mirror of https://github.com/ARMmbed/mbed-os.git
2730 lines
102 KiB
C
2730 lines
102 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32l4xx_hal_hash.c
|
|
* @author MCD Application Team
|
|
* @brief HASH HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the HASH peripheral:
|
|
* + Initialization and de-initialization methods
|
|
* + HASH or HMAC processing in polling mode
|
|
* + HASH or HMAC processing in interrupt mode
|
|
* + HASH or HMAC processing in DMA mode
|
|
* + Peripheral State methods
|
|
* + HASH or HMAC processing suspension/resumption
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### How to use this driver #####
|
|
===============================================================================
|
|
[..]
|
|
The HASH HAL driver can be used as follows:
|
|
|
|
(#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit():
|
|
(##) Enable the HASH interface clock using __HASH_CLK_ENABLE()
|
|
(##) When resorting to interrupt-based APIs (e.g. HAL_HASH_xxx_Start_IT())
|
|
(+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority()
|
|
(+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ()
|
|
(+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() API
|
|
(##) When resorting to DMA-based APIs (e.g. HAL_HASH_xxx_Start_DMA())
|
|
(+++) Enable the DMAx interface clock using
|
|
__DMAx_CLK_ENABLE()
|
|
(+++) Configure and enable one DMA stream to manage data transfer from
|
|
memory to peripheral (input stream). Managing data transfer from
|
|
peripheral to memory can be performed only using CPU.
|
|
(+++) Associate the initialized DMA handle to the HASH DMA handle
|
|
using __HAL_LINKDMA()
|
|
(+++) Configure the priority and enable the NVIC for the transfer complete
|
|
interrupt on the DMA Stream: use
|
|
HAL_NVIC_SetPriority() and
|
|
HAL_NVIC_EnableIRQ()
|
|
|
|
(#)Initialize the HASH HAL using HAL_HASH_Init(). This function:
|
|
(##) resorts to HAL_HASH_MspInit() for low-level initialization,
|
|
(##) configures the data type: 1-bit, 8-bit, 16-bit or 32-bit.
|
|
|
|
(#)Three processing schemes are available:
|
|
(##) Polling mode: processing APIs are blocking functions
|
|
i.e. they process the data and wait till the digest computation is finished,
|
|
e.g. HAL_HASH_xxx_Start() for HASH or HAL_HMAC_xxx_Start() for HMAC
|
|
(##) Interrupt mode: processing APIs are not blocking functions
|
|
i.e. they process the data under interrupt,
|
|
e.g. HAL_HASH_xxx_Start_IT() for HASH or HAL_HMAC_xxx_Start_IT() for HMAC
|
|
(##) DMA mode: processing APIs are not blocking functions and the CPU is
|
|
not used for data transfer i.e. the data transfer is ensured by DMA,
|
|
e.g. HAL_HASH_xxx_Start_DMA() for HASH or HAL_HMAC_xxx_Start_DMA()
|
|
for HMAC. Note that in DMA mode, a call to HAL_HASH_xxx_Finish()
|
|
is then required to retrieve the digest.
|
|
|
|
(#)When the processing function is called after HAL_HASH_Init(), the HASH peripheral is
|
|
initialized and processes the buffer fed in input. When the input data have all been
|
|
fed to the IP, the digest computation can start.
|
|
|
|
(#)Multi-buffer processing is possible in polling and DMA mode.
|
|
(##) In polling mode, only multi-buffer HASH processing is possible.
|
|
API HAL_HASH_xxx_Accumulate() must be called for each input buffer, except for the last one.
|
|
User must resort to HAL_HASH_xxx_Start() to enter the last one and retrieve as
|
|
well the computed digest.
|
|
|
|
(##) In DMA mode, multi-buffer HASH and HMAC processing are possible.
|
|
|
|
(+++) HASH processing: once initialization is done, MDMAT bit must be set thru __HAL_HASH_SET_MDMAT() macro.
|
|
From that point, each buffer can be fed to the IP thru HAL_HASH_xxx_Start_DMA() API.
|
|
Before entering the last buffer, reset the MDMAT bit with __HAL_HASH_RESET_MDMAT()
|
|
macro then wrap-up the HASH processing in feeding the last input buffer thru the
|
|
same API HAL_HASH_xxx_Start_DMA(). The digest can then be retrieved with a call to
|
|
API HAL_HASH_xxx_Finish().
|
|
|
|
(+++) HMAC processing (requires to resort to extended functions):
|
|
after initialization, the key and the first input buffer are entered
|
|
in the IP with the API HAL_HMACEx_xxx_Step1_2_DMA(). This carries out HMAC step 1 and
|
|
starts step 2.
|
|
The following buffers are next entered with the API HAL_HMACEx_xxx_Step2_DMA(). At this
|
|
point, the HMAC processing is still carrying out step 2.
|
|
Then, step 2 for the last input buffer and step 3 are carried out by a single call
|
|
to HAL_HMACEx_xxx_Step2_3_DMA().
|
|
|
|
The digest can finally be retrieved with a call to API HAL_HASH_xxx_Finish().
|
|
|
|
|
|
(#)Context swapping.
|
|
(##) Two APIs are available to suspend HASH or HMAC processing:
|
|
(+++) HAL_HASH_SwFeed_ProcessSuspend() when data are entered by software (polling or IT mode),
|
|
(+++) HAL_HASH_DMAFeed_ProcessSuspend() when data are entered by DMA.
|
|
|
|
(##) When HASH or HMAC processing is suspended, HAL_HASH_ContextSaving() allows
|
|
to save in memory the IP context. This context can be restored afterwards
|
|
to resume the HASH processing thanks to HAL_HASH_ContextRestoring().
|
|
|
|
(##) Once the HASH IP has been restored to the same configuration as that at suspension
|
|
time, processing can be restarted with the same API call (same API, same handle,
|
|
same parameters) as done before the suspension. Relevant parameters to restart at
|
|
the proper location are internally saved in the HASH handle.
|
|
|
|
(#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral.
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32l4xx_hal.h"
|
|
|
|
#ifdef HAL_HASH_MODULE_ENABLED
|
|
|
|
#if defined (STM32L4A6xx) || defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined (STM32L4S9xx)
|
|
|
|
/** @addtogroup STM32L4xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup HASH HASH
|
|
* @brief HASH HAL module driver.
|
|
* @{
|
|
*/
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/** @defgroup HASH_Private_Constants HASH Private Constants
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup HASH_Digest_Calculation_Status HASH Digest Calculation Status
|
|
* @{
|
|
*/
|
|
#define HASH_DIGEST_CALCULATION_NOT_STARTED ((uint32_t)0x00000000) /*!< DCAL not set after input data written in DIN register */
|
|
#define HASH_DIGEST_CALCULATION_STARTED ((uint32_t)0x00000001) /*!< DCAL set after input data written in DIN register */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Number_Of_CSR_Registers HASH Number of Context Swap Registers
|
|
* @{
|
|
*/
|
|
#define HASH_NUMBER_OF_CSR_REGISTERS 54 /*!< Number of Context Swap Registers */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_TimeOut_Value HASH TimeOut Value
|
|
* @{
|
|
*/
|
|
#define HASH_TIMEOUTVALUE 1000 /*!< Time-out value */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_DMA_Suspension_Words_Limit HASH DMA suspension words limit
|
|
* @{
|
|
*/
|
|
#define HASH_DMA_SUSPENSION_WORDS_LIMIT 20 /*!< Number of words below which DMA suspension is aborted */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/** @defgroup HASH_Private_Functions HASH Private Functions
|
|
* @{
|
|
*/
|
|
static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma);
|
|
static void HASH_DMAError(DMA_HandleTypeDef *hdma);
|
|
static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size);
|
|
static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status, uint32_t Timeout);
|
|
static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size);
|
|
static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash);
|
|
static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash);
|
|
static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout);
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions HASH Exported Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
* @brief Initialization, configuration and call-back functions.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and de-initialization functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to:
|
|
(+) Initialize the HASH according to the specified parameters
|
|
in the HASH_InitTypeDef and create the associated handle
|
|
(+) DeInitialize the HASH peripheral
|
|
(+) Initialize the HASH MCU Specific Package (MSP)
|
|
(+) DeInitialize the HASH MSP
|
|
|
|
[..] This section provides as well call back functions definitions for user
|
|
code to manage:
|
|
(+) Input data transfer to IP completion
|
|
(+) Calculated digest retrieval completion
|
|
(+) Error management
|
|
|
|
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the HASH according to the specified parameters in the
|
|
HASH_HandleTypeDef and create the associated handle.
|
|
* @note Only MDMAT and DATATYPE bits of HASH IP are set by HAL_HASH_Init(),
|
|
* other configuration bits are set by HASH or HMAC processing APIs.
|
|
* @note MDMAT bit is systematically reset by HAL_HASH_Init(). To set it for
|
|
* multi-buffer HASH processing, user needs to resort to
|
|
* __HAL_HASH_SET_MDMAT() macro. For HMAC multi-buffer processing, the
|
|
* relevant APIs manage themselves the MDMAT bit.
