mbed-os/components/802.15.4_RF/stm-s2lp-rf-driver/source/NanostackRfPhys2lp.cpp

1438 lines
45 KiB
C++

/*
* Copyright (c) 2018 ARM Limited. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#if defined(MBED_CONF_NANOSTACK_CONFIGURATION) && DEVICE_SPI && DEVICE_INTERRUPTIN && defined(MBED_CONF_RTOS_PRESENT)
#include "platform/arm_hal_interrupt.h"
#include "nanostack/platform/arm_hal_phy.h"
#include "ns_types.h"
#include "NanostackRfPhys2lp.h"
#include "s2lpReg.h"
#include "rf_configuration.h"
#include "randLIB.h"
#include "mbed_trace.h"
#include "mbed_toolchain.h"
#include "common_functions.h"
#include <Timer.h>
#include "Timeout.h"
#include "Thread.h"
#include "mbed_wait_api.h"
#include "platform/mbed_error.h"
using namespace std::chrono;
using namespace mbed;
using namespace rtos;
#define TRACE_GROUP "s2lp"
#define INTERRUPT_GPIO S2LP_GPIO3
#if INTERRUPT_GPIO == S2LP_GPIO0
#define INT_IN_GPIO rf->RF_S2LP_GPIO0
#elif INTERRUPT_GPIO == S2LP_GPIO1
#define INT_IN_GPIO rf->RF_S2LP_GPIO1
#elif INTERRUPT_GPIO == S2LP_GPIO2
#define INT_IN_GPIO rf->RF_S2LP_GPIO2
#else
#define INT_IN_GPIO rf->RF_S2LP_GPIO3
#endif
#ifdef TEST_GPIOS_ENABLED
#define TEST_TX_STARTED test_pins->TEST1 = 1;
#define TEST_TX_DONE test_pins->TEST1 = 0;
#define TEST_RX_STARTED test_pins->TEST2 = 1;
#define TEST_RX_DONE test_pins->TEST2 = 0;
#define TEST_CSMA_STARTED test_pins->TEST3 = 1;
#define TEST_CSMA_DONE test_pins->TEST3 = 0;
#define TEST_SPARE_1_ON test_pins->TEST4 = 1;
#define TEST_SPARE_1_OFF test_pins->TEST4 = 0;
#define TEST_SPARE_2_ON test_pins->TEST5 = 1;
#define TEST_SPARE_2_OFF test_pins->TEST5 = 0;
extern void (*fhss_uc_switch)(void);
extern void (*fhss_bc_switch)(void);
#else //TEST_GPIOS_ENABLED
#define TEST_TX_STARTED
#define TEST_TX_DONE
#define TEST_RX_STARTED
#define TEST_RX_DONE
#define TEST_CSMA_STARTED
#define TEST_CSMA_DONE
#define TEST_SPARE_1_ON
#define TEST_SPARE_1_OFF
#define TEST_SPARE_2_ON
#define TEST_SPARE_2_OFF
#endif //TEST_GPIOS_ENABLED
#define MAC_FRAME_TYPE_MASK 0x07
#define MAC_FRAME_BEACON (0)
#define MAC_TYPE_DATA (1)
#define MAC_TYPE_ACK (2)
#define MAC_TYPE_COMMAND (3)
#define MAC_DATA_PENDING 0x10
#define FC_DST_MODE 0x0C
#define FC_SRC_MODE 0xC0
#define FC_DST_ADDR_NONE 0x00
#define FC_DST_16_BITS 0x08
#define FC_DST_64_BITS 0x0C
#define FC_SRC_64_BITS 0xC0
#define FC_SEQUENCE_COMPRESSION 0x01
#define FC_AR 0x20
#define FC_PAN_ID_COMPRESSION 0x40
#define VERSION_FIELD_MASK 0x30
#define SHIFT_SEQ_COMP_FIELD (0)
#define SHIFT_VERSION_FIELD (4)
#define SHIFT_PANID_COMP_FIELD (6)
#define OFFSET_DST_PAN_ID (3)
#define OFFSET_DST_ADDR (5)
#define CS_SELECT() {rf->CS = 0;}
#define CS_RELEASE() {rf->CS = 1;}
typedef enum {
RF_MODE_NORMAL = 0,
RF_MODE_SNIFFER = 1
} rf_mode_e;
class UnlockedSPI : public SPI {
public:
UnlockedSPI(PinName sdi, PinName sdo, PinName sclk) :
SPI(sdi, sdo, sclk) { }
virtual void lock() { }
virtual void unlock() { }
};
class RFPins {
public:
RFPins(PinName spi_sdi, PinName spi_sdo,
PinName spi_sclk, PinName spi_cs, PinName spi_sdn,
PinName spi_gpio0, PinName spi_gpio1, PinName spi_gpio2,
PinName spi_gpio3);
UnlockedSPI spi;
DigitalOut CS;
DigitalOut SDN;
InterruptIn RF_S2LP_GPIO0;
InterruptIn RF_S2LP_GPIO1;
InterruptIn RF_S2LP_GPIO2;
InterruptIn RF_S2LP_GPIO3;
Timeout cca_timer;
Timeout backup_timer;
Timer tx_timer;
Thread irq_thread;
Mutex mutex;
void rf_irq_task();
};
RFPins::RFPins(PinName spi_sdi, PinName spi_sdo,
PinName spi_sclk, PinName spi_cs, PinName spi_sdn,
PinName spi_gpio0, PinName spi_gpio1, PinName spi_gpio2,
PinName spi_gpio3)
: spi(spi_sdi, spi_sdo, spi_sclk),
CS(spi_cs),
SDN(spi_sdn),
RF_S2LP_GPIO0(spi_gpio0),
RF_S2LP_GPIO1(spi_gpio1),
RF_S2LP_GPIO2(spi_gpio2),
RF_S2LP_GPIO3(spi_gpio3),
irq_thread(osPriorityRealtime, 1024)
{
irq_thread.start(mbed::callback(this, &RFPins::rf_irq_task));
}
class TestPins_S2LP {
public:
TestPins_S2LP(PinName test_pin_1, PinName test_pin_2, PinName test_pin_3, PinName test_pin_4, PinName test_pin_5);
DigitalOut TEST1;
DigitalOut TEST2;
DigitalOut TEST3;
DigitalOut TEST4;
DigitalOut TEST5;
};
TestPins_S2LP::TestPins_S2LP(PinName test_pin_1, PinName test_pin_2, PinName test_pin_3, PinName test_pin_4, PinName test_pin_5)
: TEST1(test_pin_1),
TEST2(test_pin_2),
TEST3(test_pin_3),
TEST4(test_pin_4),
TEST5(test_pin_5)
{
}
static uint8_t rf_read_register(uint8_t addr);
static s2lp_states_e rf_read_state(void);
static void rf_write_register(uint8_t addr, uint8_t data);
static void rf_interrupt_handler(void);
static void rf_receive(uint8_t rx_channel);
static void rf_cca_timer_stop(void);
static void rf_backup_timer_start(uint32_t slots);
static void rf_backup_timer_stop(void);
static void rf_rx_ready_handler(void);
static uint32_t read_irq_status(void);
static bool rf_rx_filter(uint8_t *mac_header, uint8_t *mac_64bit_addr, uint8_t *mac_16bit_addr, uint8_t *pan_id);
static void rf_cca_timer_start(uint32_t slots);
static RFPins *rf;
static TestPins_S2LP *test_pins;
static phy_device_driver_s device_driver;
