mbed-os/features/unsupported/USBDevice/targets/TARGET_NXP/USBHAL_LPC11U.cpp

739 lines
21 KiB
C++

/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#if defined(TARGET_LPC11UXX) || defined(TARGET_LPC11U6X) || defined(TARGET_LPC1347) || defined(TARGET_LPC1549)
#if defined(TARGET_LPC1347) || defined(TARGET_LPC1549)
#define USB_IRQ USB_IRQ_IRQn
#else
#define USB_IRQ USB_IRQn
#endif
#include "USBHAL.h"
USBHAL * USBHAL::instance;
#if defined(TARGET_LPC1549)
static uint8_t usbmem[2048] __attribute__((aligned(2048)));
#endif
// Valid physical endpoint numbers are 0 to (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
#define LAST_PHYSICAL_ENDPOINT (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
// Convert physical endpoint number to register bit
#define EP(endpoint) (1UL<<endpoint)
// Convert physical to logical
#define PHY_TO_LOG(endpoint) ((endpoint)>>1)
// Get endpoint direction
#define IN_EP(endpoint) ((endpoint) & 1U ? true : false)
#define OUT_EP(endpoint) ((endpoint) & 1U ? false : true)
// USB RAM
#if defined(TARGET_LPC1549)
#define USB_RAM_START ((uint32_t)usbmem)
#define USB_RAM_SIZE sizeof(usbmem)
#else
#define USB_RAM_START (0x20004000)
#define USB_RAM_SIZE (0x00000800)
#endif
// SYSAHBCLKCTRL
#if defined(TARGET_LPC1549)
#define CLK_USB (1UL<<23)
#else
#define CLK_USB (1UL<<14)
#define CLK_USBRAM (1UL<<27)
#endif
// USB Information register
#define FRAME_NR(a) ((a) & 0x7ff) // Frame number
// USB Device Command/Status register
#define DEV_ADDR_MASK (0x7f) // Device address
#define DEV_ADDR(a) ((a) & DEV_ADDR_MASK)
#define DEV_EN (1UL<<7) // Device enable
#define SETUP (1UL<<8) // SETUP token received
#define PLL_ON (1UL<<9) // PLL enabled in suspend
#define DCON (1UL<<16) // Device status - connect
#define DSUS (1UL<<17) // Device status - suspend
#define DCON_C (1UL<<24) // Connect change
#define DSUS_C (1UL<<25) // Suspend change
#define DRES_C (1UL<<26) // Reset change
#define VBUSDEBOUNCED (1UL<<28) // Vbus detected
// Endpoint Command/Status list
#define CMDSTS_A (1UL<<31) // Active
#define CMDSTS_D (1UL<<30) // Disable
#define CMDSTS_S (1UL<<29) // Stall
#define CMDSTS_TR (1UL<<28) // Toggle Reset
#define CMDSTS_RF (1UL<<27) // Rate Feedback mode
#define CMDSTS_TV (1UL<<27) // Toggle Value
#define CMDSTS_T (1UL<<26) // Endpoint Type
#define CMDSTS_NBYTES(n) (((n)&0x3ff)<<16) // Number of bytes
#define CMDSTS_ADDRESS_OFFSET(a) (((a)>>6)&0xffff) // Buffer start address
#define BYTES_REMAINING(s) (((s)>>16)&0x3ff) // Bytes remaining after transfer
// USB Non-endpoint interrupt sources
#define FRAME_INT (1UL<<30)
#define DEV_INT (1UL<<31)
static volatile int epComplete = 0;
// One entry for a double-buffered logical endpoint in the endpoint
// command/status list. Endpoint 0 is single buffered, out[1] is used
// for the SETUP packet and in[1] is not used
typedef struct {
uint32_t out[2];
uint32_t in[2];
} PACKED EP_COMMAND_STATUS;
typedef struct {
uint8_t out[MAX_PACKET_SIZE_EP0];
uint8_t in[MAX_PACKET_SIZE_EP0];
uint8_t setup[SETUP_PACKET_SIZE];
} PACKED CONTROL_TRANSFER;
typedef struct {
uint32_t maxPacket;
uint32_t buffer[2];
uint32_t options;
} PACKED EP_STATE;
static volatile EP_STATE endpointState[NUMBER_OF_PHYSICAL_ENDPOINTS];
// Pointer to the endpoint command/status list
static EP_COMMAND_STATUS *ep = NULL;
// Pointer to endpoint 0 data (IN/OUT and SETUP)
static CONTROL_TRANSFER *ct = NULL;
// Shadow DEVCMDSTAT register to avoid accidentally clearing flags or
// initiating a remote wakeup event.