|
|
* @param hhash: HASH handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_Init(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_HASH_DATATYPE(hhash->Init.DataType));
|
|
|
|
/* Check the hash handle allocation */
|
|
if(hhash == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
if(hhash->State == HAL_HASH_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
hhash->Lock = HAL_UNLOCKED;
|
|
|
|
/* Init the low level hardware */
|
|
HAL_HASH_MspInit(hhash);
|
|
}
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Reset HashInCount, HashITCounter, HashBuffSize and NbWordsAlreadyPushed */
|
|
hhash->HashInCount = 0;
|
|
hhash->HashBuffSize = 0;
|
|
hhash->HashITCounter = 0;
|
|
hhash->NbWordsAlreadyPushed = 0;
|
|
/* Reset digest calculation bridle (MDMAT bit control) */
|
|
hhash->DigestCalculationDisable = RESET;
|
|
/* Set phase to READY */
|
|
hhash->Phase = HAL_HASH_PHASE_READY;
|
|
|
|
/* Set the data type and reset MDMAT bit */
|
|
MODIFY_REG(HASH->CR, HASH_CR_DATATYPE|HASH_CR_MDMAT, hhash->Init.DataType);
|
|
|
|
/* Reset HASH handle status */
|
|
hhash->Status = HAL_OK;
|
|
|
|
/* Set the HASH state to Ready */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitialize the HASH peripheral.
|
|
* @param hhash: HASH handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_DeInit(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Check the HASH handle allocation */
|
|
if(hhash == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Set the default HASH phase */
|
|
hhash->Phase = HAL_HASH_PHASE_READY;
|
|
|
|
/* Reset HashInCount, HashITCounter and HashBuffSize */
|
|
hhash->HashInCount = 0;
|
|
hhash->HashBuffSize = 0;
|
|
hhash->HashITCounter = 0;
|
|
/* Reset digest calculation bridle (MDMAT bit control) */
|
|
hhash->DigestCalculationDisable = RESET;
|
|
|
|
/* DeInit the low level hardware: CLOCK, NVIC.*/
|
|
HAL_HASH_MspDeInit(hhash);
|
|
|
|
/* Reset HASH handle status */
|
|
hhash->Status = HAL_OK;
|
|
|
|
/* Set the HASH state to Ready */
|
|
hhash->State = HAL_HASH_STATE_RESET;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the HASH MSP.
|
|
* @param hhash: HASH handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_HASH_MspInit(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
HAL_HASH_MspInit() can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitialize the HASH MSP.
|
|
* @param hhash: HASH handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_HASH_MspDeInit(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
HAL_HASH_MspDeInit() can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Input data transfer complete call back.
|
|
* @note HAL_HASH_InCpltCallback() is called when the complete input message
|
|
* has been fed to the IP. This API is invoked only when input data are
|
|
* entered under interruption or thru DMA.
|
|
* @note In case of HASH or HMAC multi-buffer DMA feeding case (MDMAT bit set),
|
|
* HAL_HASH_InCpltCallback() is called at the end of each buffer feeding
|
|
* to the IP.
|
|
* @param hhash: HASH handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_HASH_InCpltCallback(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
HAL_HASH_InCpltCallback() can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Digest computation complete call back.
|
|
* @note HAL_HASH_DgstCpltCallback() is used under interruption, is not
|
|
* relevant with DMA.
|
|
* @param hhash: HASH handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
HAL_HASH_DgstCpltCallback() can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Error callback.
|
|
* @note Code user can resort to hhash->Status (HAL_ERROR, HAL_TIMEOUT,...)
|
|
* to retrieve the error type.
|
|
* @param hhash: HASH handle.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_HASH_ErrorCallback(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
HAL_HASH_ErrorCallback() can be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group2 HASH processing functions in polling mode
|
|
* @brief HASH processing functions using polling mode.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Polling mode HASH processing functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to calculate in polling mode
|
|
the hash value using one of the following algorithms:
|
|
(+) MD5
|
|
(++) HAL_HASH_MD5_Start()
|
|
(++) HAL_HASH_MD5_Accumulate()
|
|
(+) SHA1
|
|
(++) HAL_HASH_SHA1_Start()
|
|
(++) HAL_HASH_SHA1_Accumulate()
|
|
|
|
[..] For a single buffer to be hashed, user can resort to HAL_HASH_xxx_Start().
|
|
|
|
[..] In case of multi-buffer HASH processing (a single digest is computed while
|
|
several buffers are fed to the IP), the user can resort to successive calls
|
|
to HAL_HASH_xxx_Accumulate() and wrap-up the digest computation by a call
|
|
to HAL_HASH_xxx_Start().
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
|
|
* read the computed digest.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param pOutBuffer: pointer to the computed digest. Digest size is 16 bytes.
|
|
* @param Timeout: Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout)
|
|
{
|
|
return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief If not already done, initialize the HASH peripheral in MD5 mode then
|
|
* processes pInBuffer.
|
|
* @note Consecutive calls to HAL_HASH_MD5_Accumulate() can be used to feed
|
|
* several input buffers back-to-back to the IP that will yield a single
|
|
* HASH signature once all buffers have been entered. Wrap-up of input
|
|
* buffers feeding and retrieval of digest is done by a call to
|
|
* HAL_HASH_MD5_Start().
|
|
* @note Field hhash->Phase of HASH handle is tested to check whether or not
|
|
* the IP has already been initialized.
|
|
* @note Digest is not retrieved by this API, user must resort to HAL_HASH_MD5_Start()
|
|
* to read it, feeding at the same time the last input buffer to the IP.
|
|
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
|
|
* HASH digest computation is corrupted. Only HAL_HASH_MD5_Start() is able
|
|
* to manage the ending buffer with a length in bytes not a multiple of 4.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes, must be a multiple of 4.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HASH_Accumulate(hhash, pInBuffer, Size,HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
|
|
* read the computed digest.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param pOutBuffer: pointer to the computed digest. Digest size is 20 bytes.
|
|
* @param Timeout: Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout)
|
|
{
|
|
return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @brief If not already done, initialize the HASH peripheral in SHA1 mode then
|
|
* processes pInBuffer.
|
|
* @note Consecutive calls to HAL_HASH_SHA1_Accumulate() can be used to feed
|
|
* several input buffers back-to-back to the IP that will yield a single
|
|
* HASH signature once all buffers have been entered. Wrap-up of input
|
|
* buffers feeding and retrieval of digest is done by a call to
|
|
* HAL_HASH_SHA1_Start().
|
|
* @note Field hhash->Phase of HASH handle is tested to check whether or not
|
|
* the IP has already been initialized.
|
|
* @note Digest is not retrieved by this API, user must resort to HAL_HASH_SHA1_Start()
|
|
* to read it, feeding at the same time the last input buffer to the IP.
|
|
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
|
|
* HASH digest computation is corrupted. Only HAL_HASH_SHA1_Start() is able
|
|
* to manage the ending buffer with a length in bytes not a multiple of 4.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes, must be a multiple of 4.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HASH_Accumulate(hhash, pInBuffer, Size,HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group3 HASH processing functions in interrupt mode
|
|
* @brief HASH processing functions using interrupt mode.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Interruption mode HASH processing functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to calculate in interrupt mode
|
|
the hash value using one of the following algorithms:
|
|
(+) MD5
|
|
(++) HAL_HASH_MD5_Start_IT()
|
|
(+) SHA1
|
|
(++) HAL_HASH_SHA1_Start_IT()
|
|
|
|
[..] API HAL_HASH_IRQHandler() manages each HASH interruption.
|
|
|
|
[..] Note that HAL_HASH_IRQHandler() manages as well HASH IP interruptions when in
|
|
HMAC processing mode.
|
|
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
|
|
* read the computed digest in interruption mode.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param pOutBuffer: pointer to the computed digest. Digest size is 16 bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer)
|
|
{
|
|
return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer,HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
|
|
* read the computed digest in interruption mode.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param pOutBuffer: pointer to the computed digest. Digest size is 20 bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer)
|
|
{
|
|
return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer,HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @brief Handle HASH interrupt request.
|
|
* @param hhash: HASH handle.
|
|
* @note HAL_HASH_IRQHandler() handles interrupts in HMAC processing as well.
|
|
* @note In case of error reported during the HASH interruption processing,
|
|
* HAL_HASH_ErrorCallback() API is called so that user code can
|
|
* manage the error. The error type is available in hhash->Status field.
|
|
* @retval None
|
|
*/
|
|
void HAL_HASH_IRQHandler(HASH_HandleTypeDef *hhash)
|
|
{
|
|
hhash->Status = HASH_IT(hhash);
|
|
if (hhash->Status != HAL_OK)
|
|
{
|
|
HAL_HASH_ErrorCallback(hhash);
|
|
/* After error handling by code user, reset HASH handle HAL status */
|
|
hhash->Status = HAL_OK;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group4 HASH processing functions in DMA mode
|
|
* @brief HASH processing functions using DMA mode.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### DMA mode HASH processing functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to calculate in DMA mode
|
|
the hash value using one of the following algorithms:
|
|
(+) MD5
|
|
(++) HAL_HASH_MD5_Start_DMA()
|
|
(++) HAL_HASH_MD5_Finish()
|
|
(+) SHA1
|
|
(++) HAL_HASH_SHA1_Start_DMA()
|
|
(++) HAL_HASH_SHA1_Finish()
|
|
|
|
[..] When resorting to DMA mode to enter the data in the IP, user must resort
|
|
to HAL_HASH_xxx_Start_DMA() then read the resulting digest with
|
|
HAL_HASH_xxx_Finish().
|
|
|
|
[..] In case of multi-buffer HASH processing, MDMAT bit must first be set before
|
|
the successive calls to HAL_HASH_xxx_Start_DMA(). Then, MDMAT bit needs to be
|
|
reset before the last call to HAL_HASH_xxx_Start_DMA(). Digest is finally
|
|
retrieved thanks to HAL_HASH_xxx_Finish().
|
|
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in MD5 mode then initiate a DMA transfer
|
|
* to feed the input buffer to the IP.