static int8_t rf_radio_driver_id = -1;
static uint8_t *tx_data_ptr;
static uint16_t tx_data_length;
static uint16_t rx_data_length;
static uint32_t enabled_interrupts;
static uint8_t mac_tx_handle;
static uint8_t rf_rx_channel;
static uint8_t rf_new_channel;
static uint8_t rx_buffer[RF_MTU];
static rf_states_e rf_state = RF_IDLE;
// This will be used when given channel spacing cannot be supported by transceiver
static uint8_t rf_channel_multiplier = 1;
static uint16_t tx_sequence = 0xffff;
static uint32_t tx_time = 0;
static uint32_t rx_time = 0;
static uint32_t tx_finnish_time = 0;
static uint32_t rf_symbol_rate;
static bool cca_enabled = true;
static uint8_t s2lp_PAN_ID[2] = {0xff, 0xff};
static uint8_t s2lp_short_address[2];
static uint8_t s2lp_MAC[8];
static rf_mode_e rf_mode = RF_MODE_NORMAL;
static bool rf_update_config = false;
static uint16_t cur_packet_len = 0xffff;
static uint32_t receiver_ready_timestamp;
static int16_t rssi_threshold = RSSI_THRESHOLD;
static uint32_t tx_start_time = 0;
/* Channel configurations for sub-GHz */
static phy_rf_channel_configuration_s phy_subghz = {
.channel_0_center_frequency = 868300000U,
.channel_spacing = 500000U,
.datarate = 250000U,
.number_of_channels = 11U,
.modulation = M_2FSK,
.modulation_index = MODULATION_INDEX_UNDEFINED
};
static const phy_device_channel_page_s phy_channel_pages[] = {
{ CHANNEL_PAGE_2, &phy_subghz},
{ CHANNEL_PAGE_0, NULL}
};
#include "rtos.h"
static void rf_irq_task_process_irq();
#define SIG_ALL (SIG_RADIO|SIG_TIMER_CCA|SIG_TIMER_BACKUP)
#define SIG_RADIO 1
#define SIG_TIMER_CCA 2
#define SIG_TIMER_BACKUP 4
#define ACK_FRAME_LENGTH 3
// Give some additional time for processing, PHY headers, CRC etc.
#define PACKET_SENDING_EXTRA_TIME 5000
#define MAX_PACKET_SENDING_TIME (uint32_t)(8000000/phy_subghz.datarate)*FIFO_SIZE + PACKET_SENDING_EXTRA_TIME
#define ACK_SENDING_TIME (uint32_t)(8000000/phy_subghz.datarate)*ACK_FRAME_LENGTH + PACKET_SENDING_EXTRA_TIME
#ifdef TEST_GPIOS_ENABLED
static void test1_toggle(void)
{
if (test_pins->TEST4) {
test_pins->TEST4 = 0;
} else {
test_pins->TEST4 = 1;
}
}
static void test2_toggle(void)
{
if (test_pins->TEST5) {
test_pins->TEST5 = 0;
} else {
test_pins->TEST5 = 1;
}
}
#endif //TEST_GPIOS_ENABLED
static void rf_calculate_symbol_rate(uint32_t baudrate, phy_modulation_e modulation)
{
(void) modulation;
uint8_t bits_in_symbols = 1;
rf_symbol_rate = baudrate / bits_in_symbols;
}
static uint32_t rf_get_timestamp(void)
{
return (uint32_t)rf->tx_timer.elapsed_time().count();
}
static void rf_update_tx_active_time(void)
{
if (device_driver.phy_rf_statistics) {
device_driver.phy_rf_statistics->tx_active_time += rf_get_timestamp() - tx_start_time;
}
}
static void rf_update_rx_active_time(void)
{
if (device_driver.phy_rf_statistics) {
device_driver.phy_rf_statistics->rx_active_time += rf_get_timestamp() - rx_time;
}
}
static void rf_lock(void)
{
platform_enter_critical();
}
static void rf_unlock(void)
{
platform_exit_critical();
}
static void rf_cca_timer_signal(void)
{
rf->irq_thread.flags_set(SIG_TIMER_CCA);
}
static void rf_backup_timer_signal(void)
{
rf->irq_thread.flags_set(SIG_TIMER_BACKUP);
}
/*
* \brief Function writes/read data in SPI interface
*/
static void rf_spi_exchange(const void *tx, size_t tx_len, void *rx, size_t rx_len)
{
rf->spi.write(static_cast<const char *>(tx), tx_len, static_cast<char *>(rx), rx_len);
}
static uint8_t rf_read_register(uint8_t addr)
{
const uint8_t tx[2] = {SPI_RD_REG, addr};
uint8_t rx[3];
rf_lock();
CS_SELECT();
rf_spi_exchange(tx, sizeof(tx), rx, sizeof(rx));
CS_RELEASE();
rf_unlock();
return rx[2];
}
static void rf_write_register(uint8_t addr, uint8_t data)
{
const uint8_t tx[3] = {SPI_WR_REG, addr, data};
rf_lock();
CS_SELECT();
rf_spi_exchange(tx, sizeof(tx), NULL, 0);
CS_RELEASE();
rf_unlock();
}
static void rf_write_register_field(uint8_t addr, uint8_t field, uint8_t value)
{
uint8_t reg_tmp = rf_read_register(addr);
reg_tmp &= ~field;
reg_tmp |= value;
rf_write_register(addr, reg_tmp);
}
static s2lp_states_e rf_read_state(void)
{
return (s2lp_states_e)(rf_read_register(MC_STATE0) >> 1);
}
static void rf_poll_state_change(s2lp_states_e state)
{
uint16_t break_counter = 0;
while (state != rf_read_state()) {
if (break_counter++ == 0xffff) {
tr_err("Failed to change state from %x to: %x", rf_read_state(), state);
break;
}
}
}
static void rf_enable_gpio_signal(uint8_t gpio_pin, uint8_t interrupt_signal, uint8_t gpio_mode)
{
rf_write_register(GPIO0_CONF + gpio_pin, (interrupt_signal << 3) | gpio_mode);
}
static void rf_enable_interrupt(uint8_t event)
{
if (enabled_interrupts & (1 << event)) {
return;
}
rf_write_register_field(IRQ_MASK0 - (event / 8), 1 << (event % 8), 1 << (event % 8));
enabled_interrupts |= (1 << event);
}
static void rf_disable_interrupt(uint8_t event)
{
if (!(enabled_interrupts & (1 << event))) {
return;
}
rf_write_register_field(IRQ_MASK0 - (event / 8), 1 << (event % 8), 0 << (event % 8));
