRQ>::get_time_since_tick() const -> highres_duration
{
// Underlying call is interrupt safe, and _time is not updated by IRQ
return get_time() - _time;
}
#if (defined(NO_SYSTICK))
template<class Period, bool IRQ>
IRQn_Type SysTimer<Period, IRQ>::get_irq_number()
{
return mbed_get_m0_tick_irqn();
}
#elif (TARGET_CORTEX_M)
template<class Period, bool IRQ>
IRQn_Type SysTimer<Period, IRQ>::get_irq_number()
{
return SysTick_IRQn;
}
#elif (TARGET_CORTEX_A)
template<class Period, bool IRQ>
IRQn_ID_t SysTimer<Period, IRQ>::get_irq_number()
{
return mbed_get_a9_tick_irqn();
}
#endif
template<class Period, bool IRQ>
void SysTimer<Period, IRQ>::_set_irq_pending()
{
// Protected function synchronized externally
if (!IRQ) {
return;
}
#if (defined(NO_SYSTICK))
NVIC_SetPendingIRQ(mbed_get_m0_tick_irqn());
#elif (TARGET_CORTEX_M)
SCB->ICSR = SCB_ICSR_PENDSTSET_Msk;
#else
IRQ_SetPending(mbed_get_a9_tick_irqn());
#endif
}
template<class Period, bool IRQ>
void SysTimer<Period, IRQ>::_clear_irq_pending()
{
// Protected function synchronized externally
if (!IRQ) {
return;
}
#if (defined(NO_SYSTICK))
NVIC_ClearPendingIRQ(mbed_get_m0_tick_irqn());
#elif (TARGET_CORTEX_M)
SCB->ICSR = SCB_ICSR_PENDSTCLR_Msk;
#else
IRQ_ClearPending(mbed_get_a9_tick_irqn());
#endif
}
template<class Period, bool IRQ>
void SysTimer<Period, IRQ>::_increment_tick()
{
// Protected function synchronized externally
_tick++;
_time += duration(1);
}
template<class Period, bool IRQ>
void SysTimer<Period, IRQ>::handler()
{
/* To reduce IRQ latency problems, we do not re-arm in the interrupt handler */
if (_wake_time_set) {
_wake_time_set = false;
if (!_wake_early) {
_wake_time_passed = true;
}
/* If this was an early interrupt, user has the responsibility to check and
* note the combination of (!set, !passed), and re-arm the wake timer if
* necessary.
*/
} else if (_ticking) {
_unacknowledged_ticks++;
_set_irq_pending();
_increment_tick();
// We do this now, rather than in acknowledgement, as we get it "for free"
// here - because we're in the ticker handler, the programming gets deferred
// until end of dispatch, and the ticker would likely be rescheduling
// anyway after dispatch.
_schedule_tick();
}
}
#if MBED_CONF_RTOS_PRESENT
/* Whatever the OS wants (in case it isn't 1ms) */
MBED_STATIC_ASSERT(1000000 % OS_TICK_FREQ == 0, "OS_TICK_FREQ must be a divisor of 1000000 for correct tick calculations");
#define OS_TICK_US (1000000 / OS_TICK_FREQ)
#if OS_TICK_US != 1000
template class SysTimer<std::ratio_multiply<std::ratio<OS_TICK_US>, std::micro>>;
#endif
#endif
/* Standard 1ms SysTimer */
template class SysTimer<std::milli>;
/* Standard 1ms SysTimer that doesn't set interrupts, used for Greentea tests */
template class SysTimer<std::milli, false>;
/* Slowed-down SysTimer that doesn't set interrupts, used for Greentea tests */
template class SysTimer<std::ratio_multiply<std::ratio<42>, std::milli>, false>;
} // namespace internal
} // namespace mbed