mbed-os/targets/TARGET_NXP/TARGET_LPC15XX/can_api.c

629 lines
21 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "can_api.h"
#include "cmsis.h"
#include "mbed_error.h"
#include <math.h>
#include <string.h>
/* Handy defines */
#define RX_MSG_OBJ_COUNT 31
#define TX_MSG_OBJ_COUNT 1
#define DLC_MAX 8
#define ID_STD_MASK 0x07FF
#define ID_EXT_MASK 0x1FFFFFFF
#define DLC_MASK 0x0F
#define CANIFn_ARB2_DIR (1UL << 13)
#define CANIFn_ARB2_XTD (1UL << 14)
#define CANIFn_ARB2_MSGVAL (1UL << 15)
#define CANIFn_MSK2_MXTD (1UL << 15)
#define CANIFn_MSK2_MDIR (1UL << 14)
#define CANIFn_MCTRL_EOB (1UL << 7)
#define CANIFn_MCTRL_TXRQST (1UL << 8)
#define CANIFn_MCTRL_RMTEN (1UL << 9)
#define CANIFn_MCTRL_RXIE (1UL << 10)
#define CANIFn_MCTRL_TXIE (1UL << 11)
#define CANIFn_MCTRL_UMASK (1UL << 12)
#define CANIFn_MCTRL_INTPND (1UL << 13)
#define CANIFn_MCTRL_MSGLST (1UL << 14)
#define CANIFn_MCTRL_NEWDAT (1UL << 15)
#define CANIFn_CMDMSK_DATA_B (1UL << 0)
#define CANIFn_CMDMSK_DATA_A (1UL << 1)
#define CANIFn_CMDMSK_TXRQST (1UL << 2)
#define CANIFn_CMDMSK_NEWDAT (1UL << 2)
#define CANIFn_CMDMSK_CLRINTPND (1UL << 3)
#define CANIFn_CMDMSK_CTRL (1UL << 4)
#define CANIFn_CMDMSK_ARB (1UL << 5)
#define CANIFn_CMDMSK_MASK (1UL << 6)
#define CANIFn_CMDMSK_WR (1UL << 7)
#define CANIFn_CMDMSK_RD (0UL << 7)
#define CANIFn_CMDREQ_BUSY (1UL << 15)
#define CANSTAT_TXOK (1 << 3) // Transmitted a message successfully This bit must be reset by the CPU. It is never reset by the CAN controller.
#define CANSTAT_RXOK (1 << 4) // Received a message successfully This bit must be reset by the CPU. It is never reset by the CAN controller.
#define CANSTAT_EPASS (1 << 5) // Error passive
#define CANSTAT_EWARN (1 << 6) // Warning status
#define CANSTAT_BOFF (1 << 7) // Busoff status
#define CANCNTL_INIT (1 << 0) // Initialization
#define CANCNTL_IE (1 << 1) // Module interrupt enable
#define CANCNTL_SIE (1 << 2) // Status change interrupt enable
#define CANCNTL_EIE (1 << 3) // Error interrupt enable
#define CANCNTL_DAR (1 << 5) // Disable automatic retransmission
#define CANCNTL_CCE (1 << 6) // Configuration change enable
#define CANCNTL_TEST (1 << 7) // Test mode enable
#define CANTEST_BASIC (1 << 2) // Basic mode
#define CANTEST_SILENT (1 << 3) // Silent mode
#define CANTEST_LBACK (1 << 4) // Loop back mode
#define CANTEST_TX_MASK 0x0060 // Control of CAN_TXD pins
#define CANTEST_TX_SHIFT 5
#define CANTEST_RX (1 << 7) // Monitors the actual value of the CAN_RXD pin.