enabled_interrupts &= ~(1 << event);
}
static void rf_disable_all_interrupts(void)
{
if ((uint8_t)enabled_interrupts & 0xff) {
rf_write_register(IRQ_MASK0, 0);
}
if ((uint8_t)(enabled_interrupts >> 8) & 0xff) {
rf_write_register(IRQ_MASK1, 0);
}
if ((uint8_t)(enabled_interrupts >> 16) & 0xff) {
rf_write_register(IRQ_MASK2, 0);
}
if ((uint8_t)(enabled_interrupts >> 24) & 0xff) {
rf_write_register(IRQ_MASK3, 0);
}
enabled_interrupts = 0;
read_irq_status();
}
static void rf_enable_gpio_interrupt(void)
{
rf_enable_gpio_signal(INTERRUPT_GPIO, NIRQ, DIG_OUT_HIGH);
INT_IN_GPIO.mode(PullUp);
INT_IN_GPIO.fall(&rf_interrupt_handler);
INT_IN_GPIO.enable_irq();
}
static void rf_send_command(s2lp_commands_e command)
{
const uint8_t tx[2] = {SPI_CMD, command};
rf_lock();
CS_SELECT();
rf_spi_exchange(tx, sizeof(tx), NULL, 0);
CS_RELEASE();
rf_unlock();
}
static void rf_state_change(s2lp_states_e state, bool lock_mode_tx)
{
s2lp_commands_e command;
if (S2LP_STATE_READY == state) {
s2lp_states_e cur_state = rf_read_state();
if (S2LP_STATE_TX == cur_state || S2LP_STATE_RX == cur_state) {
command = S2LP_CMD_SABORT;
} else {
command = S2LP_CMD_READY;
}
} else if (S2LP_STATE_LOCK == state && lock_mode_tx) {
command = S2LP_CMD_LOCKTX;
} else if (S2LP_STATE_LOCK == state && !lock_mode_tx) {
command = S2LP_CMD_LOCKRX;
} else if (S2LP_STATE_RX == state) {
command = S2LP_CMD_RX;
} else if (S2LP_STATE_TX == state) {
command = S2LP_CMD_TX;
} else {
tr_err("Invalid state %x", state);
return;
}
rf_send_command(command);
rf_poll_state_change(state);
}
static uint8_t rf_write_tx_fifo(uint8_t *ptr, uint16_t length)
{
uint8_t free_bytes_in_fifo = FIFO_SIZE - rf_read_register(TX_FIFO_STATUS);
const uint8_t spi_header[SPI_HEADER_LENGTH] = {SPI_WR_REG, TX_FIFO};
uint8_t written_length = length;
if (length > free_bytes_in_fifo) {
written_length = free_bytes_in_fifo;
}
CS_SELECT();
rf_spi_exchange(spi_header, SPI_HEADER_LENGTH, NULL, 0);
rf_spi_exchange(ptr, written_length, NULL, 0);
CS_RELEASE();
return written_length;
}
static int rf_read_rx_fifo(uint16_t rx_index, uint16_t length)
{
if ((rx_index + length) > RF_MTU) {
return -1;
}
uint8_t *ptr = &rx_buffer[rx_index];
const uint8_t spi_header[SPI_HEADER_LENGTH] = {SPI_RD_REG, RX_FIFO};
CS_SELECT();
rf_spi_exchange(spi_header, SPI_HEADER_LENGTH, NULL, 0);
rf_spi_exchange(NULL, 0, ptr, length);
CS_RELEASE();
return length;
}
static void rf_flush_tx_fifo(void)
{
if (rf_read_register(TX_FIFO_STATUS)) {
rf_send_command(S2LP_CMD_FLUSHTXFIFO);
}
}
static void rf_flush_rx_fifo(void)
{
if (rf_read_register(RX_FIFO_STATUS)) {
rf_send_command(S2LP_CMD_FLUSHRXFIFO);
}
}
static void rf_write_packet_length(uint16_t packet_length)
{
if ((uint8_t)(cur_packet_len >> 8) != (packet_length / 256)) {
rf_write_register(PCKTLEN1, packet_length / 256);
}
if ((uint8_t)cur_packet_len != (packet_length % 256)) {
rf_write_register(PCKTLEN0, packet_length % 256);
}
cur_packet_len = packet_length;
}
static uint32_t read_irq_status(void)
{
const uint8_t tx[2] = {SPI_RD_REG, IRQ_STATUS3};
uint8_t rx[6];
CS_SELECT();
rf_spi_exchange(tx, sizeof(tx), rx, sizeof(rx));
CS_RELEASE();
return (((uint32_t)rx[2] << 24) | ((uint32_t)rx[3] << 16) | ((uint32_t)rx[4] << 8) | rx[5]);
}
static void rf_set_channel_configuration_registers(void)
{
// Set RSSI threshold
uint8_t rssi_th;
rf_conf_calculate_rssi_threshold_registers(rssi_threshold, &rssi_th);
rf_write_register(RSSI_TH, rssi_th);
// Set deviation
uint32_t deviation = rf_conf_calculate_deviation(phy_subghz.modulation_index, phy_subghz.datarate);
if (!deviation) {
deviation = DEFAULT_DEVIATION;
}
uint8_t fdev_m, fdev_e;
rf_conf_calculate_deviation_registers(deviation, &fdev_m, &fdev_e);
rf_write_register(MOD0, fdev_m);
rf_write_register_field(MOD1, FDEV_E_FIELD, fdev_e);
// Set datarate
uint16_t datarate_m;
uint8_t datarate_e;
rf_conf_calculate_datarate_registers(phy_subghz.datarate, &datarate_m, &datarate_e);
rf_write_register_field(MOD2, DATARATE_E_FIELD, datarate_e);
rf_write_register(MOD3, (uint8_t)datarate_m);
rf_write_register(MOD4, datarate_m >> 8);
// Set RX filter bandwidth, using channel spacing as RX filter bandwidth
uint8_t chflt_m, chflt_e;
rf_conf_calculate_rx_filter_bandwidth_registers(phy_subghz.channel_spacing, &chflt_m, &chflt_e);
rf_write_register_field(CHFLT, CHFLT_M_FIELD, chflt_m << 4);
rf_write_register_field(CHFLT, CHFLT_E_FIELD, chflt_e);
// Set base frequency (Channel 0 center frequency)
uint8_t synt3, synt2, synt1, synt0;
rf_conf_calculate_base_frequency_registers(phy_subghz.channel_0_center_frequency, &synt3, &synt2, &synt1, &synt0);
rf_write_register_field(SYNT3, SYNT_FIELD, synt3);
rf_write_register(SYNT2, synt2);
rf_write_register(SYNT1, synt1);
rf_write_register(SYNT0, synt0);
// Set channel spacing
uint8_t ch_space;
uint8_t ch_space_divider = 1;
while (rf_conf_calculate_channel_spacing_registers(phy_subghz.channel_spacing / ch_space_divider, &ch_space)) {
ch_space_divider++;
rf_channel_multiplier++;
}
rf_write_register(CHSPACE, ch_space);
