mbed-os/targets/TARGET_NUVOTON/TARGET_NUC472/us_ticker.c

281 lines
11 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2015-2016 Nuvoton
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "us_ticker_api.h"
#include "sleep_api.h"
#include "mbed_assert.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "critical.h"
// us_ticker tick = us = timestamp
#define US_PER_TICK 1
#define US_PER_SEC (1000 * 1000)
#define TMR0HIRES_CLK_PER_SEC (1000 * 1000)
#define TMR1HIRES_CLK_PER_SEC (1000 * 1000)
#define TMR1LORES_CLK_PER_SEC (__LIRC)
#define US_PER_TMR0HIRES_CLK (US_PER_SEC / TMR0HIRES_CLK_PER_SEC)
#define US_PER_TMR1HIRES_CLK (US_PER_SEC / TMR1HIRES_CLK_PER_SEC)
#define US_PER_TMR1LORES_CLK (US_PER_SEC / TMR1LORES_CLK_PER_SEC)
#define US_PER_TMR0HIRES_INT (1000 * 1000 * 10)
#define TMR0HIRES_CLK_PER_TMR0HIRES_INT ((uint32_t) ((uint64_t) US_PER_TMR0HIRES_INT * TMR0HIRES_CLK_PER_SEC / US_PER_SEC))
// Determine to use lo-res/hi-res timer according to CD period
#define US_TMR_SEP_CD 1000
static void tmr0_vec(void);
static void tmr1_vec(void);
static void us_ticker_arm_cd(void);
static int us_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile uint32_t pd_comp_us = 0; // Power-down compenstaion for normal counter
static volatile uint32_t cd_major_minor_us = 0;
static volatile uint32_t cd_minor_us = 0;
static volatile int cd_hires_tmr_armed = 0; // Flag of armed or not of hi-res timer for CD counter
// NOTE: PCLK is set up in mbed_sdk_init(), invocation of which must be before C++ global object constructor. See init_api.c for details.
// NOTE: Choose clock source of timer:
// 1. HIRC: Be the most accurate but might cause unknown HardFault.
// 2. HXT: Less accurate and cannot pass mbed-drivers test.
// 3. PCLK(HXT): Less accurate but can pass mbed-drivers test.
// NOTE: TIMER_0 for normal counter, TIMER_1 for countdown.
static const struct nu_modinit_s timer0hires_modinit = {TIMER_0, TMR0_MODULE, CLK_CLKSEL1_TMR0SEL_PCLK, 0, TMR0_RST, TMR0_IRQn, (void *) tmr0_vec};
static const struct nu_modinit_s timer1lores_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_LIRC, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
static const struct nu_modinit_s timer1hires_modinit = {TIMER_1, TMR1_MODULE, CLK_CLKSEL1_TMR1SEL_PCLK, 0, TMR1_RST, TMR1_IRQn, (void *) tmr1_vec};
#define TMR_CMP_MIN 2
#define TMR_CMP_MAX 0xFFFFFFu
void us_ticker_init(void)
{
if (us_ticker_inited) {
return;
}
counter_major = 0;
pd_comp_us = 0;
cd_major_minor_us = 0;
cd_minor_us = 0;
cd_hires_tmr_armed = 0;
us_ticker_inited = 1;
// Reset IP
SYS_ResetModule(timer0hires_modinit.rsetidx);
SYS_ResetModule(timer1lores_modinit.rsetidx);
// Select IP clock source
CLK_SetModuleClock(timer0hires_modinit.clkidx, timer0hires_modinit.clksrc, timer0hires_modinit.clkdiv);
CLK_SetModuleClock(timer1lores_modinit.clkidx, timer1lores_modinit.clksrc, timer1lores_modinit.clkdiv);
// Enable IP clock
CLK_EnableModuleClock(timer0hires_modinit.clkidx);
CLK_EnableModuleClock(timer1lores_modinit.clkidx);
// Timer for normal counter
uint32_t clk_timer0 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
uint32_t prescale_timer0 = clk_timer0 / TMR0HIRES_CLK_PER_SEC - 1;
MBED_ASSERT((prescale_timer0 != (uint32_t) -1) && prescale_timer0 <= 127);
