mirror of https://github.com/ARMmbed/mbed-os.git
841 lines
28 KiB
C++
841 lines
28 KiB
C++
/* mbed Microcontroller Library
|
|
* Copyright (c) 2018 ARM Limited
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#ifndef MBED_CRC_API_H
|
|
#define MBED_CRC_API_H
|
|
|
|
#include "cmsis.h"
|
|
#include "hal/crc_api.h"
|
|
#ifdef DEVICE_CRC
|
|
#include "device.h"
|
|
#endif
|
|
#include "platform/mbed_assert.h"
|
|
|
|
#ifdef __cplusplus
|
|
|
|
#include "platform/SingletonPtr.h"
|
|
#include "platform/PlatformMutex.h"
|
|
|
|
#include <type_traits>
|
|
|
|
namespace mbed {
|
|
/** \addtogroup drivers-public-api */
|
|
/** @{*/
|
|
/**
|
|
* \defgroup drivers_MbedCRC MbedCRC class
|
|
* @{
|
|
*/
|
|
|
|
extern SingletonPtr<PlatformMutex> mbed_crc_mutex;
|
|
|
|
/** CRC mode selection
|
|
*/
|
|
enum class CrcMode {
|
|
HARDWARE, /// Use hardware (if available), else table-based computation
|
|
TABLE, /// Use table-based computation (if table available), else bitwise
|
|
BITWISE /// Always use bitwise manual computation
|
|
};
|
|
|
|
#ifndef DOXYGEN_ONLY
|
|
namespace impl {
|
|
template<uint32_t polynomial, uint8_t width, CrcMode mode>
|
|
class MbedCRC;
|
|
|
|
constexpr bool have_crc_table(uint32_t polynomial, uint8_t width)
|
|
{
|
|
#if MBED_CRC_TABLE_SIZE > 0
|
|
return (polynomial == POLY_32BIT_ANSI && width == 32) ||
|
|
(polynomial == POLY_16BIT_IBM && width == 16) ||
|
|
(polynomial == POLY_16BIT_CCITT && width == 16) ||
|
|
(polynomial == POLY_8BIT_CCITT && width == 8) ||
|
|
(polynomial == POLY_7BIT_SD && width == 7);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
constexpr CrcMode choose_crc_mode(uint32_t polynomial, uint8_t width, CrcMode mode_limit)
|
|
{
|
|
return
|
|
#if DEVICE_CRC
|
|
mode_limit == CrcMode::HARDWARE && HAL_CRC_IS_SUPPORTED(polynomial, width) ? CrcMode::HARDWARE :
|
|
#endif
|
|
mode_limit <= CrcMode::TABLE && have_crc_table(polynomial, width) ? CrcMode::TABLE :
|
|
CrcMode::BITWISE;
|
|
}
|
|
#endif // DOXYGEN_ONLY
|
|
|
|
} // namespace impl
|
|
|
|
/** CRC object provides CRC generation through hardware or software
|
|
*
|
|
* CRC sums can be generated using three different methods: hardware, software ROM tables
|
|
* and bitwise computation. The mode used is normally selected automatically based on required
|
|
* polynomial and hardware capabilities. Any polynomial in standard form (`x^3 + x + 1`)
|
|
* can be used for computation, but custom ones can affect the performance.
|
|
*
|
|
* First choice is the hardware mode. The supported polynomials are hardware specific, and
|
|
* you need to consult your MCU manual to discover them. Next, ROM polynomial tables
|
|
* are tried (you can find list of supported polynomials here ::crc_polynomial). If the selected
|
|
* configuration is supported, it will accelerate the software computations. If ROM tables
|
|
* are not available for the selected polynomial, then CRC is computed at run time bit by bit
|
|
* for all data input.
|
|
*
|
|
* If desired, the mode can be manually limited for a given instance by specifying the mode_limit
|
|
* template parameter. This might be appropriate to ensure a table is not pulled in for a
|
|
* non-speed-critical CRC, or to avoid the hardware set-up overhead if you know you will be
|
|
* calling `compute` with very small data sizes.