/* Preamble is set for S2-LP as repetitions of 01 or 10 pair
*
* For datarate < 150kbps, using phyFskPreambleLength = 8 repetitions of 01010101
* For datarate >= 150kbps and datarate < 300kbps, using phyFskPreambleLength = 12 repetitions of 01010101
* For datarate >= 300kbps, using phyFskPreambleLength = 24 repetitions of 01010101
*/
uint8_t preamble_len = 24 * 4;
if (phy_subghz.datarate < 150000) {
preamble_len = 8 * 4;
} else if (phy_subghz.datarate < 300000) {
preamble_len = 12 * 4;
}
rf_write_register(PCKTCTRL5, preamble_len);
}
static void rf_init_registers(void)
{
rf_write_register_field(PCKTCTRL3, PCKT_FORMAT_FIELD, PCKT_FORMAT_802_15_4);
rf_write_register_field(MOD2, MOD_TYPE_FIELD, MOD_2FSK);
rf_write_register(PCKT_FLT_OPTIONS, 0);
rf_write_register_field(PCKTCTRL1, PCKT_CRCMODE_FIELD, PCKT_CRCMODE_0x04C11DB7);
rf_write_register_field(PCKTCTRL1, PCKT_TXSOURCE_FIELD, PCKT_TXSOURCE_NORMAL);
rf_write_register_field(PCKTCTRL1, PCKT_WHITENING_FIELD, PCKT_WHITENING_ENABLED);
rf_write_register_field(PCKTCTRL2, PCKT_FIXVARLEN_FIELD, PCKT_VARIABLE_LEN);
rf_write_register_field(PCKTCTRL2, PCKT_FCS_TYPE_FIELD, PCKT_FCS_TYPE_4_OCTET);
rf_write_register_field(PCKTCTRL3, PCKT_RXMODE_FIELD, PCKT_RXMODE_NORMAL);
rf_write_register_field(PCKTCTRL3, PCKT_BYTE_SWAP_FIELD, PCKT_BYTE_SWAP_LSB);
rf_write_register_field(PCKTCTRL6, PCKT_SYNCLEN_FIELD, PCKT_SYNCLEN);
rf_write_register_field(QI, PQI_TH_FIELD, PQI_TH);
rf_write_register_field(QI, SQI_EN_FIELD, SQI_EN);
rf_write_register(SYNC0, SFD0);
rf_write_register(SYNC1, SFD1);
rf_set_channel_configuration_registers();
}
static int8_t rf_address_write(phy_address_type_e address_type, uint8_t *address_ptr)
{
int8_t ret_val = 0;
switch (address_type) {
/*Set 48-bit address*/
case PHY_MAC_48BIT:
break;
/*Set 64-bit address*/
case PHY_MAC_64BIT:
memcpy(s2lp_MAC, address_ptr, 8);
break;
/*Set 16-bit address*/
case PHY_MAC_16BIT:
memcpy(s2lp_short_address, address_ptr, 2);
break;
/*Set PAN Id*/
case PHY_MAC_PANID:
memcpy(s2lp_PAN_ID, address_ptr, 2);
break;
}
return ret_val;
}
static int8_t rf_extension(phy_extension_type_e extension_type, uint8_t *data_ptr)
{
int8_t retval = 0;
phy_csma_params_t *csma_params;
phy_rf_channel_configuration_s *channel_params;
uint32_t *timer_value;
switch (extension_type) {
case PHY_EXTENSION_SET_CHANNEL:
if (rf_state == RF_IDLE || rf_state == RF_CSMA_STARTED) {
rf_receive(*data_ptr);
} else {
// Store the new channel if couldn't change it yet.
rf_new_channel = *data_ptr;
retval = -1;
}
break;
case PHY_EXTENSION_CTRL_PENDING_BIT:
break;
/*Return frame pending status*/
case PHY_EXTENSION_READ_LAST_ACK_PENDING_STATUS:
break;
case PHY_EXTENSION_ACCEPT_ANY_BEACON:
break;
case PHY_EXTENSION_SET_TX_TIME:
tx_time = common_read_32_bit(data_ptr);
break;
case PHY_EXTENSION_READ_RX_TIME:
common_write_32_bit(rx_time, data_ptr);
break;
case PHY_EXTENSION_DYNAMIC_RF_SUPPORTED:
*data_ptr = true;
break;
case PHY_EXTENSION_GET_TIMESTAMP:
timer_value = (uint32_t *)data_ptr;
*timer_value = rf_get_timestamp();
break;
case PHY_EXTENSION_SET_CSMA_PARAMETERS:
csma_params = (phy_csma_params_t *)data_ptr;
if (csma_params->backoff_time == 0) {
rf_cca_timer_stop();
if (rf_read_register(TX_FIFO_STATUS)) {
rf_send_command(S2LP_CMD_SABORT);
rf_poll_state_change(S2LP_STATE_READY);
rf_send_command(S2LP_CMD_FLUSHTXFIFO);
rf_poll_state_change(S2LP_STATE_READY);
}
if (rf_state == RF_TX_STARTED) {
rf_state = RF_IDLE;
rf_receive(rf_rx_channel);
}
tx_time = 0;
} else {
tx_time = csma_params->backoff_time;
cca_enabled = csma_params->cca_enabled;
}
break;
case PHY_EXTENSION_READ_TX_FINNISH_TIME:
timer_value = (uint32_t *)data_ptr;
*timer_value = tx_finnish_time;
break;
case PHY_EXTENSION_GET_SYMBOLS_PER_SECOND:
timer_value = (uint32_t *)data_ptr;
*timer_value = rf_symbol_rate;
break;
case PHY_EXTENSION_SET_RF_CONFIGURATION:
channel_params = (phy_rf_channel_configuration_s *)data_ptr;
phy_subghz.datarate = channel_params->datarate;
phy_subghz.channel_spacing = channel_params->channel_spacing;
phy_subghz.channel_0_center_frequency = channel_params->channel_0_center_frequency;
phy_subghz.number_of_channels = channel_params->number_of_channels;
phy_subghz.modulation = channel_params->modulation;
phy_subghz.modulation_index = channel_params->modulation_index;
rf_calculate_symbol_rate(phy_subghz.datarate, phy_subghz.modulation);
rf_update_config = true;
if (rf_state == RF_IDLE) {
rf_receive(rf_rx_channel);
}
break;
case PHY_EXTENSION_SET_TX_POWER:
// TODO: Set TX output power
break;
case PHY_EXTENSION_SET_CCA_THRESHOLD:
rssi_threshold = rf_conf_cca_threshold_percent_to_rssi(*data_ptr);
rf_update_config = true;
if (rf_state == RF_IDLE) {
rf_receive(rf_rx_channel);
}
break;
default:
break;
}
return retval;
}
static int8_t rf_interface_state_control(phy_interface_state_e new_state, uint8_t rf_channel)
{
int8_t ret_val = 0;
switch (new_state) {
/*Reset PHY driver and set to idle*/
case PHY_INTERFACE_RESET:
break;
/*Disable PHY Interface driver*/