|
|
* @note Once the DMA transfer is finished, HAL_HASH_MD5_Finish() API must
|
|
* be called to retrieve the computed digest.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief Return the computed digest in MD5 mode.
|
|
* @note The API waits for DCIS to be set then reads the computed digest.
|
|
* @note HAL_HASH_MD5_Finish() can be used as well to retrieve the digest in
|
|
* HMAC MD5 mode.
|
|
* @param hhash: HASH handle.
|
|
* @param pOutBuffer: pointer to the computed digest. Digest size is 16 bytes.
|
|
* @param Timeout: Timeout value.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_MD5_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout)
|
|
{
|
|
return HASH_Finish(hhash, pOutBuffer, Timeout);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in SHA1 mode then initiate a DMA transfer
|
|
* to feed the input buffer to the IP.
|
|
* @note Once the DMA transfer is finished, HAL_HASH_SHA1_Finish() API must
|
|
* be called to retrieve the computed digest.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the computed digest in SHA1 mode.
|
|
* @note The API waits for DCIS to be set then reads the computed digest.
|
|
* @note HAL_HASH_SHA1_Finish() can be used as well to retrieve the digest in
|
|
* HMAC SHA1 mode.
|
|
* @param hhash: HASH handle.
|
|
* @param pOutBuffer: pointer to the computed digest. Digest size is 20 bytes.
|
|
* @param Timeout: Timeout value.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_SHA1_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout)
|
|
{
|
|
return HASH_Finish(hhash, pOutBuffer, Timeout);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group5 HMAC processing functions in polling mode
|
|
* @brief HMAC processing functions using polling mode.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Polling mode HMAC processing functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to calculate in polling mode
|
|
the HMAC value using one of the following algorithms:
|
|
(+) MD5
|
|
(++) HAL_HMAC_MD5_Start()
|
|
(+) SHA1
|
|
(++) HAL_HMAC_SHA1_Start()
|
|
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
|
|
* read the computed digest.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param pOutBuffer: pointer to the computed digest. Digest size is 16 bytes.
|
|
* @param Timeout: Timeout value.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HMAC_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout)
|
|
{
|
|
return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
|
|
* read the computed digest.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param pOutBuffer: pointer to the computed digest. Digest size is 20 bytes.
|
|
* @param Timeout: Timeout value.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HMAC_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout)
|
|
{
|
|
return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group6 HMAC processing functions in interrupt mode
|
|
* @brief HMAC processing functions using interrupt mode.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Interrupt mode HMAC processing functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to calculate in interrupt mode
|
|
the HMAC value using one of the following algorithms:
|
|
(+) MD5
|
|
(++) HAL_HMAC_MD5_Start_IT()
|
|
(+) SHA1
|
|
(++) HAL_HMAC_SHA1_Start_IT()
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
|
|
* read the computed digest in interrupt mode.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param pOutBuffer: pointer to the computed digest. Digest size is 16 bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer)
|
|
{
|
|
return HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
|
|
* read the computed digest in interrupt mode.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param pOutBuffer: pointer to the computed digest. Digest size is 20 bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer)
|
|
{
|
|
return HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group7 HMAC processing functions in DMA mode
|
|
* @brief HMAC processing functions using DMA modes.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### DMA mode HMAC processing functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to calculate in DMA mode
|
|
the HMAC value using one of the following algorithms:
|
|
(+) MD5
|
|
(++) HAL_HMAC_MD5_Start_DMA()
|
|
(+) SHA1
|
|
(++) HAL_HMAC_SHA1_Start_DMA()
|
|
|
|
[..] When resorting to DMA mode to enter the data in the IP for HMAC processing,
|
|
user must resort to HAL_HMAC_xxx_Start_DMA() then read the resulting digest
|
|
with HAL_HASH_xxx_Finish().
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC MD5 mode then initiate the required
|
|
* DMA transfers to feed the key and the input buffer to the IP.
|
|
* @note Once the DMA transfers are finished (indicated by hhash->State set back
|
|
* to HAL_HASH_STATE_READY), HAL_HASH_MD5_Finish() API must be called to retrieve
|
|
* the computed digest.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @note If MDMAT bit is set before calling this function (multi-buffer
|
|
* HASH processing case), the input buffer size (in bytes) must be
|
|
* a multiple of 4 otherwise, the HASH digest computation is corrupted.
|
|
* For the processing of the last buffer of the thread, MDMAT bit must
|
|
* be reset and the buffer length (in bytes) doesn't have to be a
|
|
* multiple of 4.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC SHA1 mode then initiate the required
|
|
* DMA transfers to feed the key and the input buffer to the IP.
|
|
* @note Once the DMA transfers are finished (indicated by hhash->State set back
|
|
* to HAL_HASH_STATE_READY), HAL_HASH_SHA1_Finish() API must be called to retrieve
|
|
* the computed digest.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @note If MDMAT bit is set before calling this function (multi-buffer
|
|
* HASH processing case), the input buffer size (in bytes) must be
|
|
* a multiple of 4 otherwise, the HASH digest computation is corrupted.
|
|
* For the processing of the last buffer of the thread, MDMAT bit must
|
|
* be reset and the buffer length (in bytes) doesn't have to be a
|
|
* multiple of 4.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
return HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Exported_Functions_Group8 Peripheral states functions
|
|
* @brief Peripheral State functions.
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral State methods #####
|
|
===============================================================================
|
|
[..]
|
|
This section permits to get in run-time the state and the peripheral handle
|
|
status of the peripheral:
|
|
(+) HAL_HASH_GetState()
|
|
(+) HAL_HASH_GetStatus()
|
|
|
|
[..]
|
|
Additionally, this subsection provides functions allowing to save and restore
|
|
the HASH or HMAC processing context in case of calculation suspension:
|
|
(+) HAL_HASH_ContextSaving()
|
|
(+) HAL_HASH_ContextRestoring()
|
|
|
|
[..]
|
|
This subsection provides functions allowing to suspend the HASH processing
|
|
(+) when input are fed to the IP by software
|
|
(++) HAL_HASH_SwFeed_ProcessSuspend()
|
|
(+) when input are fed to the IP by DMA
|
|
(++) HAL_HASH_DMAFeed_ProcessSuspend()
|
|
|
|
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Return the HASH handle state.
|
|
* @note The API yields the current state of the handle (BUSY, READY,...).
|
|
* @param hhash: HASH handle.
|
|
* @retval HAL HASH state
|
|
*/
|
|
HAL_HASH_StateTypeDef HAL_HASH_GetState(HASH_HandleTypeDef *hhash)
|
|
{
|
|
return hhash->State;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return the HASH HAL status.
|
|
* @note The API yields the HAL status of the handle: it is the result of the
|
|
* latest HASH processing and allows to report any issue (e.g. HAL_TIMEOUT).
|
|
* @param hhash: HASH handle.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_GetStatus(HASH_HandleTypeDef *hhash)
|
|
{
|
|
return hhash->Status;
|
|
}
|
|
|
|
/**
|
|
* @brief Save the HASH context in case of processing suspension.
|
|
* @param hhash: HASH handle.
|
|
* @param pMemBuffer: pointer to the memory buffer where the HASH context
|
|
* is saved.
|
|
* @note The IMR, STR, CR then all the CSR registers are saved
|
|
* in that order. Only the r/w bits are read to be restored later on.
|
|
* @note By default, all the context swap registers (there are
|
|
* HASH_NUMBER_OF_CSR_REGISTERS of those) are saved.
|
|
* @note pMemBuffer points to a buffer allocated by the user. The buffer size
|
|
* must be at least (HASH_NUMBER_OF_CSR_REGISTERS + 3) * 4 uint8 long.
|
|
* @retval None
|
|
*/
|
|
void HAL_HASH_ContextSaving(HASH_HandleTypeDef *hhash, uint8_t* pMemBuffer)
|
|
{
|
|
uint32_t mem_ptr = (uint32_t)pMemBuffer;
|
|
uint32_t csr_ptr = (uint32_t)HASH->CSR;
|
|
uint32_t i = 0;
|
|
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* Save IMR register content */
|
|
*(uint32_t*)(mem_ptr) = READ_BIT(HASH->IMR,HASH_IT_DINI|HASH_IT_DCI);
|
|
mem_ptr+=4;
|
|
/* Save STR register content */
|
|
*(uint32_t*)(mem_ptr) = READ_BIT(HASH->STR,HASH_STR_NBLW);
|
|
mem_ptr+=4;
|
|
/* Save CR register content */
|
|
*(uint32_t*)(mem_ptr) = READ_BIT(HASH->CR,HASH_CR_DMAE|HASH_CR_DATATYPE|HASH_CR_MODE|HASH_CR_ALGO|HASH_CR_LKEY|HASH_CR_MDMAT);
|
|
mem_ptr+=4;
|
|
/* By default, save all CSRs registers */
|
|
for (i = HASH_NUMBER_OF_CSR_REGISTERS; i >0; i--)
|
|
{
|
|
*(uint32_t*)(mem_ptr) = *(uint32_t*)(csr_ptr);
|
|
mem_ptr+=4;
|
|
csr_ptr+=4;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Restore the HASH context in case of processing resumption.
|
|
* @param hhash: HASH handle.
|
|
* @param pMemBuffer: pointer to the memory buffer where the HASH context
|
|
* is stored.
|
|
* @note The IMR, STR, CR then all the CSR registers are restored
|
|
* in that order. Only the r/w bits are restored.