|
|
*
|
|
* @note Synchronization level: Thread safe
|
|
*
|
|
* @tparam polynomial CRC polynomial value in hex
|
|
* @tparam width CRC polynomial width
|
|
* @tparam mode_limit Maximum amount of acceleration to use
|
|
*
|
|
* Example: Compute CRC data
|
|
* @code
|
|
*
|
|
* #include "mbed.h"
|
|
*
|
|
* int main() {
|
|
* MbedCRC<POLY_32BIT_ANSI, 32> ct;
|
|
*
|
|
* char test[] = "123456789";
|
|
* uint32_t crc = 0;
|
|
*
|
|
* printf("\nPolynomial = 0x%lx Width = %d \n", ct.get_polynomial(), ct.get_width());
|
|
*
|
|
* ct.compute((void *)test, strlen((const char*)test), &crc);
|
|
*
|
|
* printf("The CRC of data \"123456789\" is : 0x%lx\n", crc);
|
|
* return 0;
|
|
* }
|
|
* @endcode
|
|
* Example: Compute CRC with data available in parts
|
|
* @code
|
|
*
|
|
* #include "mbed.h"
|
|
* int main() {
|
|
* MbedCRC<POLY_32BIT_ANSI, 32> ct;
|
|
*
|
|
* char test[] = "123456789";
|
|
* uint32_t crc = 0;
|
|
*
|
|
* printf("\nPolynomial = 0x%lx Width = %d \n", ct.get_polynomial(), ct.get_width());
|
|
* ct.compute_partial_start(&crc);
|
|
* ct.compute_partial((void *)&test, 4, &crc);
|
|
* ct.compute_partial((void *)&test[4], 5, &crc);
|
|
* ct.compute_partial_stop(&crc);
|
|
* printf("The CRC of data \"123456789\" is : 0x%lx\n", crc);
|
|
* return 0;
|
|
* }
|
|
* @endcode
|
|
*/
|
|
template <uint32_t polynomial = POLY_32BIT_ANSI, uint8_t width = 32, CrcMode mode_limit = CrcMode::HARDWARE>
|
|
class MbedCRC {
|
|
impl::MbedCRC<polynomial, width, impl::choose_crc_mode(polynomial, width, mode_limit)> crc_impl;
|
|
|
|
public:
|
|
/* Backwards compatibility */
|
|
enum CrcMode {
|
|
#if DEVICE_CRC
|
|
HARDWARE = int(::mbed::CrcMode::HARDWARE),
|
|
#endif
|
|
TABLE = int(::mbed::CrcMode::TABLE),
|
|
BITWISE = int(::mbed::CrcMode::BITWISE)
|
|
};
|
|
|
|
typedef size_t crc_data_size_t;
|
|
|
|
/** Lifetime of CRC object
|
|
*
|
|
* @param initial_xor Initial value/seed to Xor
|
|
* @param final_xor Final Xor value
|
|
* @param reflect_data
|
|
* @param reflect_remainder
|
|
* @note Default constructor without any arguments is valid only for supported CRC polynomials. :: crc_polynomial_t
|
|
* MbedCRC <POLY_7BIT_SD, 7> ct; --- Valid POLY_7BIT_SD
|
|
* MbedCRC <0x1021, 16> ct; --- Valid POLY_16BIT_CCITT
|
|
* MbedCRC <POLY_16BIT_CCITT, 32> ct; --- Invalid, compilation error
|
|
* MbedCRC <POLY_16BIT_CCITT, 32> ct (i,f,rd,rr) Constructor can be used for not supported polynomials
|
|
* MbedCRC<POLY_16BIT_CCITT, 16> sd(0, 0, false, false); Constructor can also be used for supported
|
|
* polynomials with different initial/final/reflect values
|
|
*
|
|
*/
|
|
MbedCRC(uint32_t initial_xor, uint32_t final_xor, bool reflect_data, bool reflect_remainder) :
|
|
crc_impl(initial_xor, final_xor, reflect_data, reflect_remainder)
|
|
{
|
|
}
|
|
|
|
MbedCRC();
|
|
|
|
/** Compute CRC for the data input
|
|
* Compute CRC performs the initialization, computation and collection of
|
|
* final CRC.