case PHY_INTERFACE_DOWN:
rf_lock();
rf_send_command(S2LP_CMD_SABORT);
rf_disable_all_interrupts();
rf_poll_state_change(S2LP_STATE_READY);
rf_flush_rx_fifo();
rf_flush_tx_fifo();
rf_state = RF_IDLE;
rf_unlock();
break;
/*Enable PHY Interface driver*/
case PHY_INTERFACE_UP:
rf_mode = RF_MODE_NORMAL;
rf_receive(rf_channel);
break;
/*Enable wireless interface ED scan mode*/
case PHY_INTERFACE_RX_ENERGY_STATE:
break;
/*Enable Sniffer state*/
case PHY_INTERFACE_SNIFFER_STATE:
rf_mode = RF_MODE_SNIFFER;
rf_receive(rf_channel);
break;
}
return ret_val;
}
static void rf_tx_sent_handler(void)
{
TEST_TX_DONE
rf_backup_timer_stop();
rf_disable_interrupt(TX_DATA_SENT);
if (rf_state != RF_TX_ACK) {
tx_finnish_time = rf_get_timestamp();
rf_update_tx_active_time();
rf_state = RF_IDLE;
rf_receive(rf_rx_channel);
if (device_driver.phy_tx_done_cb) {
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_TX_SUCCESS, 0, 0);
}
} else {
rf_receive(rf_rx_channel);
}
}
static void rf_tx_threshold_handler(void)
{
rf_backup_timer_stop();
rf_disable_interrupt(TX_FIFO_ALMOST_EMPTY);
// TODO check the FIFO threshold. By default, threshold is half of the FIFO size
uint8_t written_length = rf_write_tx_fifo(tx_data_ptr, tx_data_length);
if (written_length < tx_data_length) {
tx_data_ptr += written_length;
tx_data_length -= written_length;
rf_enable_interrupt(TX_FIFO_ALMOST_EMPTY);
}
rf_backup_timer_start(MAX_PACKET_SENDING_TIME);
}
static void rf_start_tx(void)
{
rf_send_command(S2LP_CMD_SABORT);
rf_disable_all_interrupts();
rf_poll_state_change(S2LP_STATE_READY);
rf_state_change(S2LP_STATE_TX, false);
tx_start_time = rf_get_timestamp();
// More TX data to be written in FIFO when TX threshold interrupt occurs
if (tx_data_ptr) {
rf_enable_interrupt(TX_FIFO_ALMOST_EMPTY);
}
rf_enable_interrupt(TX_DATA_SENT);
rf_enable_interrupt(TX_FIFO_UNF_OVF);
rf_backup_timer_start(MAX_PACKET_SENDING_TIME);
}
static int rf_cca_check(void)
{
uint32_t time_from_receiver_ready = rf_get_timestamp() - receiver_ready_timestamp;
if (time_from_receiver_ready < RSSI_SETTLING_TIME) {
wait_us(RSSI_SETTLING_TIME - time_from_receiver_ready);
}
return (rf_read_register(LINK_QUALIF1) & CARRIER_SENSE);
}
static void rf_cca_timer_interrupt(void)
{
TEST_CSMA_DONE
int8_t status = device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_CCA_PREPARE, 0, 0);
if (status == PHY_TX_NOT_ALLOWED) {
rf_flush_tx_fifo();
if (rf_state == RF_CSMA_STARTED) {
rf_state = RF_IDLE;
}
return;
}
if ((cca_enabled == true) && ((rf_state != RF_CSMA_STARTED && rf_state != RF_IDLE) || (read_irq_status() & (1 << SYNC_WORD)) || rf_cca_check())) {
if (rf_state == RF_CSMA_STARTED) {
rf_state = RF_IDLE;
}
rf_flush_tx_fifo();
tx_finnish_time = rf_get_timestamp();
rf_update_tx_active_time();
if (device_driver.phy_tx_done_cb) {
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_CCA_FAIL, 0, 0);
}
} else {
if (status == PHY_RESTART_CSMA) {
if (device_driver.phy_tx_done_cb) {
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_CCA_OK, 0, 0);
}
if (tx_time) {
uint32_t backoff_time = tx_time - rf_get_timestamp();
// Max. time to TX can be 65ms, otherwise time has passed already -> send immediately
if (backoff_time > 65000) {
backoff_time = 1;
}
rf_cca_timer_start(backoff_time);
}
} else {
rf_start_tx();
rf_state = RF_TX_STARTED;
TEST_TX_STARTED
if (device_driver.phy_rf_statistics) {
device_driver.phy_rf_statistics->tx_bytes += tx_data_length;
}
}
}
}
static void rf_cca_timer_stop(void)
{
TEST_CSMA_DONE
rf->cca_timer.detach();
}
static void rf_cca_timer_start(uint32_t slots)
{
rf->cca_timer.attach(rf_cca_timer_signal, microseconds(slots));
TEST_CSMA_STARTED
}
static void rf_backup_timer_interrupt(void)
{
tx_finnish_time = rf_get_timestamp();
if (rf_state == RF_RX_STARTED) {
rf_update_rx_active_time();
if (device_driver.phy_rf_statistics) {
device_driver.phy_rf_statistics->rx_timeouts++;
}
} else {
rf_update_tx_active_time();
if (device_driver.phy_rf_statistics) {
device_driver.phy_rf_statistics->tx_timeouts++;
}
}
if (rf_state == RF_TX_STARTED) {
if (device_driver.phy_tx_done_cb) {
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_TX_SUCCESS, 0, 0);
}
}
rf_flush_tx_fifo();
TEST_TX_DONE
TEST_RX_DONE
rf_state = RF_IDLE;
rf_receive(rf_rx_channel);
}
static void rf_backup_timer_stop(void)
{
rf->backup_timer.detach();
}
static void rf_backup_timer_start(uint32_t slots)
{
rf->backup_timer.attach(rf_backup_timer_signal, microseconds(slots));
}
static int8_t rf_start_cca(uint8_t *data_ptr, uint16_t data_length, uint8_t tx_handle, data_protocol_e data_protocol)
{
rf_lock();
if (rf_state != RF_IDLE) {
rf_unlock();
return -1;
}
rf_state = RF_CSMA_STARTED;
uint8_t written_length = rf_write_tx_fifo(data_ptr, data_length);
if (written_length < data_length) {
tx_data_ptr = data_ptr + written_length;
tx_data_length = data_length - written_length;
} else {
tx_data_ptr = NULL;
}
// If Ack is requested, store the MAC sequence. This will be compared with received Ack.
