mbed-os/drivers/UARTSerial.cpp

299 lines
6.6 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2006-2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if (DEVICE_SERIAL && DEVICE_INTERRUPTIN)
#include <errno.h>
#include "UARTSerial.h"
#include "platform/mbed_poll.h"
#if MBED_CONF_RTOS_PRESENT
#include "rtos/Thread.h"
#else
#include "platform/mbed_wait_api.h"
#endif
namespace mbed {
UARTSerial::UARTSerial(PinName tx, PinName rx, int baud) :
SerialBase(tx, rx, baud),
_blocking(true),
_tx_irq_enabled(false),
_dcd_irq(NULL)
{
/* Attatch IRQ routines to the serial device. */
SerialBase::attach(callback(this, &UARTSerial::rx_irq), RxIrq);
}
UARTSerial::~UARTSerial()
{
delete _dcd_irq;
}
void UARTSerial::dcd_irq()
{
wake();
}
void UARTSerial::set_baud(int baud)
{
SerialBase::baud(baud);
}
void UARTSerial::set_data_carrier_detect(PinName dcd_pin, bool active_high)
{
delete _dcd_irq;
_dcd_irq = NULL;
if (dcd_pin != NC) {
_dcd_irq = new InterruptIn(dcd_pin);
if (active_high) {
_dcd_irq->fall(callback(this, &UARTSerial::dcd_irq));
} else {
_dcd_irq->rise(callback(this, &UARTSerial::dcd_irq));
}
}
}
int UARTSerial::close()
{
/* Does not let us pass a file descriptor. So how to close ?
* Also, does it make sense to close a device type file descriptor*/
return 0;
}
int UARTSerial::isatty()
{
return 1;
}
off_t UARTSerial::seek(off_t offset, int whence)
{
/*XXX lseek can be done theoratically, but is it sane to mark positions on a dynamically growing/shrinking
* buffer system (from an interrupt context) */
return -ESPIPE;
}
int UARTSerial::sync()
{
api_lock();
while (!_txbuf.empty()) {
api_unlock();
// Doing better than wait would require TxIRQ to also do wake() when becoming empty. Worth it?
wait_ms(1);
api_lock();
}
api_unlock();
return 0;
}
void UARTSerial::sigio(Callback<void()> func) {
core_util_critical_section_enter();
_sigio_cb = func;
if (_sigio_cb) {
short current_events = poll(0x7FFF);
if (current_events) {
_sigio_cb();
}
}
core_util_critical_section_exit();
}
ssize_t UARTSerial::write(const void* buffer, size_t length)
{
size_t data_written = 0;
const char *buf_ptr = static_cast<const char *>(buffer);
api_lock();
while (_txbuf.full()) {
if (!_blocking) {
api_unlock();
return -EAGAIN;
}
api_unlock();
wait_ms(1); // XXX todo - proper wait, WFE for non-rtos ?
api_lock();
}
while (data_written < length && !_txbuf.full()) {
_txbuf.push(*buf_ptr++);
data_written++;
}
core_util_critical_section_enter();
if (!_tx_irq_enabled) {
UARTSerial::tx_irq(); // only write to hardware in one place
if (!_txbuf.empty()) {
SerialBase::attach(callback(this, &UARTSerial::tx_irq), TxIrq);
_tx_irq_enabled = true;
}
}
core_util_critical_section_exit();
api_unlock();
return data_written;
}
ssize_t UARTSerial::read(void* buffer, size_t length)
{
size_t data_read = 0;
char *ptr = static_cast<char *>(buffer);
api_lock();
while (_rxbuf.empty()) {
if (!_blocking) {
api_unlock();
return -EAGAIN;
}
api_unlock();
wait_ms(1); // XXX todo - proper wait, WFE for non-rtos ?
api_lock();
}
while (data_read < length && !_rxbuf.empty()) {
_rxbuf.pop(*ptr++);
data_read++;
}
api_unlock();
return data_read;
}
bool UARTSerial::hup() const
{
return _dcd_irq && _dcd_irq->read() != 0;
}
void UARTSerial::wake()
{
if (_sigio_cb) {
_sigio_cb();
}
}
short UARTSerial::poll(short events) const {
short revents = 0;
/* Check the Circular Buffer if space available for writing out */
if (!_rxbuf.empty()) {
revents |= POLLIN;
}
/* POLLHUP and POLLOUT are mutually exclusive */
if (hup()) {
revents |= POLLHUP;
} else if (!_txbuf.full()) {
revents |= POLLOUT;
}
/*TODO Handle other event types */
return revents;
}
void UARTSerial::lock()
{
// This is the override for SerialBase.
// No lock required as we only use SerialBase from interrupt or from
// inside our own critical section.
}
void UARTSerial::unlock()
{
// This is the override for SerialBase.
}
void UARTSerial::api_lock(void)
{
_mutex.lock();
}
void UARTSerial::api_unlock(void)
{
_mutex.unlock();
}
void UARTSerial::rx_irq(void)
{
bool was_empty = _rxbuf.empty();
/* Fill in the receive buffer if the peripheral is readable
* and receive buffer is not full. */
while (SerialBase::readable()) {
char data = SerialBase::_base_getc();
if (!_rxbuf.full()) {
_rxbuf.push(data);
} else {
/* Drop - can we report in some way? */
}
}
/* Report the File handler that data is ready to be read from the buffer. */
if (was_empty && !_rxbuf.empty()) {
wake();
}
}
// Also called from write to start transfer
void UARTSerial::tx_irq(void)
{
bool was_full = _txbuf.full();
/* Write to the peripheral if there is something to write
* and if the peripheral is available to write. */
while (!_txbuf.empty() && SerialBase::writeable()) {
char data;
_txbuf.pop(data);
SerialBase::_base_putc(data);
}
if (_tx_irq_enabled && _txbuf.empty()) {
SerialBase::attach(NULL, TxIrq);
_tx_irq_enabled = false;
}
/* Report the File handler that data can be written to peripheral. */
if (was_full && !_txbuf.full() && !hup()) {
wake();
}
}
void UARTSerial::wait_ms(uint32_t millisec)
{
/* wait_ms implementation for RTOS spins until exact microseconds - we
* want to just sleep until next tick.
*/
#if MBED_CONF_RTOS_PRESENT
rtos::Thread::wait(millisec);
#else
::wait_ms(millisec);
#endif
}
} //namespace mbed
#endif //(DEVICE_SERIAL && DEVICE_INTERRUPTIN)