static volatile uint32_t devCmdStat;
// Pointers used to allocate USB RAM
static uint32_t usbRamPtr = USB_RAM_START;
static uint32_t epRamPtr = 0; // Buffers for endpoints > 0 start here
#define ROUND_UP_TO_MULTIPLE(x, m) ((((x)+((m)-1))/(m))*(m))
void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size);
void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size) {
if (size > 0) {
do {
*dst++ = *src++;
} while (--size > 0);
}
}
USBHAL::USBHAL(void) {
NVIC_DisableIRQ(USB_IRQ);
// fill in callback array
epCallback[0] = &USBHAL::EP1_OUT_callback;
epCallback[1] = &USBHAL::EP1_IN_callback;
epCallback[2] = &USBHAL::EP2_OUT_callback;
epCallback[3] = &USBHAL::EP2_IN_callback;
epCallback[4] = &USBHAL::EP3_OUT_callback;
epCallback[5] = &USBHAL::EP3_IN_callback;
epCallback[6] = &USBHAL::EP4_OUT_callback;
epCallback[7] = &USBHAL::EP4_IN_callback;
#if defined(TARGET_LPC1549)
/* Set USB PLL input to system oscillator */
LPC_SYSCON->USBPLLCLKSEL = 0x01;
/* Setup USB PLL (FCLKIN = 12MHz) * 4 = 48MHz
MSEL = 3 (this is pre-decremented), PSEL = 1 (for P = 2)
FCLKOUT = FCLKIN * (MSEL + 1) = 12MHz * 4 = 48MHz
FCCO = FCLKOUT * 2 * P = 48MHz * 2 * 2 = 192MHz (within FCCO range) */
LPC_SYSCON->USBPLLCTRL = (0x3 | (1UL << 6));
/* Powerup USB PLL */
LPC_SYSCON->PDRUNCFG &= ~(CLK_USB);
/* Wait for PLL to lock */
while(!(LPC_SYSCON->USBPLLSTAT & 0x01));
/* enable USB main clock */
LPC_SYSCON->USBCLKSEL = 0x02;
LPC_SYSCON->USBCLKDIV = 1;
/* Enable AHB clock to the USB block. */
LPC_SYSCON->SYSAHBCLKCTRL1 |= CLK_USB;
/* power UP USB Phy */
LPC_SYSCON->PDRUNCFG &= ~(1UL << 9);
/* Reset USB block */
LPC_SYSCON->PRESETCTRL1 |= (CLK_USB);
LPC_SYSCON->PRESETCTRL1 &= ~(CLK_USB);
#else
#if defined(TARGET_LPC11U35_401) || defined(TARGET_LPC11U35_501)
// USB_VBUS input with pull-down
LPC_IOCON->PIO0_3 = 0x00000009;
#endif
// nUSB_CONNECT output
LPC_IOCON->PIO0_6 = 0x00000001;
// Enable clocks (USB registers, USB RAM)
LPC_SYSCON->SYSAHBCLKCTRL |= CLK_USB | CLK_USBRAM;
// Ensure device disconnected (DCON not set)
LPC_USB->DEVCMDSTAT = 0;
#endif
// to ensure that the USB host sees the device as
// disconnected if the target CPU is reset.
wait(0.3);
// Reserve space in USB RAM for endpoint command/status list
// Must be 256 byte aligned
usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 256);
ep = (EP_COMMAND_STATUS *)usbRamPtr;
usbRamPtr += (sizeof(EP_COMMAND_STATUS) * NUMBER_OF_LOGICAL_ENDPOINTS);
LPC_USB->EPLISTSTART = (uint32_t)(ep) & 0xffffff00;
// Reserve space in USB RAM for Endpoint 0
// Must be 64 byte aligned
usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 64);
ct = (CONTROL_TRANSFER *)usbRamPtr;
usbRamPtr += sizeof(CONTROL_TRANSFER);
LPC_USB->DATABUFSTART =(uint32_t)(ct) & 0xffc00000;
// Setup command/status list for EP0
ep[0].out[0] = 0;
ep[0].in[0] = 0;
ep[0].out[1] = CMDSTS_ADDRESS_OFFSET((uint32_t)ct->setup);
// Route all interrupts to IRQ, some can be routed to
// USB_FIQ if you wish.