uint8_t version = ((*(data_ptr + 1) & VERSION_FIELD_MASK) >> SHIFT_VERSION_FIELD);
if ((version != MAC_FRAME_VERSION_2) && (*data_ptr & FC_AR)) {
tx_sequence = *(data_ptr + 2);
}
// TODO: Define this better
rf_write_packet_length(data_length + 4);
mac_tx_handle = tx_handle;
if (tx_time) {
uint32_t backoff_time = tx_time - rf_get_timestamp();
// Max. time to TX can be 65ms, otherwise time has passed already -> send immediately
if (backoff_time <= 65000) {
rf_cca_timer_start(backoff_time);
rf_unlock();
return 0;
}
}
// Short timeout to start CCA immediately.
rf_cca_timer_start(1);
rf_unlock();
return 0;
}
static void rf_send_ack(uint8_t seq)
{
rf_state = RF_TX_ACK;
uint8_t ack_frame[3] = {MAC_TYPE_ACK, 0, seq};
rf_write_tx_fifo(ack_frame, sizeof(ack_frame));
rf_write_packet_length(sizeof(ack_frame) + 4);
tx_data_ptr = NULL;
rf_start_tx();
TEST_TX_STARTED
rf_backup_timer_start(ACK_SENDING_TIME);
if (device_driver.phy_rf_statistics) {
device_driver.phy_rf_statistics->tx_bytes += sizeof(ack_frame);
}
}
static void rf_handle_ack(uint8_t seq_number, uint8_t pending)
{
phy_link_tx_status_e phy_status;
if (tx_sequence == (uint16_t)seq_number) {
tx_finnish_time = rf_get_timestamp();
rf_update_tx_active_time();
if (pending) {
phy_status = PHY_LINK_TX_DONE_PENDING;
} else {
phy_status = PHY_LINK_TX_DONE;
}
// No CCA attempts done, just waited Ack
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, phy_status, 0, 0);
// Clear TX sequence when Ack is received to avoid duplicate Acks
tx_sequence = 0xffff;
}
}
static void rf_rx_ready_handler(void)
{
rf_backup_timer_stop();
TEST_RX_DONE
rf_flush_tx_fifo();
int rx_read_length = rf_read_rx_fifo(rx_data_length, rf_read_register(RX_FIFO_STATUS));
if (rx_read_length < 0) {
rf_receive(rf_rx_channel);
return;
}
rx_data_length += rx_read_length;
if (rf_mode != RF_MODE_SNIFFER) {
rf_state = RF_IDLE;
uint8_t version = ((rx_buffer[1] & VERSION_FIELD_MASK) >> SHIFT_VERSION_FIELD);
if (((rx_buffer[0] & MAC_FRAME_TYPE_MASK) == MAC_TYPE_ACK) && (version < MAC_FRAME_VERSION_2)) {
rf_handle_ack(rx_buffer[2], rx_buffer[0] & MAC_DATA_PENDING);
} else if (rf_rx_filter(rx_buffer, s2lp_MAC, s2lp_short_address, s2lp_PAN_ID)) {
int8_t rssi = (rf_read_register(RSSI_LEVEL) - RSSI_OFFSET);
if (device_driver.phy_rx_cb) {
device_driver.phy_rx_cb(rx_buffer, rx_data_length, 0xf0, rssi, rf_radio_driver_id);
}
// Check Ack request
if ((version != MAC_FRAME_VERSION_2) && (rx_buffer[0] & FC_AR)) {
rf_send_ack(rx_buffer[2]);
}
}
if (device_driver.phy_rf_statistics) {
device_driver.phy_rf_statistics->rx_bytes += rx_data_length;
}
} else {
rf_state = RF_IDLE;
int8_t rssi = (rf_read_register(RSSI_LEVEL) - RSSI_OFFSET);
if (device_driver.phy_rx_cb) {
device_driver.phy_rx_cb(rx_buffer, rx_data_length, 0xf0, rssi, rf_radio_driver_id);
}
}
if ((rf_state != RF_TX_ACK) && (rf_state != RF_CSMA_STARTED)) {
rf_receive(rf_rx_channel);
}
}
static void rf_rx_threshold_handler(void)
{
rf_backup_timer_stop();
int rx_read_length = rf_read_rx_fifo(rx_data_length, rf_read_register(RX_FIFO_STATUS));
if (rx_read_length < 0) {
rf_receive(rf_rx_channel);
return;
}
rx_data_length += rx_read_length;
rf_backup_timer_start(MAX_PACKET_SENDING_TIME);
}
static void rf_sync_detected_handler(void)
{
rx_time = rf_get_timestamp();
rf_state = RF_RX_STARTED;
TEST_RX_STARTED
rf_disable_interrupt(SYNC_WORD);
rf_enable_interrupt(RX_FIFO_ALMOST_FULL);
rf_enable_interrupt(RX_DATA_READY);
rf_backup_timer_start(MAX_PACKET_SENDING_TIME);
}
static void rf_receive(uint8_t rx_channel)
{
if (rf_state == RF_TX_STARTED) {
return;
}
rf_lock();
rf_send_command(S2LP_CMD_SABORT);
rf_disable_all_interrupts();
rf_poll_state_change(S2LP_STATE_READY);
rf_flush_rx_fifo();
if (rf_update_config == true) {
rf_channel_multiplier = 1;
rf_update_config = false;
rf_set_channel_configuration_registers();
}
if (rx_channel != rf_rx_channel) {
rf_write_register(CHNUM, rx_channel * rf_channel_multiplier);
rf_rx_channel = rf_new_channel = rx_channel;
}
rf_send_command(S2LP_CMD_RX);
rf_enable_interrupt(SYNC_WORD);
rf_enable_interrupt(RX_FIFO_UNF_OVF);
rx_data_length = 0;
if (rf_state != RF_CSMA_STARTED) {
rf_state = RF_IDLE;
}
rf_poll_state_change(S2LP_STATE_RX);
receiver_ready_timestamp = rf_get_timestamp();
rf_unlock();
}
static void rf_interrupt_handler(void)
{
rf->irq_thread.flags_set(SIG_RADIO);
}
void RFPins::rf_irq_task(void)
{
for (;;) {
uint32_t flags = ThisThread::flags_wait_any(SIG_ALL);
rf_lock();
if (flags & SIG_RADIO) {
rf_irq_task_process_irq();
}
if (flags & SIG_TIMER_CCA) {
rf_cca_timer_interrupt();
}
