mbed-os/targets/TARGET_NUVOTON/TARGET_M480/crypto/crypto-misc.cpp

335 lines
9.2 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2015-2016 Nuvoton
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cmsis.h"
#include "mbed_assert.h"
#include "mbed_critical.h"
#include "mbed_error.h"
#include <limits.h>
#include "nu_modutil.h"
#include "nu_bitutil.h"
#include "crypto-misc.h"
#include "platform/SingletonPtr.h"
#include "platform/PlatformMutex.h"
/* Consideration for choosing proper synchronization mechanism
*
* 1. We choose mutex to synchronize access to crypto non-SHA AC. We can guarantee:
* (1) No deadlock
* We just lock mutex for a short sequence of operations rather than the whole lifetime
* of crypto context.
* (2) No priority inversion
* Mutex supports priority inheritance and it is enabled.
* 2. We choose atomic flag to synchronize access to crypto SHA AC. We can guarantee:
* (1) No deadlock
* With SHA AC not supporting context save & restore, we provide SHA S/W fallback when
* SHA AC is not available.
* (2) No biting CPU
* Same reason as above.
*/
/* Mutex for crypto AES AC management */
static SingletonPtr<PlatformMutex> crypto_aes_mutex;
/* Mutex for crypto DES AC management */
static SingletonPtr<PlatformMutex> crypto_des_mutex;
/* Mutex for crypto ECC AC management */
static SingletonPtr<PlatformMutex> crypto_ecc_mutex;
/* Atomic flag for crypto SHA AC management */
static core_util_atomic_flag crypto_sha_atomic_flag = CORE_UTIL_ATOMIC_FLAG_INIT;
/* Crypto (AES, DES, SHA, etc.) init counter. Crypto's keeps active as it is non-zero. */
static uint16_t crypto_init_counter = 0U;
/* Crypto done flags */
#define CRYPTO_DONE_OK BIT0 /* Done with OK */
#define CRYPTO_DONE_ERR BIT1 /* Done with error */
/* Track if PRNG H/W operation is done */
static volatile uint16_t crypto_prng_done;
/* Track if AES H/W operation is done */
static volatile uint16_t crypto_aes_done;
/* Track if DES H/W operation is done */
static volatile uint16_t crypto_des_done;
/* Track if ECC H/W operation is done */
static volatile uint16_t crypto_ecc_done;
static void crypto_submodule_prestart(volatile uint16_t *submodule_done);
static bool crypto_submodule_wait(volatile uint16_t *submodule_done);
/* As crypto init counter changes from 0 to 1:
*
* 1. Enable crypto clock
* 2. Enable crypto interrupt
*/
void crypto_init(void)
{
core_util_critical_section_enter();
if (crypto_init_counter == USHRT_MAX) {
core_util_critical_section_exit();
error("Crypto clock enable counter would overflow (> USHRT_MAX)");
}
core_util_atomic_incr_u16(&crypto_init_counter, 1);
if (crypto_init_counter == 1) {
SYS_UnlockReg(); // Unlock protected register
CLK_EnableModuleClock(CRPT_MODULE);
SYS_LockReg(); // Lock protected register
NVIC_EnableIRQ(CRPT_IRQn);
}
core_util_critical_section_exit();
}
/* As crypto init counter changes from 1 to 0:
*
* 1. Disable crypto interrupt
* 2. Disable crypto clock
*/
void crypto_uninit(void)
{
core_util_critical_section_enter();
if (crypto_init_counter == 0) {
core_util_critical_section_exit();
error("Crypto clock enable counter would underflow (< 0)");
}
core_util_atomic_decr_u16(&crypto_init_counter, 1);
if (crypto_init_counter == 0) {
NVIC_DisableIRQ(CRPT_IRQn);
SYS_UnlockReg(); // Unlock protected register
CLK_DisableModuleClock(CRPT_MODULE);
SYS_LockReg(); // Lock protected register
}
core_util_critical_section_exit();
}
/* Implementation that should never be optimized out by the compiler */
void crypto_zeroize(void *v, size_t n)
{
volatile unsigned char *p = (volatile unsigned char*) v;
while (n--) {
*p++ = 0;
}
}
/* Implementation that should never be optimized out by the compiler */
void crypto_zeroize32(uint32_t *v, size_t n)
{
volatile uint32_t *p = (volatile uint32_t*) v;
while (n--) {
*p++ = 0;
}
}
void crypto_aes_acquire(void)
{
/* Don't check return code of Mutex::lock(void)
*
* This function treats RTOS errors as fatal system errors, so it can only return osOK.
* Use of the return value is deprecated, as the return is expected to become void in
* the future.