MBED_ASSERT((clk_timer0 % TMR0HIRES_CLK_PER_SEC) == 0);
uint32_t cmp_timer0 = TMR0HIRES_CLK_PER_TMR0HIRES_INT;
MBED_ASSERT(cmp_timer0 >= TMR_CMP_MIN && cmp_timer0 <= TMR_CMP_MAX);
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer0 | TIMER_CTL_CNTDATEN_Msk;
((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname))->CMP = cmp_timer0;
NVIC_SetVector(timer0hires_modinit.irq_n, (uint32_t) timer0hires_modinit.var);
NVIC_SetVector(timer1lores_modinit.irq_n, (uint32_t) timer1lores_modinit.var);
NVIC_EnableIRQ(timer0hires_modinit.irq_n);
NVIC_EnableIRQ(timer1lores_modinit.irq_n);
TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
TIMER_Start((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
}
uint32_t us_ticker_read()
{
if (! us_ticker_inited) {
us_ticker_init();
}
TIMER_T * timer0_base = (TIMER_T *) NU_MODBASE(timer0hires_modinit.modname);
do {
uint32_t major_minor_us;
uint32_t minor_us;
// NOTE: As TIMER_CNT = TIMER_CMP and counter_major has increased by one, TIMER_CNT doesn't change to 0 for one tick time.
// NOTE: As TIMER_CNT = TIMER_CMP or TIMER_CNT = 0, counter_major (ISR) may not sync with TIMER_CNT. So skip and fetch stable one at the cost of 1 clock delay on this read.
do {
core_util_critical_section_enter();
// NOTE: Order of reading minor_us/carry here is significant.
minor_us = TIMER_GetCounter(timer0_base) * US_PER_TMR0HIRES_CLK;
uint32_t carry = (timer0_base->INTSTS & TIMER_INTSTS_TIF_Msk) ? 1 : 0;
// When TIMER_CNT approaches TIMER_CMP and will wrap soon, we may get carry but TIMER_CNT not wrapped. Hanlde carefully carry == 1 && TIMER_CNT is near TIMER_CMP.
if (carry && minor_us > (US_PER_TMR0HIRES_INT / 2)) {
major_minor_us = (counter_major + 1) * US_PER_TMR0HIRES_INT;
}
else {
major_minor_us = (counter_major + carry) * US_PER_TMR0HIRES_INT + minor_us;
}
core_util_critical_section_exit();
}
while (minor_us == 0 || minor_us == US_PER_TMR0HIRES_INT);
// Add power-down compensation
return (major_minor_us + pd_comp_us) / US_PER_TICK;
}
while (0);
}
void us_ticker_disable_interrupt(void)
{
TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer1lores_modinit.modname));
}
void us_ticker_clear_interrupt(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1lores_modinit.modname));
}
void us_ticker_set_interrupt(timestamp_t timestamp)
{
TIMER_Stop((TIMER_T *) NU_MODBASE(timer1lores_modinit.modname));
cd_hires_tmr_armed = 0;
int delta = (int) (timestamp - us_ticker_read());
if (delta > 0) {
cd_major_minor_us = delta * US_PER_TICK;
us_ticker_arm_cd();
}
else {
cd_major_minor_us = cd_minor_us = 0;
/**
* This event was in the past. Set the interrupt as pending, but don't process it here.
* This prevents a recurive loop under heavy load which can lead to a stack overflow.
*/
NVIC_SetPendingIRQ(timer1lores_modinit.irq_n);
}
}
void us_ticker_prepare_sleep(struct sleep_s *obj)
{
// Reject power-down if hi-res timer (HIRC/HXT) is now armed for CD counter.
if (obj->powerdown) {
obj->powerdown = ! cd_hires_tmr_armed;
}
core_util_critical_section_enter();
if (obj->powerdown) {
// NOTE: On entering power-down mode, HIRC/HXT will be disabled in normal mode, but not in ICE mode. This may cause confusion in development.
