mbed-os/rtos/source/Thread.cpp

348 lines
9.2 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2006-2012 ARM Limited
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <string.h>
#include "rtos/Thread.h"
#include "rtos/ThisThread.h"
#include "rtos_idle.h"
#include "rtos_handlers.h"
#include "platform/mbed_assert.h"
#include "platform/mbed_error.h"
#if MBED_CONF_RTOS_PRESENT
#define ALIGN_UP(pos, align) ((pos) % (align) ? (pos) + ((align) - (pos) % (align)) : (pos))
MBED_STATIC_ASSERT(ALIGN_UP(0, 8) == 0, "ALIGN_UP macro error");
MBED_STATIC_ASSERT(ALIGN_UP(1, 8) == 8, "ALIGN_UP macro error");
#define ALIGN_DOWN(pos, align) ((pos) - ((pos) % (align)))
MBED_STATIC_ASSERT(ALIGN_DOWN(7, 8) == 0, "ALIGN_DOWN macro error");
MBED_STATIC_ASSERT(ALIGN_DOWN(8, 8) == 8, "ALIGN_DOWN macro error");
namespace rtos {
#ifndef MBED_TZ_DEFAULT_ACCESS
#define MBED_TZ_DEFAULT_ACCESS 0
#endif
void Thread::constructor(uint32_t tz_module, osPriority priority,
uint32_t stack_size, unsigned char *stack_mem, const char *name)
{
const uintptr_t unaligned_mem = reinterpret_cast<uintptr_t>(stack_mem);
const uintptr_t aligned_mem = ALIGN_UP(unaligned_mem, 8);
const uint32_t offset = aligned_mem - unaligned_mem;
const uint32_t aligned_size = ALIGN_DOWN(stack_size - offset, 8);
memset(&_obj_mem, 0, sizeof(_obj_mem));
_tid = nullptr;
_dynamic_stack = (stack_mem == nullptr);
_finished = false;
memset(&_attr, 0, sizeof(_attr));
_attr.priority = priority;
_attr.stack_size = aligned_size;
_attr.name = name ? name : "application_unnamed_thread";
_attr.stack_mem = reinterpret_cast<uint32_t *>(aligned_mem);
_attr.tz_module = tz_module;
}
void Thread::constructor(osPriority priority,
uint32_t stack_size, unsigned char *stack_mem, const char *name)
{
constructor(MBED_TZ_DEFAULT_ACCESS, priority, stack_size, stack_mem, name);
}
osStatus Thread::start(mbed::Callback<void()> task)
{
_mutex.lock();
if ((_tid != 0) || _finished) {
_mutex.unlock();
return osErrorParameter;
}
if (_attr.stack_mem == nullptr) {
_attr.stack_mem = new uint32_t[_attr.stack_size / sizeof(uint32_t)];
MBED_ASSERT(_attr.stack_mem != nullptr);
}
//Fill the stack with a magic word for maximum usage checking
for (uint32_t i = 0; i < (_attr.stack_size / sizeof(uint32_t)); i++) {
((uint32_t *)_attr.stack_mem)[i] = osRtxStackMagicWord;
}
_attr.cb_size = sizeof(_obj_mem);
_attr.cb_mem = &_obj_mem;
_task = task;
_tid = osThreadNew(Thread::_thunk, this, &_attr);
if (_tid == nullptr) {
if (_dynamic_stack) {
// Cast before deallocation as delete[] does not accept void*
delete[] static_cast<uint32_t *>(_attr.stack_mem);
_attr.stack_mem = nullptr;
}
_mutex.unlock();
_join_sem.release();
return osErrorResource;
}
_mutex.unlock();
return osOK;
}
osStatus Thread::terminate()
{
osStatus_t ret = osOK;
_mutex.lock();
// Set the Thread's tid to nullptr and
// release the semaphore before terminating
// since this thread could be terminating itself
osThreadId_t local_id = _tid;
_join_sem.release();
_tid = nullptr;
if (!_finished) {
_finished = true;
// if local_id == 0 Thread was not started in first place
// and does not have to be terminated
if (local_id != 0) {
ret = osThreadTerminate(local_id);
}
}
_mutex.unlock();
return ret;
}
osStatus Thread::join()
{
_join_sem.acquire();
// The semaphore has been released so this thread is being
// terminated or has been terminated. Once the mutex has
// been locked it is ensured that the thread is deleted.