static uint32_t can_irq_id = 0;
static can_irq_handler irq_handler;
#define IRQ_ENABLE_TX (1 << 0)
#define IRQ_ENABLE_RX (1 << 1)
#define IRQ_ENABLE_EW (1 << 2)
#define IRQ_ENABLE_EP (1 << 3)
#define IRQ_ENABLE_BE (1 << 4)
#define IRQ_ENABLE_STATUS (IRQ_ENABLE_TX | IRQ_ENABLE_RX)
#define IRQ_ENABLE_ERROR (IRQ_ENABLE_EW | IRQ_ENABLE_EP | IRQ_ENABLE_BE)
#define IRQ_ENABLE_ANY (IRQ_ENABLE_STATUS | IRQ_ENABLE_ERROR)
static uint32_t enabled_irqs = 0;
static inline void can_disable(can_t *obj) {
LPC_C_CAN0->CANCNTL |= 0x1;
}
static inline void can_enable(can_t *obj) {
if (LPC_C_CAN0->CANCNTL & 0x1) {
LPC_C_CAN0->CANCNTL &= ~(0x1);
}
}
int can_mode(can_t *obj, CanMode mode) {
int success = 0;
switch (mode) {
case MODE_RESET:
LPC_C_CAN0->CANCNTL &=~CANCNTL_TEST;
can_disable(obj);
success = 1;
break;
case MODE_NORMAL:
LPC_C_CAN0->CANCNTL &=~CANCNTL_TEST;
can_enable(obj);
success = 1;
break;
case MODE_SILENT:
LPC_C_CAN0->CANCNTL |= CANCNTL_TEST;
LPC_C_CAN0->CANTEST |= CANTEST_SILENT;
LPC_C_CAN0->CANTEST &=~ CANTEST_LBACK;
success = 1;
break;
case MODE_TEST_LOCAL:
LPC_C_CAN0->CANCNTL |= CANCNTL_TEST;
LPC_C_CAN0->CANTEST &=~CANTEST_SILENT;
LPC_C_CAN0->CANTEST |= CANTEST_LBACK;
success = 1;
break;
case MODE_TEST_SILENT:
LPC_C_CAN0->CANCNTL |= CANCNTL_TEST;
LPC_C_CAN0->CANTEST |= (CANTEST_LBACK | CANTEST_SILENT);
success = 1;
break;
case MODE_TEST_GLOBAL:
default:
success = 0;
break;
}
return success;
}
int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) {
uint16_t i;
// Find first free message object
if (handle == 0) {
uint32_t msgval = LPC_C_CAN0->CANMSGV1 | (LPC_C_CAN0->CANMSGV2 << 16);
// Find first free messagebox
for (i = 0; i < 32; i++) {
if ((msgval & (1 << i)) == 0) {
handle = i+1;
break;
}
}
}
if (handle > 0 && handle <= 32) {
if (format == CANExtended) {
// Mark message valid, Direction = TX, Extended Frame, Set Identifier and mask everything
LPC_C_CAN0->CANIF1_ARB1 = (id & 0xFFFF);
LPC_C_CAN0->CANIF1_ARB2 = CANIFn_ARB2_MSGVAL | CANIFn_ARB2_XTD | ((id >> 16) & 0x1FFF);
LPC_C_CAN0->CANIF1_MSK1 = (mask & 0xFFFF);
LPC_C_CAN0->CANIF1_MSK2 = CANIFn_MSK2_MXTD /*| CANIFn_MSK2_MDIR*/ | ((mask >> 16) & 0x1FFF);
} else {
// Mark message valid, Direction = TX, Set Identifier and mask everything
LPC_C_CAN0->CANIF1_ARB2 = CANIFn_ARB2_MSGVAL | ((id << 2) & 0x1FFF);
LPC_C_CAN0->CANIF1_MSK2 = /*CANIFn_MSK2_MDIR |*/ ((mask << 2) & 0x1FFF);
}
// Use mask, single message object and set DLC
LPC_C_CAN0->CANIF1_MCTRL = CANIFn_MCTRL_UMASK | CANIFn_MCTRL_EOB | (DLC_MAX & 0xF);
// Transfer all fields to message object
LPC_C_CAN0->CANIF1_CMDMSK_W = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_MASK | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL;
// Start Transfer to given message number
LPC_C_CAN0->CANIF1_CMDREQ = (handle & 0x3F);
// Wait until transfer to message ram complete - TODO: maybe not block??
while ( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY );
}
return handle;
}
static inline void can_irq() {
uint32_t intid = LPC_C_CAN0->CANINT & 0xFFFF;
if (intid == 0x8000) {
uint32_t status = LPC_C_CAN0->CANSTAT;
// Note that since it's impossible to tell which specific status caused
// the interrupt to fire, this just fires them all.