// To not be inconsistent due to above, always disable clock source of normal counter, and then re-enable it and make compensation on wakeup from power-down.
CLK_DisableModuleClock(timer0hires_modinit.clkidx);
}
core_util_critical_section_exit();
}
void us_ticker_wakeup_from_sleep(struct sleep_s *obj)
{
core_util_critical_section_enter();
if (obj->powerdown) {
// Calculate power-down compensation
pd_comp_us += obj->period_us;
CLK_EnableModuleClock(timer0hires_modinit.clkidx);
}
core_util_critical_section_exit();
}
static void tmr0_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer0hires_modinit.modname));
counter_major ++;
}
static void tmr1_vec(void)
{
TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer1lores_modinit.modname));
cd_major_minor_us = (cd_major_minor_us > cd_minor_us) ? (cd_major_minor_us - cd_minor_us) : 0;
cd_hires_tmr_armed = 0;
if (cd_major_minor_us == 0) {
// NOTE: us_ticker_set_interrupt() may get called in us_ticker_irq_handler();
us_ticker_irq_handler();
}
else {
us_ticker_arm_cd();
}
}
static void us_ticker_arm_cd(void)
{
TIMER_T * timer1_base = (TIMER_T *) NU_MODBASE(timer1lores_modinit.modname);
uint32_t tmr1_clk_per_sec;
uint32_t us_per_tmr1_clk;
/**
* Reserve US_TMR_SEP_CD-plus alarm period for hi-res timer
* 1. period >= US_TMR_SEP_CD * 2. Divide into two rounds:
* US_TMR_SEP_CD * n (lo-res timer)
* US_TMR_SEP_CD + period % US_TMR_SEP_CD (hi-res timer)
* 2. period < US_TMR_SEP_CD * 2. Just one round:
* period (hi-res timer)
*/
if (cd_major_minor_us >= US_TMR_SEP_CD * 2) {
cd_minor_us = cd_major_minor_us - cd_major_minor_us % US_TMR_SEP_CD - US_TMR_SEP_CD;
CLK_SetModuleClock(timer1lores_modinit.clkidx, timer1lores_modinit.clksrc, timer1lores_modinit.clkdiv);
tmr1_clk_per_sec = TMR1LORES_CLK_PER_SEC;
us_per_tmr1_clk = US_PER_TMR1LORES_CLK;
cd_hires_tmr_armed = 0;
}
else {
cd_minor_us = cd_major_minor_us;
CLK_SetModuleClock(timer1hires_modinit.clkidx, timer1hires_modinit.clksrc, timer1hires_modinit.clkdiv);
tmr1_clk_per_sec = TMR1HIRES_CLK_PER_SEC;
us_per_tmr1_clk = US_PER_TMR1HIRES_CLK;
cd_hires_tmr_armed = 1;
}
// Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
timer1_base->CTL |= TIMER_CTL_RSTCNT_Msk;
// One-shot mode, Clock = 1 MHz
uint32_t clk_timer1 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer1lores_modinit.modname));
uint32_t prescale_timer1 = clk_timer1 / tmr1_clk_per_sec - 1;
MBED_ASSERT((prescale_timer1 != (uint32_t) -1) && prescale_timer1 <= 127);
MBED_ASSERT((clk_timer1 % tmr1_clk_per_sec) == 0);
timer1_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk | TIMER_CTL_CNTDATEN_Msk);
timer1_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer1 | TIMER_CTL_CNTDATEN_Msk;
uint32_t cmp_timer1 = cd_minor_us / us_per_tmr1_clk;
cmp_timer1 = NU_CLAMP(cmp_timer1, TMR_CMP_MIN, TMR_CMP_MAX);
timer1_base->CMP = cmp_timer1;
TIMER_EnableInt(timer1_base);
TIMER_Start(timer1_base);
}