_mutex.lock();
MBED_ASSERT(nullptr == _tid);
_mutex.unlock();
// Release sem so any other threads joining this thread wake up
_join_sem.release();
return osOK;
}
osStatus Thread::set_priority(osPriority priority)
{
osStatus_t ret;
_mutex.lock();
ret = osThreadSetPriority(_tid, priority);
_mutex.unlock();
return ret;
}
osPriority Thread::get_priority() const
{
osPriority_t ret;
_mutex.lock();
ret = osThreadGetPriority(_tid);
_mutex.unlock();
return ret;
}
uint32_t Thread::flags_set(uint32_t flags)
{
flags = osThreadFlagsSet(_tid, flags);
MBED_ASSERT(!(flags & osFlagsError));
return flags;
}
Thread::State Thread::get_state() const
{
uint8_t state = osThreadTerminated;
_mutex.lock();
if (_tid != nullptr) {
#if defined(MBED_OS_BACKEND_RTX5)
state = _obj_mem.state;
#else
state = osThreadGetState(_tid);
#endif
}
_mutex.unlock();
State user_state;
switch (state) {
case osThreadInactive:
user_state = Inactive;
break;
case osThreadReady:
user_state = Ready;
break;
case osThreadRunning:
user_state = Running;
break;
#if defined(MBED_OS_BACKEND_RTX5)
case osRtxThreadWaitingDelay:
user_state = WaitingDelay;
break;
case osRtxThreadWaitingJoin:
user_state = WaitingJoin;
break;
case osRtxThreadWaitingThreadFlags:
user_state = WaitingThreadFlag;
break;
case osRtxThreadWaitingEventFlags:
user_state = WaitingEventFlag;
break;
case osRtxThreadWaitingMutex:
user_state = WaitingMutex;
break;
case osRtxThreadWaitingSemaphore:
user_state = WaitingSemaphore;
break;
case osRtxThreadWaitingMemoryPool:
user_state = WaitingMemoryPool;
break;
case osRtxThreadWaitingMessageGet:
user_state = WaitingMessageGet;
break;
case osRtxThreadWaitingMessagePut:
user_state = WaitingMessagePut;
break;
#endif
case osThreadTerminated:
default:
user_state = Deleted;
break;
}
return user_state;
}
uint32_t Thread::stack_size() const
{
uint32_t size = 0;
_mutex.lock();
if (_tid != nullptr) {
size = osThreadGetStackSize(_tid);
}
_mutex.unlock();
return size;
}
uint32_t Thread::free_stack() const
{
uint32_t size = 0;
_mutex.lock();
#if defined(MBED_OS_BACKEND_RTX5)
if (_tid != nullptr) {
mbed_rtos_storage_thread_t *thread = (mbed_rtos_storage_thread_t *)_tid;
size = (uint32_t)thread->sp - (uint32_t)thread->stack_mem;
}
#endif
_mutex.unlock();
return size;
}
uint32_t Thread::used_stack() const
{
uint32_t size = 0;
_mutex.lock();
#if defined(MBED_OS_BACKEND_RTX5)
if (_tid != nullptr) {
mbed_rtos_storage_thread_t *thread = (mbed_rtos_storage_thread_t *)_tid;
size = ((uint32_t)thread->stack_mem + thread->stack_size) - thread->sp;
}
#endif
_mutex.unlock();
return size;
}
uint32_t Thread::max_stack() const
{
uint32_t size = 0;
_mutex.lock();
if (_tid != nullptr) {
#if defined(MBED_OS_BACKEND_RTX5)
mbed_rtos_storage_thread_t *thread = (mbed_rtos_storage_thread_t *)_tid;
uint32_t high_mark = 0;
while ((((uint32_t *)(thread->stack_mem))[high_mark] == osRtxStackMagicWord) || (((uint32_t *)(thread->stack_mem))[high_mark] == osRtxStackFillPattern)) {
high_mark++;
}
size = thread->stack_size - (high_mark * sizeof(uint32_t));
#else
size = osThreadGetStackSize(_tid) - osThreadGetStackSpace(_tid);
#endif
}
_mutex.unlock();
return size;
}
const char *Thread::get_name() const
{
return _attr.name;
}
osThreadId_t Thread::get_id() const
{
return _tid;
}
Thread::~Thread()
{
// terminate is thread safe
terminate();
if (_dynamic_stack) {
// Cast before deallocation as delete[] does not accept void*
delete[] static_cast<uint32_t *>(_attr.stack_mem);
_attr.stack_mem = nullptr;
}
}
void Thread::_thunk(void *thread_ptr)
{
Thread *t = (Thread *)thread_ptr;
t->_task();
t->_mutex.lock();
t->_tid = nullptr;
t->_finished = true;
t->_join_sem.release();
// rtos will release the mutex automatically
}
}
#endif