mbed-os/targets/TARGET_NXP/TARGET_LPC82X/pwmout_api.c

204 lines
5.8 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "pwmout_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#if DEVICE_PWMOUT
// bit flags for used SCTs
static unsigned char sct_used = 0;
static int get_available_sct()
{
int i;
for (i = 0; i < 4; i++) {
if ((sct_used & (1 << i)) == 0)
return i;
}
return -1;
}
void pwmout_init(pwmout_t* obj, PinName pin)
{
MBED_ASSERT(pin != (PinName)NC);
int sct_n = get_available_sct();
if (sct_n == -1) {
error("No available SCT");
}
sct_used |= (1 << sct_n);
obj->pwm = (LPC_SCT_Type*)LPC_SCT;
obj->pwm_ch = sct_n;
LPC_SCT_Type* pwm = obj->pwm;
// Enable the SCT clock
LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 8);
// Clear peripheral reset the SCT:
LPC_SYSCON->PRESETCTRL |= (1 << 8);
switch(sct_n) {
case 0:
// SCT_OUT0
LPC_SWM->PINASSIGN[7] &= ~0xFF000000;
LPC_SWM->PINASSIGN[7] |= ((pin >> PIN_SHIFT) << 24);
break;
case 1:
// SCT_OUT1
LPC_SWM->PINASSIGN[8] &= ~0x000000FF;
LPC_SWM->PINASSIGN[8] |= (pin >> PIN_SHIFT);
break;
case 2:
// SCT2_OUT2
LPC_SWM->PINASSIGN[8] &= ~0x0000FF00;
LPC_SWM->PINASSIGN[8] |= ((pin >> PIN_SHIFT) << 8);
break;
case 3:
// SCT3_OUT3
LPC_SWM->PINASSIGN[8] &= ~0x00FF0000;
LPC_SWM->PINASSIGN[8] |= ((pin >> PIN_SHIFT) << 16);
break;
default:
break;
}
// Unified 32-bit counter, autolimit
pwm->CONFIG |= ((0x3 << 17) | 0x01);
// halt and clear the counter
pwm->CTRL |= (1 << 2) | (1 << 3);
// System Clock -> us_ticker (1)MHz
pwm->CTRL &= ~(0x7F << 5);
pwm->CTRL |= (((SystemCoreClock/1000000 - 1) & 0x7F) << 5);
// Set event number
pwm->OUT[sct_n].SET = (1 << ((sct_n * 2) + 0));
pwm->OUT[sct_n].CLR = (1 << ((sct_n * 2) + 1));
pwm->EVENT[(sct_n * 2) + 0].CTRL = (1 << 12) | ((sct_n * 2) + 0); // match event
pwm->EVENT[(sct_n * 2) + 0].STATE = 0xFFFFFFFF;
pwm->EVENT[(sct_n * 2) + 1].CTRL = (1 << 12) | ((sct_n * 2) + 1);
pwm->EVENT[(sct_n * 2) + 1].STATE = 0xFFFFFFFF;
// default to 20ms: standard for servos, and fine for e.g. brightness control
pwmout_period_ms(obj, 20);
pwmout_write (obj, 0);
}
void pwmout_free(pwmout_t* obj)
{
// Disable the SCT clock
LPC_SYSCON->SYSAHBCLKCTRL &= ~(1 << 8);
sct_used &= ~(1 << obj->pwm_ch);
}
void pwmout_write(pwmout_t* obj, float value)
{
if (value < 0.0f) {
value = 0.0;
} else if (value > 1.0f) {
value = 1.0f;
}
uint32_t t_on = (uint32_t)((float)(obj->pwm->MATCHREL[obj->pwm_ch * 2] + 1) * value);
if (t_on > 0) { // duty is not 0%
if (value != 1.0f) { // duty is not 100%
obj->pwm->MATCHREL[(obj->pwm_ch * 2) + 1] = t_on - 1;
// unhalt the counter
obj->pwm->CTRL &= ~(1 << 2);
} else { // duty is 100%
// halt and clear the counter
obj->pwm->CTRL |= (1 << 2) | (1 << 3);
// output level tied to high
obj->pwm->OUTPUT |= (1 << obj->pwm_ch);
}
} else { // duty is 0%
// halt and clear the counter
obj->pwm->CTRL |= (1 << 2) | (1 << 3);
// output level tied to low
obj->pwm->OUTPUT &= ~(1 << obj->pwm_ch);
}
}
float pwmout_read(pwmout_t* obj)
{
uint32_t t_off = obj->pwm->MATCHREL[(obj->pwm_ch * 2) + 0] + 1;
uint32_t t_on = obj->pwm->MATCHREL[(obj->pwm_ch * 2) + 1] + 1;
float v = (float)t_on/(float)t_off;
return (v > 1.0f) ? (1.0f) : (v);
}
void pwmout_period(pwmout_t* obj, float seconds)
{
pwmout_period_us(obj, seconds * 1000000.0f);
}
void pwmout_period_ms(pwmout_t* obj, int ms)
{
pwmout_period_us(obj, ms * 1000);
}
// Set the PWM period, keeping the duty cycle the same.
void pwmout_period_us(pwmout_t* obj, int us)
{
// The period are off by one for MATCHREL, so +1 to get actual value
uint32_t t_off = obj->pwm->MATCHREL[(obj->pwm_ch * 2) + 0] + 1;
uint32_t t_on = obj->pwm->MATCHREL[(obj->pwm_ch * 2) + 1] + 1;
float v = (float)t_on/(float)t_off;
obj->pwm->MATCHREL[(obj->pwm_ch * 2) + 0] = (uint32_t)us - 1;
if (us > 0) { // PWM period is not 0
obj->pwm->MATCHREL[(obj->pwm_ch * 2) + 1] = (uint32_t)((float)us * (float)v) - 1;
// unhalt the counter
obj->pwm->CTRL &= ~(1 << 2);
} else { // PWM period is 0
// halt and clear the counter
obj->pwm->CTRL |= (1 << 2) | (1 << 3);
// output level tied to low
obj->pwm->OUTPUT &= ~(1 << obj->pwm_ch);
}
}
void pwmout_pulsewidth(pwmout_t* obj, float seconds)
{
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms)
{
pwmout_pulsewidth_us(obj, ms * 1000);
}
void pwmout_pulsewidth_us(pwmout_t* obj, int us)
{
if (us > 0) { // PWM peried is not 0
obj->pwm->MATCHREL[(obj->pwm_ch * 2) + 1] = (uint32_t)us - 1;
obj->pwm->CTRL &= ~(1 << 2);
} else { //PWM period is 0
// halt and clear the counter
obj->pwm->CTRL |= (1 << 2) | (1 << 3);
// output level tied to low
obj->pwm->OUTPUT &= ~(1 << obj->pwm_ch);
}
}
#endif