// In particular, EWARN is not mutually exclusive with the others and
// may fire multiple times with other status transitions, including
// transmit and receive completion (if enabled). Ignoring EWARN with a
// priority system (i.e. blocking EWARN interrupts if EPASS or BOFF is
// set) may discard some EWARN interrupts.
if (status & CANSTAT_BOFF) {
if (enabled_irqs & IRQ_ENABLE_BE) {
irq_handler(can_irq_id, IRQ_BUS);
}
}
if (status & CANSTAT_EPASS) {
if (enabled_irqs & IRQ_ENABLE_EP) {
irq_handler(can_irq_id, IRQ_PASSIVE);
}
}
if (status & CANSTAT_EWARN) {
if (enabled_irqs & IRQ_ENABLE_EW) {
irq_handler(can_irq_id, IRQ_ERROR);
}
}
if ((status & CANSTAT_RXOK) != 0) {
LPC_C_CAN0->CANSTAT &= ~CANSTAT_RXOK;
irq_handler(can_irq_id, IRQ_RX);
}
if ((status & CANSTAT_TXOK) != 0) {
LPC_C_CAN0->CANSTAT &= ~CANSTAT_TXOK;
irq_handler(can_irq_id, IRQ_TX);
}
}
}
// Register CAN object's irq handler
void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id) {
irq_handler = handler;
can_irq_id = id;
}
// Unregister CAN object's irq handler
void can_irq_free(can_t *obj) {
LPC_C_CAN0->CANCNTL &= ~(1UL << 1); // Disable Interrupts :)
can_irq_id = 0;
NVIC_DisableIRQ(C_CAN0_IRQn);
}
// Clear or set a irq
void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable) {
uint32_t mask_enable;
switch (type) {
case IRQ_RX:
mask_enable = IRQ_ENABLE_RX;
break;
case IRQ_TX:
mask_enable = IRQ_ENABLE_TX;
break;
case IRQ_BUS:
mask_enable = IRQ_ENABLE_BE;
break;
case IRQ_PASSIVE:
mask_enable = IRQ_ENABLE_EP;
break;
case IRQ_ERROR:
mask_enable = IRQ_ENABLE_EW;
break;
default:
return;
}
if (enable) {
enabled_irqs = enabled_irqs | mask_enable;
} else {
enabled_irqs = enabled_irqs & ~mask_enable;
}
// Put CAN in Reset Mode and enable interrupt
can_disable(obj);
if (!(enabled_irqs & IRQ_ENABLE_ANY)) {
LPC_C_CAN0->CANCNTL &= ~(1UL << 1 | 1UL << 2 | 1UL << 3);
} else {
LPC_C_CAN0->CANCNTL |= 1UL << 1;
// Use status interrupts instead of message interrupts to avoid
// stomping over potential filter configurations.
if (enabled_irqs & IRQ_ENABLE_STATUS) {
LPC_C_CAN0->CANCNTL |= 1UL << 2;
} else {
LPC_C_CAN0->CANCNTL &= ~(1UL << 2);
}
if (enabled_irqs & IRQ_ENABLE_ERROR) {
LPC_C_CAN0->CANCNTL |= 1UL << 3;
} else {
LPC_C_CAN0->CANCNTL &= ~(1UL << 3);
}
}
// Take it out of reset...
can_enable(obj);
// Enable NVIC if at least 1 interrupt is active
NVIC_SetVector(C_CAN0_IRQn, (uint32_t) &can_irq);
NVIC_EnableIRQ(C_CAN0_IRQn);
}
// This table has the sampling points as close to 75% as possible. The first
// value is TSEG1, the second TSEG2.