|
|
*
|
|
* @param buffer Data bytes
|
|
* @param size Size of data
|
|
* @param crc CRC is the output value
|
|
* @return 0 on success, negative error code on failure
|
|
*/
|
|
int32_t compute(const void *buffer, crc_data_size_t size, uint32_t *crc)
|
|
{
|
|
return crc_impl.compute(buffer, size, crc);
|
|
}
|
|
|
|
/** Compute partial CRC for the data input.
|
|
*
|
|
* CRC data if not available fully, CRC can be computed in parts with available data.
|
|
*
|
|
* In case of hardware, intermediate values and states are saved by hardware. Mutex
|
|
* locking is used to serialize access to hardware CRC.
|
|
*
|
|
* In case of software CRC, previous CRC output should be passed as argument to the
|
|
* current compute_partial call. Please note the intermediate CRC value is maintained by
|
|
* application and not the driver.
|
|
*
|
|
* @pre: Call `compute_partial_start` to start the partial CRC calculation.
|
|
* @post: Call `compute_partial_stop` to get the final CRC value.
|
|
*
|
|
* @param buffer Data bytes
|
|
* @param size Size of data
|
|
* @param crc CRC value is intermediate CRC value filled by API.
|
|
* @return 0 on success or a negative error code on failure
|
|
* @note: CRC as output in compute_partial is not final CRC value, call `compute_partial_stop`
|
|
* to get final correct CRC value.
|
|
*/
|
|
int32_t compute_partial(const void *buffer, crc_data_size_t size, uint32_t *crc)
|
|
{
|
|
return crc_impl.compute_partial(buffer, size, crc);
|
|
}
|
|
|
|
/** Compute partial start, indicate start of partial computation.
|
|
*
|
|
* This API should be called before performing any partial computation
|
|
* with compute_partial API.
|
|
*
|
|
* @param crc Initial CRC value set by the API
|
|
* @return 0 on success or a negative in case of failure
|
|
* @note: CRC is an out parameter and must be reused with compute_partial
|
|
* and `compute_partial_stop` without any modifications in application.
|
|
*/
|
|
int32_t compute_partial_start(uint32_t *crc)
|
|
{
|
|
return crc_impl.compute_partial_start(crc);
|
|
}
|
|
|
|
/** Get the final CRC value of partial computation.
|
|
*
|
|
* CRC value available in partial computation is not correct CRC, as some
|
|
* algorithms require remainder to be reflected and final value to be XORed
|
|
* This API is used to perform final computation to get correct CRC value.
|
|
*
|
|
* @param crc CRC result
|
|
* @return 0 on success or a negative in case of failure.
|
|
*/
|
|
int32_t compute_partial_stop(uint32_t *crc)
|
|
{
|
|
return crc_impl.compute_partial_stop(crc);
|
|
}
|
|
|
|
/** Get the current CRC polynomial.
|
|
*
|
|
* @return Polynomial value
|
|
*/
|
|
static constexpr uint32_t get_polynomial()
|
|
{
|
|
return polynomial;
|
|
}
|
|
|
|
/** Get the current CRC width
|
|
*
|
|
* @return CRC width
|
|
*/
|
|
static constexpr uint8_t get_width()
|
|
{
|
|
return width;
|
|
}
|
|
};
|
|
|
|
#if !defined(DOXYGEN_ONLY)
|
|
/* Internal implementation - basically same as public, but actual mode locked in */
|
|
namespace impl {
|
|
|
|
template <uint32_t polynomial, uint8_t width, CrcMode mode>
|
|
class MbedCRC {
|
|
public:
|
|
typedef size_t crc_data_size_t;
|
|
|
|
MbedCRC(uint32_t initial_xor, uint32_t final_xor, bool reflect_data, bool reflect_remainder) :
|
|
_initial_value(adjust_initial_value(initial_xor, reflect_data)),
|
|
_final_xor(final_xor),
|
|
_reflect_data(reflect_data),
|
|
_reflect_remainder(reflect_remainder)
|
|
{
|
|
static_assert(width <= 32, "Max 32-bit CRC supported");
|
|
}
|
|
|
|
/** Compute CRC for the data input
|
|
* Compute CRC performs the initialization, computation and collection of
|
|
* final CRC.