LPC_USB->INTROUTING = 0;
// Set device address 0, enable USB device, no remote wakeup
devCmdStat = DEV_ADDR(0) | DEV_EN | DSUS;
LPC_USB->DEVCMDSTAT = devCmdStat;
// Enable interrupts for device events and EP0
LPC_USB->INTEN = DEV_INT | EP(EP0IN) | EP(EP0OUT) | FRAME_INT;
instance = this;
//attach IRQ handler and enable interrupts
NVIC_SetVector(USB_IRQ, (uint32_t)&_usbisr);
}
USBHAL::~USBHAL(void) {
// Ensure device disconnected (DCON not set)
LPC_USB->DEVCMDSTAT = 0;
// Disable USB interrupts
NVIC_DisableIRQ(USB_IRQ);
}
void USBHAL::connect(void) {
NVIC_EnableIRQ(USB_IRQ);
devCmdStat |= DCON;
LPC_USB->DEVCMDSTAT = devCmdStat;
}
void USBHAL::disconnect(void) {
NVIC_DisableIRQ(USB_IRQ);
devCmdStat &= ~DCON;
LPC_USB->DEVCMDSTAT = devCmdStat;
}
void USBHAL::configureDevice(void) {
// Not required
}
void USBHAL::unconfigureDevice(void) {
// Not required
}
void USBHAL::EP0setup(uint8_t *buffer) {
// Copy setup packet data
USBMemCopy(buffer, ct->setup, SETUP_PACKET_SIZE);
}
void USBHAL::EP0read(void) {
// Start an endpoint 0 read
// The USB ISR will call USBDevice_EP0out() when a packet has been read,
// the USBDevice layer then calls USBBusInterface_EP0getReadResult() to
// read the data.
ep[0].out[0] = CMDSTS_A |CMDSTS_NBYTES(MAX_PACKET_SIZE_EP0) \
| CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
}
uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
// Complete an endpoint 0 read
uint32_t bytesRead;
// Find how many bytes were read
bytesRead = MAX_PACKET_SIZE_EP0 - BYTES_REMAINING(ep[0].out[0]);
// Copy data
USBMemCopy(buffer, ct->out, bytesRead);
return bytesRead;
}
void USBHAL::EP0readStage(void) {
// Not required
}
void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
// Start and endpoint 0 write
// The USB ISR will call USBDevice_EP0in() when the data has
// been written, the USBDevice layer then calls
// USBBusInterface_EP0getWriteResult() to complete the transaction.
// Copy data
USBMemCopy(ct->in, buffer, size);
// Start transfer
ep[0].in[0] = CMDSTS_A | CMDSTS_NBYTES(size) \
| CMDSTS_ADDRESS_OFFSET((uint32_t)ct->in);
}
EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
uint8_t bf = 0;
uint32_t flags = 0;
//check which buffer must be filled
if (LPC_USB->EPBUFCFG & EP(endpoint)) {
// Double buffered
if (LPC_USB->EPINUSE & EP(endpoint)) {
bf = 1;
} else {
bf = 0;
}
}
// if isochronous endpoint, T = 1
if(endpointState[endpoint].options & ISOCHRONOUS)
{
flags |= CMDSTS_T;
}
//Active the endpoint for reading
ep[PHY_TO_LOG(endpoint)].out[bf] = CMDSTS_A | CMDSTS_NBYTES(maximumSize) \
| CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out) | flags;
return EP_PENDING;
}
EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead) {
uint8_t bf = 0;
if (!(epComplete & EP(endpoint)))
return EP_PENDING;
else {
epComplete &= ~EP(endpoint);
//check which buffer has been filled
if (LPC_USB->EPBUFCFG & EP(endpoint)) {
// Double buffered (here we read the previous buffer which was used)
if (LPC_USB->EPINUSE & EP(endpoint)) {
bf = 0;
} else {
bf = 1;
}
}
// Find how many bytes were read
*bytesRead = (uint32_t) (endpointState[endpoint].maxPacket - BYTES_REMAINING(ep[PHY_TO_LOG(endpoint)].out[bf]));
// Copy data
USBMemCopy(data, ct->out, *bytesRead);
return EP_COMPLETED;
}
}
void USBHAL::EP0getWriteResult(void) {
// Not required
}
void USBHAL::EP0stall(void) {
ep[0].in[0] = CMDSTS_S;
ep[0].out[0] = CMDSTS_S;
}
void USBHAL::setAddress(uint8_t address) {
devCmdStat &= ~DEV_ADDR_MASK;
devCmdStat |= DEV_ADDR(address);
LPC_USB->DEVCMDSTAT = devCmdStat;
}
EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
uint32_t flags = 0;
uint32_t bf;
// Validate parameters
if (data == NULL) {
return EP_INVALID;
}
if (endpoint > LAST_PHYSICAL_ENDPOINT) {
return EP_INVALID;
}
if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
return EP_INVALID;
}
if (size > endpointState[endpoint].maxPacket) {
return EP_INVALID;
}
if (LPC_USB->EPBUFCFG & EP(endpoint)) {
// Double buffered
if (LPC_USB->EPINUSE & EP(endpoint)) {
bf = 1;
} else {
bf = 0;
}
} else {
// Single buffered
bf = 0;
}
// Check if already active
if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
return EP_INVALID;
}
// Check if stalled