static const int timing_pts[23][2] = {
{0x0, 0x0}, // 2, 50%
{0x1, 0x0}, // 3, 67%
{0x2, 0x0}, // 4, 75%
{0x3, 0x0}, // 5, 80%
{0x3, 0x1}, // 6, 67%
{0x4, 0x1}, // 7, 71%
{0x5, 0x1}, // 8, 75%
{0x6, 0x1}, // 9, 78%
{0x6, 0x2}, // 10, 70%
{0x7, 0x2}, // 11, 73%
{0x8, 0x2}, // 12, 75%
{0x9, 0x2}, // 13, 77%
{0x9, 0x3}, // 14, 71%
{0xA, 0x3}, // 15, 73%
{0xB, 0x3}, // 16, 75%
{0xC, 0x3}, // 17, 76%
{0xD, 0x3}, // 18, 78%
{0xD, 0x4}, // 19, 74%
{0xE, 0x4}, // 20, 75%
{0xF, 0x4}, // 21, 76%
{0xF, 0x5}, // 22, 73%
{0xF, 0x6}, // 23, 70%
{0xF, 0x7}, // 24, 67%
};
static unsigned int can_speed(unsigned int sclk, unsigned int cclk, unsigned char psjw) {
uint32_t btr;
uint32_t clkdiv = 1;
uint16_t brp = 0;
uint32_t calcbit;
uint32_t bitwidth;
int hit = 0;
int bits = 0;
bitwidth = sclk / cclk;
brp = bitwidth / 0x18;
while ((!hit) && (brp < bitwidth / 4)) {
brp++;
for (bits = 22; bits > 0; bits--) {
calcbit = (bits + 3) * (brp + 1);
if (calcbit == bitwidth) {
hit = 1;
break;
}
}
}
clkdiv = clkdiv - 1;
if (hit) {
btr = (timing_pts[bits][1] & 0x7) << 12
| (timing_pts[bits][0] & 0xf) << 8
| (psjw & 0x3) << 6
| (brp & 0x3F);
btr = btr | (clkdiv << 16);
} else {
btr = 0;
}
return btr;
}
int can_config_rxmsgobj(can_t *obj) {
uint16_t i = 0;
// Make sure the interface is available
while ( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY );
// Mark message valid, Direction = RX, Don't care about anything else
LPC_C_CAN0->CANIF1_ARB1 = 0;
LPC_C_CAN0->CANIF1_ARB2 = 0;
LPC_C_CAN0->CANIF1_MCTRL = 0;
for ( i = 1; i <= RX_MSG_OBJ_COUNT; i++ ) {
// Transfer arb and control fields to message object
LPC_C_CAN0->CANIF1_CMDMSK_W = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL;
// Start Transfer to given message number
LPC_C_CAN0->CANIF1_CMDREQ = (i & 0x3F);
// Wait until transfer to message ram complete - TODO: maybe not block??
while ( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY );
}
// Accept all messages
can_filter(obj, 0, 0, CANStandard, 1);
return 1;
}
int can_config_txmsgobj(can_t *obj) {
uint16_t i = 0;
// Make sure the interface is available
while ( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY );
// Mark message valid, Direction = TX, Don't care about anything else
LPC_C_CAN0->CANIF1_ARB1 = 0;
LPC_C_CAN0->CANIF1_ARB2 = CANIFn_ARB2_DIR;
LPC_C_CAN0->CANIF1_MCTRL = 0;
for ( i = RX_MSG_OBJ_COUNT + 1; i <= (TX_MSG_OBJ_COUNT + RX_MSG_OBJ_COUNT); i++ )
{
// Transfer arb and control fields to message object
LPC_C_CAN0->CANIF1_CMDMSK_W = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL;
// In a union with CANIF1_CMDMSK_R
// Start Transfer to given message number
LPC_C_CAN0->CANIF1_CMDREQ = i & 0x3F;
// Wait until transfer to message ram complete - TODO: maybe not block??
while( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY );
}
return 1;
}
void can_init_freq(can_t *obj, PinName rd, PinName td, int hz) {
// Enable power and clock
LPC_SYSCON->SYSAHBCLKCTRL1 |= (1UL << 7);
LPC_SYSCON->PRESETCTRL1 |= (1UL << 7);
LPC_SYSCON->PRESETCTRL1 &= ~(1UL << 7);
// Enable Initialization mode
if (!(LPC_C_CAN0->CANCNTL & (1UL << 0))) {
LPC_C_CAN0->CANCNTL |= (1UL << 0);
}
LPC_SWM->PINASSIGN[6] &= ~(0x00FFFF00L);