if (flags & SIG_TIMER_BACKUP) {
rf_backup_timer_interrupt();
}
rf_unlock();
}
}
static void rf_irq_task_process_irq(void)
{
rf_lock();
uint32_t irq_status = read_irq_status();
if (rf_state == RF_TX_STARTED || rf_state == RF_TX_ACK) {
if ((irq_status & (1 << TX_DATA_SENT)) && (enabled_interrupts & (1 << TX_DATA_SENT))) {
rf_tx_sent_handler();
}
}
if (rf_state == RF_TX_STARTED) {
if ((irq_status & (1 << TX_FIFO_ALMOST_EMPTY)) && (enabled_interrupts & (1 << TX_FIFO_ALMOST_EMPTY))) {
rf_tx_threshold_handler();
}
}
if ((irq_status & (1 << TX_FIFO_UNF_OVF)) && (enabled_interrupts & (1 << TX_FIFO_UNF_OVF))) {
rf_backup_timer_stop();
tx_finnish_time = rf_get_timestamp();
rf_update_tx_active_time();
TEST_TX_DONE
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_CCA_FAIL, 1, 0);
rf_send_command(S2LP_CMD_SABORT);
rf_poll_state_change(S2LP_STATE_READY);
rf_send_command(S2LP_CMD_FLUSHTXFIFO);
rf_poll_state_change(S2LP_STATE_READY);
rf_state = RF_IDLE;
rf_receive(rf_rx_channel);
}
if (rf_state == RF_IDLE || rf_state == RF_CSMA_STARTED || rf_state == RF_TX_STARTED) {
if ((irq_status & (1 << SYNC_WORD)) && (enabled_interrupts & (1 << SYNC_WORD))) {
rf_sync_detected_handler();
}
} else if (rf_state == RF_RX_STARTED) {
if ((irq_status & (1 << RX_DATA_READY)) && (enabled_interrupts & (1 << RX_DATA_READY))) {
rf_update_rx_active_time();
if (!(irq_status & (1 << CRC_ERROR))) {
rf_rx_ready_handler();
} else {
TEST_RX_DONE
rf_backup_timer_stop();
rf_flush_tx_fifo();
rf_state = RF_IDLE;
// In case the channel change was called during reception, driver is responsible to change the channel if CRC failed.
rf_receive(rf_new_channel);
if (device_driver.phy_rf_statistics) {
device_driver.phy_rf_statistics->crc_fails++;
}
}
}
if ((irq_status & (1 << RX_FIFO_ALMOST_FULL)) && (enabled_interrupts & (1 << RX_FIFO_ALMOST_FULL))) {
rf_rx_threshold_handler();
}
if ((irq_status & (1 << RX_DATA_DISCARDED)) && (enabled_interrupts & (1 << RX_DATA_DISCARDED))) {
}
if ((irq_status & (1 << CRC_ERROR)) && (enabled_interrupts & (1 << CRC_ERROR))) {
}
}
if ((irq_status & (1 << RX_FIFO_UNF_OVF)) && (enabled_interrupts & (1 << RX_FIFO_UNF_OVF))) {
rf_update_rx_active_time();
TEST_RX_DONE
rf_backup_timer_stop();
rf_send_command(S2LP_CMD_SABORT);
rf_poll_state_change(S2LP_STATE_READY);
rf_send_command(S2LP_CMD_FLUSHRXFIFO);
rf_poll_state_change(S2LP_STATE_READY);
rf_flush_tx_fifo();
rf_state = RF_IDLE;
rf_receive(rf_rx_channel);
}
rf_unlock();
}
static void rf_reset(void)
{
// Shutdown
rf->SDN = 1;
ThisThread::sleep_for(10ms);
// Wake up
rf->SDN = 0;
ThisThread::sleep_for(10ms);
}
static void rf_init(void)
{
#ifdef TEST_GPIOS_ENABLED
fhss_bc_switch = test1_toggle;
fhss_uc_switch = test2_toggle;
#endif //TEST_GPIOS_ENABLED
rf_reset();
rf->spi.frequency(10000000);
CS_RELEASE();
rf_init_registers();
rf_enable_gpio_interrupt();
rf_calculate_symbol_rate(phy_subghz.datarate, phy_subghz.modulation);
rf->tx_timer.start();
}
static int8_t rf_device_register(const uint8_t *mac_addr)
{
rf_init();
/*Set pointer to MAC address*/
device_driver.PHY_MAC = (uint8_t *)mac_addr;
device_driver.driver_description = (char *)"S2LP_MAC";
device_driver.link_type = PHY_LINK_15_4_SUBGHZ_TYPE;
device_driver.phy_channel_pages = phy_channel_pages;
device_driver.phy_MTU = RF_MTU;
/*No header in PHY*/
device_driver.phy_header_length = 0;
/*No tail in PHY*/
device_driver.phy_tail_length = 0;
/*Set address write function*/
device_driver.address_write = &rf_address_write;
/*Set RF extension function*/
device_driver.extension = &rf_extension;
/*Set RF state control function*/
device_driver.state_control = &rf_interface_state_control;
/*Set transmit function*/
device_driver.tx = &rf_start_cca;
/*NULLIFY rx and tx_done callbacks*/
device_driver.phy_rx_cb = NULL;
device_driver.phy_tx_done_cb = NULL;
/*Register device driver*/
rf_radio_driver_id = arm_net_phy_register(&device_driver);
return rf_radio_driver_id;
}
static void rf_device_unregister()
{
if (rf_radio_driver_id >= 0) {
arm_net_phy_unregister(rf_radio_driver_id);
rf_radio_driver_id = -1;
}
}
void NanostackRfPhys2lp::get_mac_address(uint8_t *mac)
{
rf_lock();
if (NULL == rf) {
error("NanostackRfPhys2lp Must be registered to read mac address");
rf_unlock();
return;
}
memcpy((void *)mac, (void *)_mac_addr, sizeof(_mac_addr));
rf_unlock();
}
void NanostackRfPhys2lp::set_mac_address(uint8_t *mac)
{
rf_lock();
if (NULL != rf) {
error("NanostackRfPhys2lp cannot change mac address when running");
rf_unlock();
return;
}
memcpy((void *)_mac_addr, (void *)mac, sizeof(_mac_addr));