if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
return EP_STALLED;
}
// Copy data to USB RAM
USBMemCopy((uint8_t *)endpointState[endpoint].buffer[bf], data, size);
// Add options
if (endpointState[endpoint].options & RATE_FEEDBACK_MODE) {
flags |= CMDSTS_RF;
}
if (endpointState[endpoint].options & ISOCHRONOUS) {
flags |= CMDSTS_T;
}
// Add transfer
ep[PHY_TO_LOG(endpoint)].in[bf] = CMDSTS_ADDRESS_OFFSET( \
endpointState[endpoint].buffer[bf]) \
| CMDSTS_NBYTES(size) | CMDSTS_A | flags;
return EP_PENDING;
}
EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
uint32_t bf;
// Validate parameters
if (endpoint > LAST_PHYSICAL_ENDPOINT) {
return EP_INVALID;
}
if (OUT_EP(endpoint)) {
return EP_INVALID;
}
if (LPC_USB->EPBUFCFG & EP(endpoint)) {
// Double buffered // TODO: FIX THIS
if (LPC_USB->EPINUSE & EP(endpoint)) {
bf = 1;
} else {
bf = 0;
}
} else {
// Single buffered
bf = 0;
}
// Check if endpoint still active
if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
return EP_PENDING;
}
// Check if stalled
if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
return EP_STALLED;
}
return EP_COMPLETED;
}
void USBHAL::stallEndpoint(uint8_t endpoint) {
// FIX: should this clear active bit?
if (IN_EP(endpoint)) {
ep[PHY_TO_LOG(endpoint)].in[0] |= CMDSTS_S;
ep[PHY_TO_LOG(endpoint)].in[1] |= CMDSTS_S;
} else {
ep[PHY_TO_LOG(endpoint)].out[0] |= CMDSTS_S;
ep[PHY_TO_LOG(endpoint)].out[1] |= CMDSTS_S;
}
}
void USBHAL::unstallEndpoint(uint8_t endpoint) {
if (LPC_USB->EPBUFCFG & EP(endpoint)) {
// Double buffered
if (IN_EP(endpoint)) {
ep[PHY_TO_LOG(endpoint)].in[0] = 0; // S = 0
ep[PHY_TO_LOG(endpoint)].in[1] = 0; // S = 0
if (LPC_USB->EPINUSE & EP(endpoint)) {
ep[PHY_TO_LOG(endpoint)].in[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
} else {
ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
}
} else {
ep[PHY_TO_LOG(endpoint)].out[0] = 0; // S = 0
ep[PHY_TO_LOG(endpoint)].out[1] = 0; // S = 0
if (LPC_USB->EPINUSE & EP(endpoint)) {
ep[PHY_TO_LOG(endpoint)].out[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
} else {
ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
}
}
} else {
// Single buffered
if (IN_EP(endpoint)) {
ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
} else {
ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
}
}
}
bool USBHAL::getEndpointStallState(unsigned char endpoint) {
if (IN_EP(endpoint)) {
if (LPC_USB->EPINUSE & EP(endpoint)) {
if (ep[PHY_TO_LOG(endpoint)].in[1] & CMDSTS_S) {
return true;
}
} else {
if (ep[PHY_TO_LOG(endpoint)].in[0] & CMDSTS_S) {
return true;
}
}
} else {
if (LPC_USB->EPINUSE & EP(endpoint)) {
if (ep[PHY_TO_LOG(endpoint)].out[1] & CMDSTS_S) {
return true;
}
} else {
if (ep[PHY_TO_LOG(endpoint)].out[0] & CMDSTS_S) {
return true;
}
}
}
return false;
}
bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) {
uint32_t tmpEpRamPtr;
if (endpoint > LAST_PHYSICAL_ENDPOINT) {
return false;
}
// Not applicable to the control endpoints
if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
return false;
}
// Allocate buffers in USB RAM
tmpEpRamPtr = epRamPtr;
// Must be 64 byte aligned
tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
// Out of memory
return false;
}
// Allocate first buffer
endpointState[endpoint].buffer[0] = tmpEpRamPtr;
tmpEpRamPtr += maxPacket;
if (!(options & SINGLE_BUFFERED)) {
// Must be 64 byte aligned
tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
// Out of memory
return false;
}
// Allocate second buffer
endpointState[endpoint].buffer[1] = tmpEpRamPtr;
tmpEpRamPtr += maxPacket;
}
// Commit to this USB RAM allocation
epRamPtr = tmpEpRamPtr;
// Remaining endpoint state values
endpointState[endpoint].maxPacket = maxPacket;
endpointState[endpoint].options = options;
// Enable double buffering if required
if (options & SINGLE_BUFFERED) {
LPC_USB->EPBUFCFG &= ~EP(endpoint);
} else {
// Double buffered
LPC_USB->EPBUFCFG |= EP(endpoint);
}
// Enable interrupt
LPC_USB->INTEN |= EP(endpoint);
// Enable endpoint
unstallEndpoint(endpoint);
return true;
}
void USBHAL::remoteWakeup(void) {
// Clearing DSUS bit initiates a remote wakeup if the
// device is currently enabled and suspended - otherwise
// it has no effect.