*/
crypto_aes_mutex->lock();
}
void crypto_aes_release(void)
{
crypto_aes_mutex->unlock();
}
void crypto_des_acquire(void)
{
/* Don't check return code of Mutex::lock(void) */
crypto_des_mutex->lock();
}
void crypto_des_release(void)
{
crypto_des_mutex->unlock();
}
void crypto_ecc_acquire(void)
{
/* Don't check return code of Mutex::lock(void) */
crypto_ecc_mutex->lock();
}
void crypto_ecc_release(void)
{
crypto_ecc_mutex->unlock();
}
bool crypto_sha_try_acquire(void)
{
return !core_util_atomic_flag_test_and_set(&crypto_sha_atomic_flag);
}
void crypto_sha_release(void)
{
core_util_atomic_flag_clear(&crypto_sha_atomic_flag);
}
void crypto_prng_prestart(void)
{
crypto_submodule_prestart(&crypto_prng_done);
}
bool crypto_prng_wait(void)
{
return crypto_submodule_wait(&crypto_prng_done);
}
void crypto_aes_prestart(void)
{
crypto_submodule_prestart(&crypto_aes_done);
}
bool crypto_aes_wait(void)
{
return crypto_submodule_wait(&crypto_aes_done);
}
void crypto_des_prestart(void)
{
crypto_submodule_prestart(&crypto_des_done);
}
bool crypto_des_wait(void)
{
return crypto_submodule_wait(&crypto_des_done);
}
void crypto_ecc_prestart(void)
{
crypto_submodule_prestart(&crypto_ecc_done);
}
bool crypto_ecc_wait(void)
{
return crypto_submodule_wait(&crypto_ecc_done);
}
bool crypto_dma_buff_compat(const void *buff, size_t buff_size, size_t size_aligned_to)
{
uint32_t buff_ = (uint32_t) buff;
return (((buff_ & 0x03) == 0) && /* Word-aligned buffer base address */
((buff_size & (size_aligned_to - 1)) == 0) && /* Crypto submodule dependent buffer size alignment */
(((buff_ >> 28) == 0x2) && (buff_size <= (0x30000000 - buff_)))); /* 0x20000000-0x2FFFFFFF */
}
/* Overlap cases
*
* 1. in_buff in front of out_buff:
*
* in in_end
* | |
* ||||||||||||||||
* ||||||||||||||||
* | |
* out out_end
*
* 2. out_buff in front of in_buff:
*
* in in_end
* | |
* ||||||||||||||||
* ||||||||||||||||
* | |
* out out_end
*/
bool crypto_dma_buffs_overlap(const void *in_buff, size_t in_buff_size, const void *out_buff, size_t out_buff_size)
{
uint32_t in = (uint32_t) in_buff;
uint32_t in_end = in + in_buff_size;
uint32_t out = (uint32_t) out_buff;
uint32_t out_end = out + out_buff_size;
bool overlap = (in <= out && out < in_end) || (out <= in && in < out_end);
return overlap;
}
static void crypto_submodule_prestart(volatile uint16_t *submodule_done)
{
*submodule_done = 0;
/* Ensure memory accesses above are completed before DMA is started
*
* Replacing __DSB() with __DMB() is also OK in this case.
*
* Refer to "multi-master systems" section with DMA in:
* https://static.docs.arm.com/dai0321/a/DAI0321A_programming_guide_memory_barriers_for_m_profile.pdf
*/
__DSB();
}
static bool crypto_submodule_wait(volatile uint16_t *submodule_done)
{
while (! *submodule_done);
/* Ensure while loop above and subsequent code are not reordered */
__DSB();
if ((*submodule_done & CRYPTO_DONE_OK)) {
/* Done with OK */
return true;
} else if ((*submodule_done & CRYPTO_DONE_ERR)) {
/* Done with error */
return false;
}
return false;
}
/* Crypto interrupt handler */
extern "C" void CRYPTO_IRQHandler()
{
uint32_t intsts;
if ((intsts = PRNG_GET_INT_FLAG()) != 0) {
/* Done with OK */
crypto_prng_done |= CRYPTO_DONE_OK;
/* Clear interrupt flag */
PRNG_CLR_INT_FLAG();
} else if ((intsts = AES_GET_INT_FLAG()) != 0) {
/* Done with OK */
crypto_aes_done |= CRYPTO_DONE_OK;
/* Clear interrupt flag */
AES_CLR_INT_FLAG();
} else if ((intsts = TDES_GET_INT_FLAG()) != 0) {
/* Done with OK */
crypto_des_done |= CRYPTO_DONE_OK;
/* Clear interrupt flag */
TDES_CLR_INT_FLAG();
} else if ((intsts = ECC_GET_INT_FLAG()) != 0) {
/* Check interrupt flags */
if (intsts & CRPT_INTSTS_ECCIF_Msk) {
/* Done with OK */
crypto_ecc_done |= CRYPTO_DONE_OK;
} else if (intsts & CRPT_INTSTS_ECCEIF_Msk) {
/* Done with error */
crypto_ecc_done |= CRYPTO_DONE_ERR;
}
/* Clear interrupt flag */
ECC_CLR_INT_FLAG();
}
}