|
|
*
|
|
* @param buffer Data bytes
|
|
* @param size Size of data
|
|
* @param crc CRC is the output value
|
|
* @return 0 on success, negative error code on failure
|
|
*/
|
|
int32_t compute(const void *buffer, crc_data_size_t size, uint32_t *crc)
|
|
{
|
|
int32_t status;
|
|
|
|
status = compute_partial_start(crc);
|
|
if (0 != status) {
|
|
return status;
|
|
}
|
|
|
|
status = compute_partial(buffer, size, crc);
|
|
if (0 != status) {
|
|
return status;
|
|
}
|
|
|
|
status = compute_partial_stop(crc);
|
|
return status;
|
|
}
|
|
|
|
/** Compute partial CRC for the data input.
|
|
*
|
|
* CRC data if not available fully, CRC can be computed in parts with available data.
|
|
*
|
|
* In case of hardware, intermediate values and states are saved by hardware. Mutex
|
|
* locking is used to serialize access to hardware CRC.
|
|
*
|
|
* In case of software CRC, previous CRC output should be passed as argument to the
|
|
* current compute_partial call. Please note the intermediate CRC value is maintained by
|
|
* application and not the driver.
|
|
*
|
|
* @pre: Call `compute_partial_start` to start the partial CRC calculation.
|
|
* @post: Call `compute_partial_stop` to get the final CRC value.
|
|
*
|
|
* @param buffer Data bytes
|
|
* @param size Size of data
|
|
* @param crc CRC value is intermediate CRC value filled by API.
|
|
* @return 0 on success or a negative error code on failure
|
|
* @note: CRC as output in compute_partial is not final CRC value, call `compute_partial_stop`
|
|
* to get final correct CRC value.
|
|
*/
|
|
int32_t compute_partial(const void *buffer, crc_data_size_t size, uint32_t *crc)
|
|
{
|
|
const uint8_t *data = static_cast<const uint8_t *>(buffer);
|
|
return do_compute_partial(data, size, crc);
|
|
}
|
|
|
|
/** Compute partial start, indicate start of partial computation.
|
|
*
|
|
* This API should be called before performing any partial computation
|
|
* with compute_partial API.
|
|
*
|
|
* @param crc Initial CRC value set by the API
|
|
* @return 0 on success or a negative in case of failure
|
|
* @note: CRC is an out parameter and must be reused with compute_partial
|
|
* and `compute_partial_stop` without any modifications in application.
|
|
*/
|
|
int32_t compute_partial_start(uint32_t *crc)
|
|
{
|
|
#if DEVICE_CRC
|
|
if (mode == CrcMode::HARDWARE) {
|
|
lock();
|
|
crc_mbed_config_t config;
|
|
config.polynomial = polynomial;
|
|
config.width = width;
|
|
config.initial_xor = _initial_value;
|
|
config.final_xor = _final_xor;
|
|
config.reflect_in = _reflect_data;
|
|
config.reflect_out = _reflect_remainder;
|
|
|
|
hal_crc_compute_partial_start(&config);
|
|
}
|
|
#endif
|
|
|
|
*crc = _initial_value;
|
|
return 0;
|
|
}
|
|
|
|
/** Get the final CRC value of partial computation.
|
|
*
|
|
* CRC value available in partial computation is not correct CRC, as some
|
|
* algorithms require remainder to be reflected and final value to be XORed
|
|
* This API is used to perform final computation to get correct CRC value.
|
|
*
|
|
* @param crc CRC result
|
|
* @return 0 on success or a negative in case of failure.