|
|
* @note By default, all the context swap registers (HASH_NUMBER_OF_CSR_REGISTERS
|
|
* of those) are restored (all of them have been saved by default
|
|
* beforehand).
|
|
* @retval None
|
|
*/
|
|
void HAL_HASH_ContextRestoring(HASH_HandleTypeDef *hhash, uint8_t* pMemBuffer)
|
|
{
|
|
uint32_t mem_ptr = (uint32_t)pMemBuffer;
|
|
uint32_t csr_ptr = (uint32_t)HASH->CSR;
|
|
uint32_t i = 0;
|
|
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hhash);
|
|
|
|
/* Restore IMR register content */
|
|
WRITE_REG(HASH->IMR, (*(uint32_t*)(mem_ptr)));
|
|
mem_ptr+=4;
|
|
/* Restore STR register content */
|
|
WRITE_REG(HASH->STR, (*(uint32_t*)(mem_ptr)));
|
|
mem_ptr+=4;
|
|
/* Restore CR register content */
|
|
WRITE_REG(HASH->CR, (*(uint32_t*)(mem_ptr)));
|
|
mem_ptr+=4;
|
|
|
|
/* Reset the HASH processor before restoring the Context
|
|
Swap Registers (CSR) */
|
|
__HAL_HASH_INIT();
|
|
|
|
/* By default, restore all CSR registers */
|
|
for (i = HASH_NUMBER_OF_CSR_REGISTERS; i >0; i--)
|
|
{
|
|
WRITE_REG((*(uint32_t*)(csr_ptr)), (*(uint32_t*)(mem_ptr)));
|
|
mem_ptr+=4;
|
|
csr_ptr+=4;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initiate HASH processing suspension when in polling or interruption mode.
|
|
* @param hhash: HASH handle.
|
|
* @note Set the handle field SuspendRequest to the appropriate value so that
|
|
* the on-going HASH processing is suspended as soon as the required
|
|
* conditions are met. Note that the actual suspension is carried out
|
|
* by the functions HASH_WriteData() in polling mode and HASH_IT() in
|
|
* interruption mode.
|
|
* @retval None
|
|
*/
|
|
void HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
|
|
{
|
|
/* Set Handle Suspend Request field */
|
|
hhash->SuspendRequest = HAL_HASH_SUSPEND;
|
|
}
|
|
|
|
/**
|
|
* @brief Suspend the HASH processing when in DMA mode.
|
|
* @param hhash: HASH handle.
|
|
* @note When suspension attempt occurs at the very end of a DMA transfer and
|
|
* all the data have already been entered in the IP, hhash->State is
|
|
* set to HAL_HASH_STATE_READY and the API returns HAL_ERROR. It is
|
|
* recommended to wrap-up the processing in reading the digest as usual.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
|
|
{
|
|
uint32_t tmp_remaining_DMATransferSize_inWords = 0x0;
|
|
uint32_t tmp_initial_DMATransferSize_inWords = 0x0;
|
|
uint32_t tmp_words_already_pushed = 0x0;
|
|
|
|
if (hhash->State == HAL_HASH_STATE_READY)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
|
|
/* Make sure there is enough time to suspend the processing */
|
|
tmp_remaining_DMATransferSize_inWords = hhash->hdmain->Instance->CNDTR;
|
|
if (tmp_remaining_DMATransferSize_inWords <= HASH_DMA_SUSPENSION_WORDS_LIMIT)
|
|
{
|
|
/* No suspension attempted since almost to the end of the transferred data. */
|
|
/* Best option for user code is to wrap up low priority message hashing */
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Wait for DMAS to be reset */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Wait for DMAS to be set */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, RESET, HASH_TIMEOUTVALUE) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Disable DMA channel */
|
|
HAL_DMA_Abort(hhash->hdmain);
|
|
|
|
/* Clear DMAE bit */
|
|
CLEAR_BIT(HASH->CR,HASH_CR_DMAE);
|
|
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* At this point, DMA interface is disabled and no transfer is on-going */
|
|
/* Retrieve from the DMA handle how many words remain to be written */
|
|
tmp_remaining_DMATransferSize_inWords = hhash->hdmain->Instance->CNDTR;
|
|
|
|
if (tmp_remaining_DMATransferSize_inWords == 0)
|
|
{
|
|
/* All the DMA transfer is actually done. Suspension occurred at the very end
|
|
of the transfer. Either the digest computation is about to start (HASH case)
|
|
or processing is about to move from one step to another (HMAC case).
|
|
In both cases, the processing can't be suspended at this point. It is
|
|
safer to
|
|
- retrieve the low priority block digest before starting the high
|
|
priority block processing (HASH case)
|
|
- re-attempt a new suspension (HMAC case)
|
|
*/
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
|
|
/* Compute how many words were supposed to be transferred by DMA */
|
|
tmp_initial_DMATransferSize_inWords = (hhash->HashInCount%4 ? (hhash->HashInCount+3)/4: hhash->HashInCount/4);
|
|
|
|
/* If discrepancy between the number of words reported by DMA IP and the numbers of words entered as reported
|
|
by HASH IP, correct it */
|
|
/* tmp_words_already_pushed reflects the number of words that were already pushed before
|
|
the start of DMA transfer (multi-buffer processing case) */
|
|
tmp_words_already_pushed = hhash->NbWordsAlreadyPushed;
|
|
if ((tmp_words_already_pushed + tmp_initial_DMATransferSize_inWords - tmp_remaining_DMATransferSize_inWords) %16 != HASH_NBW_PUSHED())
|
|
{
|
|
tmp_remaining_DMATransferSize_inWords--; /* one less word to be transferred again */
|
|
}
|
|
|
|
/* Accordingly, update the input pointer that points at the next word to be transferred to the IP by DMA */
|
|
hhash->pHashInBuffPtr += 4 * (tmp_initial_DMATransferSize_inWords - tmp_remaining_DMATransferSize_inWords) ;
|
|
|
|
/* And store in HashInCount the remaining size to transfer (in bytes) */
|
|
hhash->HashInCount = 4 * tmp_remaining_DMATransferSize_inWords;
|
|
|
|
}
|
|
|
|
/* Set State as suspended */
|
|
hhash->State = HAL_HASH_STATE_SUSPENDED;
|
|
|
|
return HAL_OK;
|
|
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup HASH_Private_Functions HASH Private Functions
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief DMA HASH Input Data transfer completion callback.
|
|
* @param hdma: DMA handle.
|
|
* @note In case of HMAC processing, HASH_DMAXferCplt() initiates
|
|
* the next DMA transfer for the following HMAC step.
|
|
* @retval None
|
|
*/
|
|
static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
HASH_HandleTypeDef* hhash = ( HASH_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
uint32_t inputaddr = 0x0;
|
|
uint32_t buffersize = 0x0;
|
|
|
|
if (hhash->State != HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
|
|
/* Disable the DMA transfer */
|
|
CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
|
|
|
|
if (READ_BIT(HASH->CR, HASH_CR_MODE) == RESET)
|
|
{
|
|
/* If no HMAC processing, input data transfer is now over */
|
|
|
|
/* Change the HASH state to ready */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Call Input data transfer complete call back */
|
|
HAL_HASH_InCpltCallback(hhash);
|
|
}
|
|
else
|
|
{
|
|
/* HMAC processing: depending on the current HMAC step and whether or
|
|
not multi-buffer processing is on-going, the next step is initiated
|
|
and MDMAT bit is set. */
|
|
|
|
|
|
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
|
|
{
|
|
/* This is the end of HMAC processing */
|
|
|
|
/* Change the HASH state to ready */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Call Input data transfer complete call back
|
|
(note that the last DMA transfer was that of the key
|
|
for the outer HASH operation). */
|
|
HAL_HASH_InCpltCallback(hhash);
|
|
|
|
return;
|
|
}
|
|
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
|
|
{
|
|
inputaddr = (uint32_t)hhash->pHashMsgBuffPtr; /* DMA transfer start address */
|
|
buffersize = hhash->HashBuffSize; /* DMA transfer size (in bytes) */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; /* Move phase from Step 1 to Step 2 */
|
|
|
|
/* In case of suspension request, save the new starting parameters */
|
|
hhash->HashInCount = hhash->HashBuffSize; /* Initial DMA transfer size (in bytes) */
|
|
hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr ; /* DMA transfer start address */
|
|
|
|
hhash->NbWordsAlreadyPushed = 0; /* Reset number of words already pushed */
|
|
|
|
/* Check whether or not digest calculation must be disabled (in case of multi-buffer HMAC processing) */
|
|
if (hhash->DigestCalculationDisable != RESET)
|
|
{
|
|
/* Digest calculation is disabled: Step 2 must start with MDMAT bit set,
|
|
no digest calculation will be triggered at the end of the input buffer feeding to the IP */
|
|
__HAL_HASH_SET_MDMAT();
|
|
}
|
|
}
|
|
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
|
|
{
|
|
if (hhash->DigestCalculationDisable != RESET)
|
|
{
|
|
/* No automatic move to Step 3 as a new message buffer will be fed to the IP
|
|
(case of multi-buffer HMAC processing):
|
|
DCAL must not be set.
|
|
Phase remains in Step 2, MDMAT remains set at this point.