LPC_SWM->PINASSIGN[6] |= (rd << 16) | (td << 8);
can_frequency(obj, hz);
// Resume operation
LPC_C_CAN0->CANCNTL &= ~(1UL << 0);
while ( LPC_C_CAN0->CANCNTL & (1UL << 0) );
// Initialize RX message object
can_config_rxmsgobj(obj);
// Initialize TX message object
can_config_txmsgobj(obj);
}
void can_init(can_t *obj, PinName rd, PinName td) {
can_init_freq(obj, rd, td, 100000);
}
void can_free(can_t *obj) {
LPC_SYSCON->SYSAHBCLKCTRL1 &= ~(1UL << 7);
LPC_SYSCON->PRESETCTRL1 &= ~(1UL << 7);
}
int can_frequency(can_t *obj, int f) {
int btr = can_speed(SystemCoreClock, (unsigned int)f, 1);
int clkdiv = (btr >> 16) & 0x0F;
btr = btr & 0xFFFF;
if (btr > 0) {
// Set the bit clock
LPC_C_CAN0->CANCNTL |= (1UL << 6 | 1UL << 0); // set CCE and INIT
LPC_C_CAN0->CANCLKDIV = clkdiv;
LPC_C_CAN0->CANBT = btr;
LPC_C_CAN0->CANBRPE = 0x0000;
LPC_C_CAN0->CANCNTL &= ~(1UL << 6 | 1UL << 0); // clear CCE and INIT
return 1;
}
return 0;
}
int can_write(can_t *obj, CAN_Message msg, int cc) {
// Make sure controller is enabled
can_enable(obj);
// Find first message object that isn't pending to send
uint16_t msgnum = 0;
uint32_t txPending = (LPC_C_CAN0->CANTXREQ1 & 0xFF) | (LPC_C_CAN0->CANTXREQ2 << 16);
uint16_t i = 0;
for(i = RX_MSG_OBJ_COUNT; i < 32; i++) {
if ((txPending & (1 << i)) == 0) {
msgnum = i+1;
break;
}
}
// If no messageboxes are available, stop and return failure
if (msgnum == 0) {
return 0;
}
// Make sure the interface is available
while ( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY );
// Set the direction bit based on the message type
uint32_t direction = 0;
if (msg.type == CANData) {
direction = CANIFn_ARB2_DIR;
}
if (msg.format == CANExtended) {
// Mark message valid, Extended Frame, Set Identifier and mask everything
LPC_C_CAN0->CANIF1_ARB1 = (msg.id & 0xFFFF);
LPC_C_CAN0->CANIF1_ARB2 = CANIFn_ARB2_MSGVAL | CANIFn_ARB2_XTD | direction | ((msg.id >> 16) & 0x1FFFF);
LPC_C_CAN0->CANIF1_MSK1 = (ID_EXT_MASK & 0xFFFF);
LPC_C_CAN0->CANIF1_MSK2 = CANIFn_MSK2_MXTD | CANIFn_MSK2_MDIR | ((ID_EXT_MASK >> 16) & 0x1FFF);
} else {
// Mark message valid, Set Identifier and mask everything
LPC_C_CAN0->CANIF1_ARB2 = CANIFn_ARB2_MSGVAL | direction | ((msg.id << 2) & 0x1FFF);
LPC_C_CAN0->CANIF1_MSK2 = CANIFn_MSK2_MDIR | ((ID_STD_MASK << 2) & 0x1FFF);
}
// Use mask, request transmission, single message object and set DLC
LPC_C_CAN0->CANIF1_MCTRL = CANIFn_MCTRL_UMASK | CANIFn_MCTRL_TXRQST | CANIFn_MCTRL_EOB | (msg.len & 0xF);
LPC_C_CAN0->CANIF1_DA1 = ((msg.data[1] & 0xFF) << 8) | (msg.data[0] & 0xFF);
LPC_C_CAN0->CANIF1_DA2 = ((msg.data[3] & 0xFF) << 8) | (msg.data[2] & 0xFF);
LPC_C_CAN0->CANIF1_DB1 = ((msg.data[5] & 0xFF) << 8) | (msg.data[4] & 0xFF);
LPC_C_CAN0->CANIF1_DB2 = ((msg.data[7] & 0xFF) << 8) | (msg.data[6] & 0xFF);
// Transfer all fields to message object
LPC_C_CAN0->CANIF1_CMDMSK_W = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_MASK | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL | CANIFn_CMDMSK_TXRQST | CANIFn_CMDMSK_DATA_A | CANIFn_CMDMSK_DATA_B;
// Start Transfer to given message number
LPC_C_CAN0->CANIF1_CMDREQ = (msgnum & 0x3F);
// Wait until transfer to message ram complete - TODO: maybe not block??