LPC_USB->DEVCMDSTAT = devCmdStat & ~DSUS;
}
static void disableEndpoints(void) {
uint32_t logEp;
// Ref. Table 158 "When a bus reset is received, software
// must set the disable bit of all endpoints to 1".
for (logEp = 1; logEp < NUMBER_OF_LOGICAL_ENDPOINTS; logEp++) {
ep[logEp].out[0] = CMDSTS_D;
ep[logEp].out[1] = CMDSTS_D;
ep[logEp].in[0] = CMDSTS_D;
ep[logEp].in[1] = CMDSTS_D;
}
// Start of USB RAM for endpoints > 0
epRamPtr = usbRamPtr;
}
void USBHAL::_usbisr(void) {
instance->usbisr();
}
void USBHAL::usbisr(void) {
// Start of frame
if (LPC_USB->INTSTAT & FRAME_INT) {
// Clear SOF interrupt
LPC_USB->INTSTAT = FRAME_INT;
// SOF event, read frame number
SOF(FRAME_NR(LPC_USB->INFO));
}
// Device state
if (LPC_USB->INTSTAT & DEV_INT) {
LPC_USB->INTSTAT = DEV_INT;
if (LPC_USB->DEVCMDSTAT & DSUS_C) {
// Suspend status changed
LPC_USB->DEVCMDSTAT = devCmdStat | DSUS_C;
if (LPC_USB->DEVCMDSTAT & DSUS) {
suspendStateChanged(1);
} else {
suspendStateChanged(0);
}
}
if (LPC_USB->DEVCMDSTAT & DRES_C) {
// Bus reset
LPC_USB->DEVCMDSTAT = devCmdStat | DRES_C;
// Disable endpoints > 0
disableEndpoints();
// Bus reset event
busReset();
}
}
// Endpoint 0
if (LPC_USB->INTSTAT & EP(EP0OUT)) {
// Clear EP0OUT/SETUP interrupt
LPC_USB->INTSTAT = EP(EP0OUT);
// Check if SETUP
if (LPC_USB->DEVCMDSTAT & SETUP) {
// Clear Active and Stall bits for EP0
// Documentation does not make it clear if we must use the
// EPSKIP register to achieve this, Fig. 16 and NXP reference
// code suggests we can just clear the Active bits - check with
// NXP to be sure.
ep[0].in[0] = 0;
ep[0].out[0] = 0;
// Clear EP0IN interrupt
LPC_USB->INTSTAT = EP(EP0IN);
// Clear SETUP (and INTONNAK_CI/O) in device status register
LPC_USB->DEVCMDSTAT = devCmdStat | SETUP;
// EP0 SETUP event (SETUP data received)
EP0setupCallback();
} else {
// EP0OUT ACK event (OUT data received)
EP0out();
}
}
if (LPC_USB->INTSTAT & EP(EP0IN)) {
// Clear EP0IN interrupt
LPC_USB->INTSTAT = EP(EP0IN);
// EP0IN ACK event (IN data sent)
EP0in();
}
for (uint8_t num = 2; num < 5*2; num++) {
if (LPC_USB->INTSTAT & EP(num)) {
LPC_USB->INTSTAT = EP(num);
epComplete |= EP(num);
if ((instance->*(epCallback[num - 2]))()) {
epComplete &= ~EP(num);
}
}
}
}
#endif