|
|
Change the HASH state to ready and call Input data transfer complete call back. */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
HAL_HASH_InCpltCallback(hhash);
|
|
return ;
|
|
}
|
|
else
|
|
{
|
|
/* Digest calculation is not disabled (case of single buffer input or last buffer
|
|
of multi-buffer HMAC processing) */
|
|
inputaddr = (uint32_t)hhash->Init.pKey; /* DMA transfer start address */
|
|
buffersize = hhash->Init.KeySize; /* DMA transfer size (in bytes) */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; /* Move phase from Step 2 to Step 3 */
|
|
/* In case of suspension request, save the new starting parameters */
|
|
hhash->HashInCount = hhash->Init.KeySize; /* Initial size for second DMA transfer (input data) */
|
|
hhash->pHashInBuffPtr = hhash->Init.pKey ; /* address passed to DMA, now entering data message */
|
|
|
|
hhash->NbWordsAlreadyPushed = 0; /* Reset number of words already pushed */
|
|
}
|
|
}
|
|
/* Configure the Number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(buffersize);
|
|
|
|
|
|
/* Set the HASH DMA transfert completion call back */
|
|
hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
|
|
|
|
/* Enable the DMA In DMA Stream */
|
|
HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (buffersize%4 ? (buffersize+3)/4:buffersize/4));
|
|
|
|
/* Enable DMA requests */
|
|
SET_BIT(HASH->CR, HASH_CR_DMAE);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* @brief DMA HASH communication error callback.
|
|
* @param hdma: DMA handle.
|
|
* @note HASH_DMAError() callback invokes HAL_HASH_ErrorCallback() that
|
|
* can contain user code to manage the error.
|
|
* @retval None
|
|
*/
|
|
static void HASH_DMAError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
HASH_HandleTypeDef* hhash = ( HASH_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
|
|
if (hhash->State != HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Set HASH state to ready to prevent any blocking issue in user code
|
|
present in HAL_HASH_ErrorCallback() */
|
|
hhash->State= HAL_HASH_STATE_READY;
|
|
/* Set HASH handle status to error */
|
|
hhash->Status = HAL_ERROR;
|
|
HAL_HASH_ErrorCallback(hhash);
|
|
/* After error handling by code user, reset HASH handle HAL status */
|
|
hhash->Status = HAL_OK;
|
|
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Feed the input buffer to the HASH IP.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to input buffer.
|
|
* @param Size: the size of input buffer in bytes.
|
|
* @note HASH_WriteData() regularly reads hhash->SuspendRequest to check whether
|
|
* or not the HASH processing must be suspended. If this is the case, the
|
|
* processing is suspended when possible and the IP feeding point reached at
|
|
* suspension time is stored in the handle for resumption later on.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
|
|
{
|
|
uint32_t buffercounter;
|
|
|
|
for(buffercounter = 0; buffercounter < Size; buffercounter+=4)
|
|
{
|
|
/* Write input data 4 bytes at a time */
|
|
uint32_t data = (uint32_t) *pInBuffer++;
|
|
data |= (uint32_t) *pInBuffer++ << 8;
|
|
data |= (uint32_t) *pInBuffer++ << 16;
|
|
data |= (uint32_t) *pInBuffer++ << 24;
|
|
HASH->DIN = data;
|
|
|
|
/* If the suspension flag has been raised and if the processing is not about
|
|
to end, suspend processing */
|
|
if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter+4) < Size))
|
|
{
|
|
/* Wait for DINIS = 1, which occurs when 16 32-bit locations are free
|
|
in the input buffer */
|
|
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
|
|
{
|
|
/* Reset SuspendRequest */
|
|
hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
|
|
|
|
/* Depending whether the key or the input data were fed to the IP, the feeding point
|
|
reached at suspension time is not saved in the same handle fields */
|
|
if ((hhash->Phase == HAL_HASH_PHASE_PROCESS) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2))
|
|
{
|
|
/* Save current reading and writing locations of Input and Output buffers */
|
|
hhash->pHashInBuffPtr = pInBuffer;
|
|
/* Save the number of bytes that remain to be processed at this point */
|
|
hhash->HashInCount = Size - (buffercounter + 4);
|
|
}
|
|
else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
|
|
{
|
|
/* Save current reading and writing locations of Input and Output buffers */
|
|
hhash->pHashKeyBuffPtr = pInBuffer;
|
|
/* Save the number of bytes that remain to be processed at this point */
|
|
hhash->HashKeyCount = Size - (buffercounter + 4);
|
|
}
|
|
else
|
|
{
|
|
/* Unexpected phase: unlock process and report error */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
__HAL_UNLOCK(hhash);
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Set the HASH state to Suspended and exit to stop entering data */
|
|
hhash->State = HAL_HASH_STATE_SUSPENDED;
|
|
|
|
return HAL_OK;
|
|
} /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) */
|
|
} /* if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter+4) < Size)) */
|
|
} /* for(buffercounter = 0; buffercounter < Size; buffercounter+=4) */
|
|
|
|
/* At this point, all the data have been entered to the IP: exit */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Retrieve the message digest.
|
|
* @param pMsgDigest: pointer to the computed digest.
|
|
* @param Size: message digest size in bytes.
|
|
* @retval None
|
|
*/
|
|
static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size)
|
|
{
|
|
uint32_t msgdigest = (uint32_t)pMsgDigest;
|
|
|
|
switch(Size)
|
|
{
|
|
/* Read the message digest */
|
|
case 16: /* MD5 */
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[0]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[1]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[2]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[3]);
|
|
break;
|
|
case 20: /* SHA1 */
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[0]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[1]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[2]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[3]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[4]);
|
|
break;
|
|
case 28: /* SHA224 */
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[0]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[1]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[2]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[3]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[4]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
|
|
break;
|
|
case 32: /* SHA256 */
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[0]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[1]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[2]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[3]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH->HR[4]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
|
|
msgdigest+=4;
|
|
*(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[7]);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Handle HASH processing Timeout.
|
|
* @param hhash: HASH handle.
|
|
* @param Flag: specifies the HASH flag to check.
|
|
* @param Status: the Flag status (SET or RESET).
|
|
* @param Timeout: Timeout duration.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart = HAL_GetTick();
|
|
|
|
/* Wait until flag is set */
|
|
if(Status == RESET)
|
|
{
|
|
while(__HAL_HASH_GET_FLAG(Flag) == RESET)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
|
|
{
|
|
/* Set State to Ready to be able to restart later on */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
/* Store time out issue in handle status */
|
|
hhash->Status = HAL_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while(__HAL_HASH_GET_FLAG(Flag) != RESET)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
|
|
{
|
|
/* Set State to Ready to be able to restart later on */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
/* Store time out issue in handle status */
|
|
hhash->Status = HAL_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief HASH processing in interruption mode.
|
|
* @param hhash: HASH handle.
|
|
* @note HASH_IT() regularly reads hhash->SuspendRequest to check whether
|
|
* or not the HASH processing must be suspended. If this is the case, the
|
|
* processing is suspended when possible and the IP feeding point reached at
|
|
* suspension time is stored in the handle for resumption later on.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash)
|
|
{
|
|
if (hhash->State == HAL_HASH_STATE_BUSY)
|
|
{
|
|
/* ITCounter must not be equal to 0 at this point. Report an error if this is the case. */
|
|
if(hhash->HashITCounter == 0)
|
|
{
|
|
/* Disable Interrupts */
|
|
__HAL_HASH_DISABLE_IT(HASH_IT_DINI|HASH_IT_DCI);
|
|
/* HASH state set back to Ready to prevent any issue in user code
|
|
present in HAL_HASH_ErrorCallback() */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
else if (hhash->HashITCounter == 1)
|
|
{
|
|
/* This is the first call to HASH_IT, the first input data are about to be
|
|
entered in the IP. A specific processing is carried out at this point to
|
|
start-up the processing. */
|
|
hhash->HashITCounter = 2;
|
|
}
|
|
else
|
|
{
|
|
/* Cruise speed reached, HashITCounter remains equal to 3 until the end of
|
|
the HASH processing or the end of the current step for HMAC processing. */
|
|
hhash->HashITCounter = 3;
|
|
}
|
|
|
|
/* If digest is ready */
|
|
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS))
|
|
{
|
|
/* Read the digest */
|
|
HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
|
|
|
|
/* Disable Interrupts */
|
|
__HAL_HASH_DISABLE_IT(HASH_IT_DINI|HASH_IT_DCI);
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
/* Call digest computation complete call back */
|
|
HAL_HASH_DgstCpltCallback(hhash);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/* If IP ready to accept new data */
|
|
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
|
|
{
|
|
|
|
/* If the suspension flag has been raised and if the processing is not about
|
|
to end, suspend processing */
|
|
if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && (hhash->HashInCount != 0))
|
|
{
|
|
/* Disable Interrupts */
|
|
__HAL_HASH_DISABLE_IT(HASH_IT_DINI|HASH_IT_DCI);
|
|
|
|
/* Reset SuspendRequest */
|
|
hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_SUSPENDED;
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/* Enter input data in the IP thru HASH_Write_Block_Data() call and
|
|
check whether the digest calculation has been triggered */
|
|
if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED)
|
|
{
|
|
/* Call Input data transfer complete call back
|
|
(called at the end of each step for HMAC) */
|
|
HAL_HASH_InCpltCallback(hhash);
|
|
|
|
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
|
|
{
|
|
/* Wait until IP is not busy anymore */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
|
|
{
|
|
/* Disable Interrupts */
|
|
__HAL_HASH_DISABLE_IT(HASH_IT_DINI|HASH_IT_DCI);
|
|
return HAL_TIMEOUT;
|
|
}
|
|
/* Initialization start for HMAC STEP 2 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; /* Move phase from Step 1 to Step 2 */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize); /* Set NBLW for the input message */
|
|
hhash->HashInCount = hhash->HashBuffSize; /* Set the input data size (in bytes) */
|
|
hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr; /* Set the input data address */
|
|
hhash->HashITCounter = 1; /* Set ITCounter to 1 to indicate the start of a new phase */
|
|
__HAL_HASH_ENABLE_IT(HASH_IT_DINI); /* Enable IT (was disabled in HASH_Write_Block_Data) */
|
|
}
|
|
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
|
|
{
|
|
/* Wait until IP is not busy anymore */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
|
|
{
|
|
/* Disable Interrupts */
|
|
__HAL_HASH_DISABLE_IT(HASH_IT_DINI|HASH_IT_DCI);
|
|
return HAL_TIMEOUT;
|
|
}
|
|
/* Initialization start for HMAC STEP 3 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; /* Move phase from Step 2 to Step 3 */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); /* Set NBLW for the key */
|
|
hhash->HashInCount = hhash->Init.KeySize; /* Set the key size (in bytes) */
|
|
hhash->pHashInBuffPtr = hhash->Init.pKey; /* Set the key address */
|
|
hhash->HashITCounter = 1; /* Set ITCounter to 1 to indicate the start of a new phase */
|
|
__HAL_HASH_ENABLE_IT(HASH_IT_DINI); /* Enable IT (was disabled in HASH_Write_Block_Data) */
|
|
}
|
|
} /* if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED) */
|
|
} /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))*/
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Write a block of data in HASH IP in interruption mode.