_mac_set = true;
rf_unlock();
}
int8_t NanostackRfPhys2lp::rf_register()
{
if (NULL == _rf) {
return -1;
}
rf_lock();
if (rf != NULL) {
rf_unlock();
error("Multiple registrations of NanostackRfPhyAtmel not supported");
return -1;
}
if (!_mac_set) {
#ifdef AT24MAC
int ret = _mac.read_eui64((void *)s2lp_MAC);
if (ret < 0) {
rf = NULL;
rf_unlock();
return -1;
}
#else
randLIB_seed_random();
randLIB_get_n_bytes_random(s2lp_MAC, 8);
s2lp_MAC[0] |= 2; //Set Local Bit
s2lp_MAC[0] &= ~1; //Clear multicast bit
#endif
set_mac_address(s2lp_MAC);
}
rf = _rf;
test_pins = _test_pins;
int8_t radio_id = rf_device_register(_mac_addr);
if (radio_id < 0) {
rf = NULL;
}
rf_unlock();
return radio_id;
}
void NanostackRfPhys2lp::rf_unregister()
{
rf_lock();
if (NULL == rf) {
rf_unlock();
return;
}
rf_device_unregister();
rf = NULL;
rf_unlock();
}
NanostackRfPhys2lp::NanostackRfPhys2lp(PinName spi_sdi, PinName spi_sdo, PinName spi_sclk, PinName spi_cs, PinName spi_sdn
, PinName spi_gpio0, PinName spi_gpio1, PinName spi_gpio2, PinName spi_gpio3
#ifdef AT24MAC
, PinName i2c_sda, PinName i2c_scl
#endif //AT24MAC
)
:
#ifdef AT24MAC
_mac(i2c_sda, i2c_scl),
#endif //AT24MAC
_mac_addr(), _rf(NULL), _mac_set(false),
_spi_sdi(spi_sdi), _spi_sdo(spi_sdo), _spi_sclk(spi_sclk), _spi_cs(spi_cs), _spi_sdn(spi_sdn),
_spi_gpio0(spi_gpio0), _spi_gpio1(spi_gpio1), _spi_gpio2(spi_gpio2), _spi_gpio3(spi_gpio3)
{
_rf = new RFPins(_spi_sdi, _spi_sdo, _spi_sclk, _spi_cs, _spi_sdn, _spi_gpio0, _spi_gpio1, _spi_gpio2, _spi_gpio3);
#ifdef TEST_GPIOS_ENABLED
_test_pins = new TestPins_S2LP(TEST_PIN_TX, TEST_PIN_RX, TEST_PIN_CSMA, TEST_PIN_SPARE_1, TEST_PIN_SPARE_2);
#endif //TEST_GPIOS_ENABLED
}
NanostackRfPhys2lp::~NanostackRfPhys2lp()
{
delete _rf;
}
static bool rf_panid_filter_common(uint8_t *panid_start, uint8_t *pan_id, uint8_t frame_type)
{
// PHY driver shouldn't drop received Beacon frames as they might be used by load balancing
if (frame_type == MAC_FRAME_BEACON) {
return true;
}
bool retval = true;
uint8_t cmp_table[2] = {0xff, 0xff};
if (!(pan_id[0] == 0xff && pan_id[1] == 0xff)) {
if (memcmp((uint8_t *)panid_start, (uint8_t *) cmp_table, 2)) {
retval = false;
}
if (!retval) {
for (uint8_t i = 0; i < 2; i++) {
cmp_table[1 - i] = panid_start[i];
}
if (!memcmp(pan_id, cmp_table, 2)) {
retval = true;
}
}
}
return retval;
}
static bool rf_panid_v1_v0_filter(uint8_t *ptr, uint8_t *pan_id, uint8_t frame_type)
{
return rf_panid_filter_common(ptr, pan_id, frame_type);
}
static bool rf_addr_filter_common(uint8_t *ptr, uint8_t addr_mode, uint8_t *mac_64bit_addr, uint8_t *mac_16bit_addr)
{
uint8_t cmp_table[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
bool retval = true;
switch (addr_mode) {
case FC_DST_16_BITS:
if (memcmp((uint8_t *)ptr, (uint8_t *) cmp_table, 2)) {
retval = false;
}
if (!retval) {
for (uint8_t i = 0; i < 2; i++) {
cmp_table[1 - i] = ptr[i];
}
if (!memcmp((uint8_t *)mac_16bit_addr, (uint8_t *) cmp_table, 2)) {
retval = true;
}
}
break;
case FC_DST_64_BITS:
if (memcmp((uint8_t *)ptr, (uint8_t *) cmp_table, 8)) {
retval = false;
}
if (!retval) {
for (uint8_t i = 0; i < 8; i++) {
cmp_table[7 - i] = ptr[i];
}
if (!memcmp((uint8_t *)mac_64bit_addr, (uint8_t *) cmp_table, 8)) {
retval = true;
}
}
break;
case FC_DST_ADDR_NONE:
retval = true;
break;
default:
retval = false;
break;
}
return retval;
}
static bool rf_addr_v1_v0_filter(uint8_t *ptr, uint8_t *mac_64bit_addr, uint8_t *mac_16bit_addr, uint8_t dst_mode)
{
return rf_addr_filter_common(ptr, dst_mode, mac_64bit_addr, mac_16bit_addr);
}
static bool rf_rx_filter(uint8_t *mac_header, uint8_t *mac_64bit_addr, uint8_t *mac_16bit_addr, uint8_t *pan_id)
{
uint8_t dst_mode = (mac_header[1] & FC_DST_MODE);
uint8_t frame_type = mac_header[0] & MAC_FRAME_TYPE_MASK;
uint8_t version = ((mac_header[1] & VERSION_FIELD_MASK) >> SHIFT_VERSION_FIELD);
if (version != MAC_FRAME_VERSION_2) {
if (!rf_panid_v1_v0_filter(mac_header + OFFSET_DST_PAN_ID, pan_id, frame_type)) {
return false;
}
if (!rf_addr_v1_v0_filter(mac_header + OFFSET_DST_ADDR, mac_64bit_addr, mac_16bit_addr, dst_mode)) {
return false;
}
}
return true;
}
#if MBED_CONF_S2LP_PROVIDE_DEFAULT
NanostackRfPhy &NanostackRfPhy::get_default_instance()
{
static NanostackRfPhys2lp rf_phy(S2LP_SPI_SDI, S2LP_SPI_SDO, S2LP_SPI_SCLK, S2LP_SPI_CS, S2LP_SPI_SDN
, S2LP_SPI_GPIO0, S2LP_SPI_GPIO1, S2LP_SPI_GPIO2, S2LP_SPI_GPIO3
#ifdef AT24MAC
, S2LP_I2C_SDA, S2LP_I2C_SCL
#endif //AT24MAC
);
return rf_phy;
}
#endif // MBED_CONF_S2LP_PROVIDE_DEFAULT
#endif // MBED_CONF_NANOSTACK_CONFIGURATION && DEVICE_SPI