while ( LPC_C_CAN0->CANIF1_CMDREQ & CANIFn_CMDREQ_BUSY);
// Wait until TXOK is set, then clear it - TODO: maybe not block
//while ( !(LPC_C_CAN0->STAT & CANSTAT_TXOK) );
LPC_C_CAN0->CANSTAT &= ~(1UL << 3);
return 1;
}
int can_read(can_t *obj, CAN_Message *msg, int handle) {
uint16_t i;
// Make sure controller is enabled
can_enable(obj);
// Find first message object with new data
if (handle == 0) {
uint32_t newdata = LPC_C_CAN0->CANND1 | (LPC_C_CAN0->CANND2 << 16);
// Find first free messagebox
for (i = 0; i < RX_MSG_OBJ_COUNT; i++) {
if (newdata & (1 << i)) {
handle = i+1;
break;
}
}
}
if (handle > 0 && handle <= 32) {
// Wait until message interface is free
while ( LPC_C_CAN0->CANIF2_CMDREQ & CANIFn_CMDREQ_BUSY );
// Transfer all fields to message object
LPC_C_CAN0->CANIF2_CMDMSK_W = CANIFn_CMDMSK_RD | CANIFn_CMDMSK_MASK | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL | CANIFn_CMDMSK_CLRINTPND | CANIFn_CMDMSK_TXRQST | CANIFn_CMDMSK_DATA_A | CANIFn_CMDMSK_DATA_B;
// Start Transfer from given message number
LPC_C_CAN0->CANIF2_CMDREQ = (handle & 0x3F);
// Wait until transfer to message ram complete
while ( LPC_C_CAN0->CANIF2_CMDREQ & CANIFn_CMDREQ_BUSY );
if (LPC_C_CAN0->CANIF2_ARB2 & CANIFn_ARB2_XTD) {
msg->format = CANExtended;
msg->id = (LPC_C_CAN0->CANIF2_ARB1 & 0x1FFF) << 16;
msg->id |= (LPC_C_CAN0->CANIF2_ARB2 & 0x1FFF);
} else {
msg->format = CANStandard;
msg->id = (LPC_C_CAN0->CANIF2_ARB2 & 0x1FFF) >> 2;
}
if (LPC_C_CAN0->CANIF2_ARB2 & CANIFn_ARB2_DIR) {
msg->type = CANRemote;
}
else {
msg->type = CANData;
}
msg->len = (LPC_C_CAN0->CANIF2_MCTRL & 0xF); // TODO: If > 8, len = 8
msg->data[0] = ((LPC_C_CAN0->CANIF2_DA1 >> 0) & 0xFF);
msg->data[1] = ((LPC_C_CAN0->CANIF2_DA1 >> 8) & 0xFF);
msg->data[2] = ((LPC_C_CAN0->CANIF2_DA2 >> 0) & 0xFF);
msg->data[3] = ((LPC_C_CAN0->CANIF2_DA2 >> 8) & 0xFF);
msg->data[4] = ((LPC_C_CAN0->CANIF2_DB1 >> 0) & 0xFF);
msg->data[5] = ((LPC_C_CAN0->CANIF2_DB1 >> 8) & 0xFF);
msg->data[6] = ((LPC_C_CAN0->CANIF2_DB2 >> 0) & 0xFF);
msg->data[7] = ((LPC_C_CAN0->CANIF2_DB2 >> 8) & 0xFF);
LPC_C_CAN0->CANSTAT &= ~(1UL << 4);
return 1;
}
return 0;
}
void can_reset(can_t *obj) {
LPC_SYSCON->PRESETCTRL1 &= ~(1UL << 7);
LPC_C_CAN0->CANSTAT = 0;
can_config_rxmsgobj(obj);
can_config_txmsgobj(obj);
can_enable(obj); // clears a bus-off condition if necessary
}
unsigned char can_rderror(can_t *obj) {
return ((LPC_C_CAN0->CANEC >> 8) & 0x7F);
}
unsigned char can_tderror(can_t *obj) {
return (LPC_C_CAN0->CANEC & 0xFF);
}
void can_monitor(can_t *obj, int silent) {
if (silent) {
LPC_C_CAN0->CANCNTL |= (1UL << 7);
LPC_C_CAN0->CANTEST |= (1UL << 3);
} else {
LPC_C_CAN0->CANCNTL &= ~(1UL << 7);
LPC_C_CAN0->CANTEST &= ~(1UL << 3);
}
if (!(LPC_C_CAN0->CANCNTL & (1UL << 0))) {
LPC_C_CAN0->CANCNTL |= (1UL << 0);
}
}