|
|
* @param hhash: HASH handle.
|
|
* @note HASH_Write_Block_Data() is called under interruption by HASH_IT().
|
|
* @retval HAL status
|
|
*/
|
|
static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash)
|
|
{
|
|
uint32_t inputaddr;
|
|
uint32_t buffercounter;
|
|
uint32_t inputcounter;
|
|
uint32_t ret = HASH_DIGEST_CALCULATION_NOT_STARTED;
|
|
|
|
/* If there are more than 64 bytes remaining to be entered */
|
|
if(hhash->HashInCount > 64)
|
|
{
|
|
inputaddr = (uint32_t)hhash->pHashInBuffPtr;
|
|
/* Write the Input block in the Data IN register
|
|
(16 32-bit words, or 64 bytes are entered) */
|
|
for(buffercounter = 0; buffercounter < 64; buffercounter+=4)
|
|
{
|
|
uint32_t data = (uint32_t) *(uint8_t *)inputaddr++;
|
|
data |= (uint32_t) *(uint8_t *)inputaddr++ << 8;
|
|
data |= (uint32_t) *(uint8_t *)inputaddr++ << 16;
|
|
data |= (uint32_t) *(uint8_t *)inputaddr++ << 24;
|
|
HASH->DIN = data;
|
|
}
|
|
/* If this is the start of input data entering, an additional word
|
|
must be entered to start up the HASH processing */
|
|
if(hhash->HashITCounter == 2)
|
|
{
|
|
uint32_t data = (uint32_t) *(uint8_t *)inputaddr++;
|
|
data |= (uint32_t) *(uint8_t *)inputaddr++ << 8;
|
|
data |= (uint32_t) *(uint8_t *)inputaddr++ << 16;
|
|
data |= (uint32_t) *(uint8_t *)inputaddr++ << 24;
|
|
HASH->DIN = data;
|
|
if(hhash->HashInCount >= 68)
|
|
{
|
|
/* There are still data waiting to be entered in the IP.
|
|
Decrement buffer counter and set pointer to the proper
|
|
memory location for the next data entering round. */
|
|
hhash->HashInCount -= 68;
|
|
hhash->pHashInBuffPtr+= 68;
|
|
}
|
|
else
|
|
{
|
|
/* All the input buffer has been fed to the HW. */
|
|
hhash->HashInCount = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* 64 bytes have been entered and there are still some remaining:
|
|
Decrement buffer counter and set pointer to the proper
|
|
memory location for the next data entering round.*/
|
|
hhash->HashInCount -= 64;
|
|
hhash->pHashInBuffPtr+= 64;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* 64 or less bytes remain to be entered. This is the last
|
|
data entering round. */
|
|
|
|
/* Get the buffer address */
|
|
inputaddr = (uint32_t)hhash->pHashInBuffPtr;
|
|
/* Get the buffer counter */
|
|
inputcounter = hhash->HashInCount;
|
|
/* Disable Interrupts */
|
|
__HAL_HASH_DISABLE_IT(HASH_IT_DINI);
|
|
|
|
/* Write the Input block in the Data IN register */
|
|
for(buffercounter = 0; buffercounter < (inputcounter+3)/4; buffercounter++)
|
|
{
|
|
uint32_t data = (uint32_t) *(uint8_t *)inputaddr++;
|
|
data |= (uint32_t) *(uint8_t *)inputaddr++ << 8;
|
|
data |= (uint32_t) *(uint8_t *)inputaddr++ << 16;
|
|
data |= (uint32_t) *(uint8_t *)inputaddr++ << 24;
|
|
HASH->DIN = data;
|
|
}
|
|
/* Start the Digest calculation */
|
|
__HAL_HASH_START_DIGEST();
|
|
/* Return indication that digest calculation has started:
|
|
this return value triggers the call to Input data transfer
|
|
complete call back as well as the proper transition from
|
|
one step to another in HMAC mode. */
|
|
ret = HASH_DIGEST_CALCULATION_STARTED;
|
|
/* Reset buffer counter */
|
|
hhash->HashInCount = 0;
|
|
}
|
|
|
|
/* Return whether or digest calculation has started */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief HMAC processing in polling mode.
|
|
* @param hhash: HASH handle.
|
|
* @param Timeout: Timeout value.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout)
|
|
{
|
|
/* Ensure first that Phase is correct */
|
|
if ((hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_1) && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_2) && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_3))
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* HMAC Step 1 processing */
|
|
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
|
|
{
|
|
/************************** STEP 1 ******************************************/
|
|
/* Configure the Number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
|
|
|
|
/* Write input buffer in Data register */
|
|
if ((hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount)) != HAL_OK)
|
|
{
|
|
return hhash->Status;
|
|
}
|
|
|
|
/* Check whether or not key entering process has been suspended */
|
|
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Stop right there and return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/* No processing suspension at this point: set DCAL bit. */
|
|
__HAL_HASH_START_DIGEST();
|
|
|
|
/* Wait for BUSY flag to be cleared */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Move from Step 1 to Step 2 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;
|
|
|
|
}
|
|
|
|
/* HMAC Step 2 processing.
|
|
After phase check, HMAC_Processing() may
|
|
- directly start up from this point in resumption case
|
|
if the same Step 2 processing was suspended previously
|
|
- or fall through from the Step 1 processing carried out hereabove */
|
|
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
|
|
{
|
|
/************************** STEP 2 ******************************************/
|
|
/* Configure the Number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize);
|
|
|
|
/* Write input buffer in Data register */
|
|
if ((hhash->Status = HASH_WriteData(hhash, hhash->pHashInBuffPtr, hhash->HashInCount)) != HAL_OK)
|
|
{
|
|
return hhash->Status;
|
|
}
|
|
|
|
/* Check whether or not data entering process has been suspended */
|
|
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Stop right there and return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/* No processing suspension at this point: set DCAL bit. */
|
|
__HAL_HASH_START_DIGEST();
|
|
|
|
/* Wait for BUSY flag to be cleared */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Move from Step 2 to Step 3 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;
|
|
/* In case Step 1 phase was suspended then resumed,
|
|
set again Key input buffers and size before moving to
|
|
next step */
|
|
hhash->pHashKeyBuffPtr = hhash->Init.pKey;
|
|
hhash->HashKeyCount = hhash->Init.KeySize;
|
|
}
|
|
|
|
|
|
/* HMAC Step 3 processing.
|
|
After phase check, HMAC_Processing() may
|
|
- directly start up from this point in resumption case
|
|
if the same Step 3 processing was suspended previously
|
|
- or fall through from the Step 2 processing carried out hereabove */
|
|
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
|
|
{
|
|
/************************** STEP 3 ******************************************/
|
|
/* Configure the Number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
|
|
|
|
/* Write input buffer in Data register */
|
|
if ((hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount)) != HAL_OK)
|
|
{
|
|
return hhash->Status;
|
|
}
|
|
|
|
/* Check whether or not key entering process has been suspended */
|
|
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Stop right there and return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/* No processing suspension at this point: start the Digest calculation. */
|
|
__HAL_HASH_START_DIGEST();
|
|
|
|
/* Wait for DCIS flag to be set */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Read the message digest */
|
|
HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
|
|
}
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral, next process pInBuffer then
|
|
* read the computed digest.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param pOutBuffer: pointer to the computed digest.
|
|
* @param Timeout: Timeout value.
|
|
* @param Algorithm: HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HASH_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout, uint32_t Algorithm)
|
|
{
|
|
uint8_t *pInBuffer_tmp; /* input data address, input parameter of HASH_WriteData() */
|
|
uint32_t Size_tmp = 0x0; /* input data size (in bytes), input parameter of HASH_WriteData() */
|
|
|
|
/* Initiate HASH processing in case of start or resumption */
|
|
if((hhash->State == HAL_HASH_STATE_READY) || (hhash->State == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (Size == 0) || (pOutBuffer == NULL))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* Check if initialization phase has not been already performed */
|
|
if(hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_CR_INIT);
|
|
|
|
/* Configure the number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(Size);
|
|
|
|
/* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
|
|
input parameters of HASH_WriteData() */
|
|
pInBuffer_tmp = pInBuffer; /* pInBuffer_tmp is set to the input data address */
|
|
Size_tmp = Size; /* Size_tmp contains the input data size in bytes */
|
|
|
|
/* Set the phase */
|
|
hhash->Phase = HAL_HASH_PHASE_PROCESS;
|
|
}
|
|
else if (hhash->Phase == HAL_HASH_PHASE_PROCESS)
|
|
{
|
|
/* if the IP has already been initialized, two cases are possible */
|
|
|
|
/* Process resumption time ... */
|
|
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
|
|
to the API input parameters but to those saved beforehand by HASH_WriteData()
|
|
when the processing was suspended */
|
|
pInBuffer_tmp = hhash->pHashInBuffPtr;
|
|
Size_tmp = hhash->HashInCount;
|
|
}
|
|
/* ... or multi-buffer HASH processing end */
|
|
else
|
|
{
|
|
/* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
|
|
input parameters of HASH_WriteData() */
|
|
pInBuffer_tmp = pInBuffer;
|
|
Size_tmp = Size;
|
|
/* Configure the number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(Size);
|
|
}
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
}
|
|
else
|
|
{
|
|
/* Phase error */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
|
|
/* Write input buffer in Data register */
|
|
if ((hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp)) != HAL_OK)
|
|
{
|
|
return hhash->Status;
|
|
}
|
|
|
|
/* If the process has not been suspended, carry on to digest calculation */
|
|
if (hhash->State != HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Start the Digest calculation */
|
|
__HAL_HASH_START_DIGEST();
|
|
|
|
/* Wait for DCIS flag to be set */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Read the message digest */
|
|
HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief If not already done, initialize the HASH peripheral then
|
|
* processes pInBuffer.
|
|
* @note Field hhash->Phase of HASH handle is tested to check whether or not
|
|
* the IP has already been initialized.
|
|
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
|
|
* HASH digest computation is corrupted.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes, must be a multiple of 4.
|
|
* @param Algorithm: HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HASH_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
|
|
{
|
|
uint8_t *pInBuffer_tmp; /* input data address, input parameter of HASH_WriteData() */
|
|
uint32_t Size_tmp = 0x0; /* input data size (in bytes), input parameter of HASH_WriteData() */
|
|
|
|
/* Make sure the input buffer size (in bytes) is a multiple of 4 */
|
|
assert_param(IS_HASH_POLLING_MULTIBUFFER_SIZE(Size));
|
|
|
|
|
|
/* Initiate HASH processing in case of start or resumption */
|
|
if((hhash->State == HAL_HASH_STATE_READY) || (hhash->State == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (Size == 0))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* If resuming the HASH processing */
|
|
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
|
|
to the API input parameters but to those saved beforehand by HASH_WriteData()
|
|
when the processing was suspended */
|
|
pInBuffer_tmp = hhash->pHashInBuffPtr; /* pInBuffer_tmp is set to the input data address */
|
|
Size_tmp = hhash->HashInCount; /* Size_tmp contains the input data size in bytes */
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
|
|
input parameters of HASH_WriteData() */
|
|
pInBuffer_tmp = pInBuffer; /* pInBuffer_tmp is set to the input data address */
|
|
Size_tmp = Size; /* Size_tmp contains the input data size in bytes */
|
|
|
|
/* Check if initialization phase has already be performed */
|
|
if(hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_CR_INIT);
|
|
}
|
|
|
|
/* Set the phase */
|
|
hhash->Phase = HAL_HASH_PHASE_PROCESS;
|
|
|
|
}
|
|
|
|
/* Write input buffer in Data register */
|
|
if ((hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp)) != HAL_OK)
|
|
{
|
|
return hhash->Status;
|
|
}
|
|
|
|
/* If the process has not been suspended, move the state to Ready */
|
|
if (hhash->State != HAL_HASH_STATE_SUSPENDED)
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
}
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral, next process pInBuffer then
|
|
* read the computed digest in interruption mode.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param pOutBuffer: pointer to the computed digest.
|
|
* @param Algorithm: HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HASH_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Algorithm)
|
|
{
|
|
|
|
/* If State is ready or suspended, start or resume IT-based HASH processing */
|
|
if((hhash->State == HAL_HASH_STATE_READY) || (hhash->State == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (Size == 0) || (pOutBuffer == NULL))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Initialize IT counter */
|
|
hhash->HashITCounter = 1;
|
|
|
|
/* Check if initialization phase has already be performed */
|
|
if(hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_CR_INIT);
|
|
|
|
/* Configure the number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(Size);
|
|
|
|
|
|
hhash->HashInCount = Size; /* Counter used to keep track of number of data
|
|
to be fed to the IP */
|
|
hhash->pHashInBuffPtr = pInBuffer; /* Points at data which will be fed to the IP at
|
|
the next interruption */
|
|
/* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
|
|
the information describing where the HASH process is stopped.
|
|
These variables are used later on to resume the HASH processing at the
|
|
correct location. */
|
|
|
|
hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
|
|
}
|
|
|
|
/* Set the phase */
|
|
hhash->Phase = HAL_HASH_PHASE_PROCESS;
|
|
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Enable Interrupts */
|
|
__HAL_HASH_ENABLE_IT(HASH_IT_DINI|HASH_IT_DCI);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral then initiate a DMA transfer
|
|
* to feed the input buffer to the IP.
|
|
* @note If MDMAT bit is set before calling this function (multi-buffer
|
|
* HASH processing case), the input buffer size (in bytes) must be
|
|
* a multiple of 4 otherwise, the HASH digest computation is corrupted.
|
|
* For the processing of the last buffer of the thread, MDMAT bit must
|
|
* be reset and the buffer length (in bytes) doesn't have to be a
|
|
* multiple of 4.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param Algorithm: HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HASH_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
|
|
{
|
|
uint32_t inputaddr;
|
|
uint32_t inputSize = 0x0;
|
|
|
|
/* Make sure the input buffer size (in bytes) is a multiple of 4 when MDMAT bit is set
|
|
(case of multi-buffer HASH processing) */
|
|
assert_param(IS_HASH_DMA_MULTIBUFFER_SIZE(Size));
|
|
|
|
/* If State is ready or suspended, start or resume DMA-based HASH processing */
|
|
if ((hhash->State == HAL_HASH_STATE_READY) || (hhash->State == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ( (pInBuffer == NULL ) || (Size == 0) ||
|
|
/* Check phase coherency. Phase must be
|
|
either READY (fresh start)
|
|
or PROCESS (multi-buffer HASH management) */
|
|
((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HASH_PROCESSING(hhash)))))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* If not a resumption case */
|
|
if (hhash->State == HAL_HASH_STATE_READY)
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed.
|
|
If Phase is already set to HAL_HASH_PHASE_PROCESS, this means the
|
|
API is processing a new input data message in case of multi-buffer HASH
|
|
computation. */
|
|
if(hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_CR_INIT);
|
|
|
|
/* Set the phase */
|
|
hhash->Phase = HAL_HASH_PHASE_PROCESS;
|
|
}
|
|
|
|
/* Configure the Number of valid bits in last word of the message */
|
|
__HAL_HASH_SET_NBVALIDBITS(Size);
|
|
|
|
inputaddr = (uint32_t)pInBuffer; /* DMA transfer start address */
|
|
inputSize = Size; /* DMA transfer size (in bytes) */
|
|
|
|
/* In case of suspension request, save the starting parameters */
|
|
hhash->pHashInBuffPtr = pInBuffer; /* DMA transfer start address */
|
|
hhash->HashInCount = Size; /* DMA transfer size (in bytes) */
|
|
|
|
}
|
|
/* If resumption case */
|
|
else
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Resumption case, inputaddr and inputSize are not set to the API input parameters
|
|
but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
|
|
processing was suspended */
|
|
inputaddr = (uint32_t)hhash->pHashInBuffPtr; /* DMA transfer start address */
|
|
inputSize = hhash->HashInCount; /* DMA transfer size (in bytes) */
|
|
|
|
}
|
|
|
|
/* Set the HASH DMA transfert complete callback */
|
|
hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
|
|
/* Set the DMA error callback */
|
|
hhash->hdmain->XferErrorCallback = HASH_DMAError;
|
|
|
|
/* Store number of words already pushed to manage proper DMA processing suspension */
|
|
hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
|
|
|
|
/* Enable the DMA In DMA Stream */
|
|
HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (inputSize%4 ? (inputSize+3)/4:inputSize/4));
|
|
|
|
/* Enable DMA requests */
|
|
SET_BIT(HASH->CR, HASH_CR_DMAE);
|
|
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Return the computed digest.
|
|
* @note The API waits for DCIS to be set then reads the computed digest.
|
|
* @param hhash: HASH handle.
|
|
* @param pOutBuffer: pointer to the computed digest.
|
|
* @param Timeout: Timeout value.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HASH_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout)
|
|
{
|
|
|
|
if(hhash->State == HAL_HASH_STATE_READY)
|
|
{
|
|
/* Check parameter */
|
|
if (pOutBuffer == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* Change the HASH state to busy */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Wait for DCIS flag to be set */
|
|
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Read the message digest */
|
|
HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
|
|
|
|
/* Change the HASH state to ready */
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
|
|
/* Process UnLock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
|
|
* read the computed digest.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param pOutBuffer: pointer to the computed digest.
|
|
* @param Timeout: Timeout value.
|
|
* @param Algorithm: HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HMAC_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout, uint32_t Algorithm)
|
|
{
|
|
|
|
/* If State is ready or suspended, start or resume polling-based HASH processing */
|
|
if((hhash->State == HAL_HASH_STATE_READY) || (hhash->State == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (Size == 0) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0) || (pOutBuffer == NULL))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already be performed */
|
|
if(hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
|
|
if(hhash->Init.KeySize > 64)
|
|
{
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
|
|
}
|
|
else
|
|
{
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
|
|
}
|
|
/* Set the phase to Step 1 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
|
|
/* Resort to hhash internal fields to feed the IP.
|
|
Parameters will be updated in case of suspension to contain the proper
|
|
information at resumption time. */
|
|
hhash->pHashOutBuffPtr = pOutBuffer; /* Output digest address */
|
|
hhash->pHashInBuffPtr = pInBuffer; /* Input data address, HMAC_Processing input parameter for Step 2 */
|
|
hhash->HashInCount = Size; /* Input data size, HMAC_Processing input parameter for Step 2 */
|
|
hhash->HashBuffSize = Size; /* Store the input buffer size for the whole HMAC process */
|
|
hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address, HMAC_Processing input parameter for Step 1 and Step 3 */
|
|
hhash->HashKeyCount = hhash->Init.KeySize; /* Key size, HMAC_Processing input parameter for Step 1 and Step 3 */
|
|
}
|
|
|
|
/* Carry out HMAC processing */
|
|
return HMAC_Processing(hhash, Timeout);
|
|
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
|
|
* read the computed digest in interruption mode.
|
|
* @note Digest is available in pOutBuffer.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param pOutBuffer: pointer to the computed digest.
|
|
* @param Algorithm: HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HMAC_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Algorithm)
|
|
{
|
|
/* If State is ready or suspended, start or resume IT-based HASH processing */
|
|
if((hhash->State == HAL_HASH_STATE_READY) || (hhash->State == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL) || (Size == 0) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0) || (pOutBuffer == NULL))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Initialize IT counter */
|
|
hhash->HashITCounter = 1;
|
|
|
|
/* Check if initialization phase has already be performed */
|
|
if (hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
|
|
if(hhash->Init.KeySize > 64)
|
|
{
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
|
|
}
|
|
else
|
|
{
|
|
MODIFY_REG(HASH->CR, HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
|
|
}
|
|
|
|
/* Resort to hhash internal fields hhash->pHashInBuffPtr and hhash->HashInCount
|
|
to feed the IP whatever the HMAC step.
|
|
Lines below are set to start HMAC Step 1 processing where key is entered first. */
|
|
hhash->HashInCount = hhash->Init.KeySize; /* Key size */
|
|
hhash->pHashInBuffPtr = hhash->Init.pKey ; /* Key address */
|
|
|
|
/* Store input and output parameters in handle fields to manage steps transition
|
|
or possible HMAC suspension/resumption */
|
|
hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address */
|
|
hhash->pHashMsgBuffPtr = pInBuffer; /* Input message address */
|
|
hhash->HashBuffSize = Size; /* Input message size (in bytes) */
|
|
hhash->pHashOutBuffPtr = pOutBuffer; /* Output digest address */
|
|
|
|
/* Configure the number of valid bits in last word of the key */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
|
|
|
|
/* Set the phase to Step 1 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
|
|
}
|
|
else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
|
|
{
|
|
/* Restart IT-based HASH processing after Step 1 or Step 3 suspension */
|
|
|
|
}
|
|
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
|
|
{
|
|
/* Restart IT-based HASH processing after Step 2 suspension */
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Error report as phase incorrect */
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process Unlock */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Enable Interrupts */
|
|
__HAL_HASH_ENABLE_IT(HASH_IT_DINI|HASH_IT_DCI);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Initialize the HASH peripheral in HMAC mode then initiate the required
|
|
* DMA transfers to feed the key and the input buffer to the IP.
|
|
* @note Same key is used for the inner and the outer hash functions; pointer to key and
|
|
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
|
|
* @note In case of multi-buffer HMAC processing, the input buffer size (in bytes) must
|
|
* be a multiple of 4 otherwise, the HASH digest computation is corrupted.
|
|
* Only the length of the last buffer of the thread doesn't have to be a
|
|
* multiple of 4.
|
|
* @param hhash: HASH handle.
|
|
* @param pInBuffer: pointer to the input buffer (buffer to be hashed).
|
|
* @param Size: length of the input buffer in bytes.
|
|
* @param Algorithm: HASH algorithm.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HMAC_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
|
|
{
|
|
uint32_t inputaddr;
|
|
uint32_t inputSize = 0x0;
|
|
|
|
/* Make sure the input buffer size (in bytes) is a multiple of 4 when digest calculation
|
|
is disabled (multi-buffer HMAC processing, MDMAT bit to be set) */
|
|
assert_param(IS_HMAC_DMA_MULTIBUFFER_SIZE(hhash, Size));
|
|
|
|
/* If State is ready or suspended, start or resume DMA-based HASH processing */
|
|
if ((hhash->State == HAL_HASH_STATE_READY) || (hhash->State == HAL_HASH_STATE_SUSPENDED))
|
|
{
|
|
/* Check input parameters */
|
|
if ((pInBuffer == NULL ) || (Size == 0) || (hhash->Init.pKey == NULL ) || (hhash->Init.KeySize == 0) ||
|
|
/* Check phase coherency. Phase must be
|
|
either READY (fresh start)
|
|
or one of HMAC PROCESS steps (multi-buffer HASH management) */
|
|
((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HMAC_PROCESSING(hhash)))))
|
|
{
|
|
hhash->State = HAL_HASH_STATE_READY;
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hhash);
|
|
|
|
/* If not a case of resumption after suspension */
|
|
if (hhash->State == HAL_HASH_STATE_READY)
|
|
{
|
|
/* Check whether or not initialization phase has already be performed */
|
|
if(hhash->Phase == HAL_HASH_PHASE_READY)
|
|
{
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits.
|
|
At the same time, ensure MDMAT bit is cleared. */
|
|
if(hhash->Init.KeySize > 64)
|
|
{
|
|
MODIFY_REG(HASH->CR, HASH_CR_MDMAT|HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
|
|
}
|
|
else
|
|
{
|
|
MODIFY_REG(HASH->CR, HASH_CR_MDMAT|HASH_CR_LKEY|HASH_CR_ALGO|HASH_CR_MODE|HASH_CR_INIT, Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
|
|
}
|
|
|
|
/* Store input aparameters in handle fields to manage steps transition
|
|
or possible HMAC suspension/resumption */
|
|
hhash->HashInCount = hhash->Init.KeySize; /* Initial size for first DMA transfer (key size) */
|
|
hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address */
|
|
hhash->pHashInBuffPtr = hhash->Init.pKey ; /* First address passed to DMA (key address at Step 1) */
|
|
hhash->pHashMsgBuffPtr = pInBuffer; /* Input data address */
|
|
hhash->HashBuffSize = Size; /* input data size (in bytes) */
|
|
|
|
/* Set DMA input parameters */
|
|
inputaddr = (uint32_t)(hhash->Init.pKey); /* Address passed to DMA (start by entering Key message) */
|
|
inputSize = hhash->Init.KeySize; /* Size for first DMA transfer (in bytes) */
|
|
|
|
/* Configure the number of valid bits in last word of the key */
|
|
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
|
|
|
|
/* Set the phase to Step 1 */
|
|
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
|
|
|
|
}
|
|
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
|
|
{
|
|
/* Process a new input data message in case of multi-buffer HMAC processing
|
|
(this is not a resumption case) */
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Save input parameters to be able to manage possible suspension/resumption */
|
|
hhash->HashInCount = Size; /* Input message address */
|
|
hhash->pHashInBuffPtr = pInBuffer; /* Input message size in bytes */
|
|
|
|
/* Set DMA input parameters */
|
|
inputaddr = (uint32_t)pInBuffer; /* Input message address */
|
|
inputSize = Size; /* Input message size in bytes */
|
|
|
|
if (hhash->DigestCalculationDisable == RESET)
|
|
{
|
|
/* This means this is the last buffer of the multi-buffer sequence: DCAL needs to be set. */
|
|
__HAL_HASH_RESET_MDMAT();
|
|
__HAL_HASH_SET_NBVALIDBITS(inputSize);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Phase not aligned with handle READY state */
|
|
__HAL_UNLOCK(hhash);
|
|
/* Return function status */
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Resumption case (phase may be Step 1, 2 or 3) */
|
|
|
|
/* Change the HASH state */
|
|
hhash->State = HAL_HASH_STATE_BUSY;
|
|
|
|
/* Set DMA input parameters at resumption location;
|
|
inputaddr and inputSize are not set to the API input parameters
|
|
but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
|
|
processing was suspended. */
|
|
inputaddr = (uint32_t)(hhash->pHashInBuffPtr); /* Input message address */
|
|
inputSize = hhash->HashInCount; /* Input message size in bytes */
|
|
}
|
|
|
|
|
|
/* Set the HASH DMA transfert complete callback */
|
|
hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
|
|
/* Set the DMA error callback */
|
|
hhash->hdmain->XferErrorCallback = HASH_DMAError;
|
|
|
|
/* Store number of words already pushed to manage proper DMA processing suspension */
|
|
hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
|
|
|
|
/* Enable the DMA In DMA Stream */
|
|
HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (inputSize%4 ? (inputSize+3)/4:inputSize/4));
|
|
/* Enable DMA requests */
|
|
SET_BIT(HASH->CR, HASH_CR_DMAE);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hhash);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_BUSY;
|
|
}
|
|
}
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* defined (STM32L4A6xx) || defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined (STM32L4S9xx) */
|
|
|
|
#endif /* HAL_HASH_MODULE_ENABLED */
|
|
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|