|
|
*/
|
|
int32_t compute_partial_stop(uint32_t *crc)
|
|
{
|
|
#if DEVICE_CRC
|
|
if (mode == CrcMode::HARDWARE) {
|
|
*crc = hal_crc_get_result();
|
|
unlock();
|
|
return 0;
|
|
}
|
|
#endif
|
|
uint_fast32_t p_crc = *crc;
|
|
if (mode == CrcMode::BITWISE) {
|
|
if (_reflect_data) {
|
|
/* CRC has MSB in bottom bit of register */
|
|
if (!_reflect_remainder) {
|
|
p_crc = reflect_crc(p_crc);
|
|
}
|
|
} else {
|
|
/* CRC has MSB in top bit of register */
|
|
p_crc = _reflect_remainder ? reflect_register(p_crc) : shift_right(p_crc);
|
|
}
|
|
} else { // TABLE
|
|
/* CRC has MSB in bottom bit of register */
|
|
if (!_reflect_remainder) {
|
|
p_crc = reflect_crc(p_crc);
|
|
}
|
|
}
|
|
|
|
p_crc ^= _final_xor;
|
|
p_crc &= get_crc_mask();
|
|
*crc = p_crc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
private:
|
|
/** Get the current CRC polynomial, reflected at bottom of register.
|
|
*
|
|
* @return Reflected polynomial value (so x^width term would be at bit -1)
|
|
*/
|
|
static constexpr uint32_t get_reflected_polynomial()
|
|
{
|
|
/* Doing this hard way to keep it C++11 constexpr and hence ARM C 5 compatible */
|
|
return shift_right(((polynomial & 0x00000001) << 31) |
|
|
((polynomial & 0x00000002) << 29) |
|
|
((polynomial & 0x00000004) << 27) |
|
|
((polynomial & 0x00000008) << 25) |
|
|
((polynomial & 0x00000010) << 23) |
|
|
((polynomial & 0x00000020) << 21) |
|
|
((polynomial & 0x00000040) << 19) |
|
|
((polynomial & 0x00000080) << 17) |
|
|
((polynomial & 0x00000100) << 15) |
|
|
((polynomial & 0x00000200) << 13) |
|
|
((polynomial & 0x00000400) << 11) |
|
|
((polynomial & 0x00000800) << 9) |
|
|
((polynomial & 0x00001000) << 7) |
|
|
((polynomial & 0x00002000) << 5) |
|
|
((polynomial & 0x00004000) << 3) |
|
|
((polynomial & 0x00008000) << 1) |
|
|
((polynomial & 0x00010000) >> 1) |
|
|
((polynomial & 0x00020000) >> 3) |
|
|
((polynomial & 0x00040000) >> 5) |
|
|
((polynomial & 0x00080000) >> 7) |
|
|
((polynomial & 0x00100000) >> 9) |
|
|
((polynomial & 0x00200000) >> 11) |
|
|
((polynomial & 0x00400000) >> 13) |
|
|
((polynomial & 0x00800000) >> 15) |
|
|
((polynomial & 0x01000000) >> 17) |
|
|
((polynomial & 0x02000000) >> 19) |
|
|
((polynomial & 0x04000000) >> 21) |
|
|
((polynomial & 0x08000000) >> 23) |
|
|
((polynomial & 0x10000000) >> 25) |
|
|
((polynomial & 0x20000000) >> 27) |
|
|
((polynomial & 0x40000000) >> 29) |
|
|
((polynomial & 0x80000000) >> 31));
|
|
}
|
|
|
|
/** Get the current CRC polynomial, at top of register.
|
|
*
|
|
* @return Shifted polynomial value (so x^width term would be at bit 32)
|
|
*/
|
|
static constexpr uint32_t get_top_polynomial()
|
|
{
|
|
return shift_left(polynomial);
|
|
}
|
|
|
|
const uint32_t _initial_value;
|
|
const uint32_t _final_xor;
|
|
const bool _reflect_data;
|
|
const bool _reflect_remainder;
|
|
|
|
// *INDENT-OFF*
|
|
using crc_table_t = std::conditional_t<width <= 8, uint8_t,
|
|
std::conditional_t<width <= 16, uint16_t,
|
|
uint32_t
|
|
>>;
|
|
// *INDENT-ON*
|
|
|
|
/* Not [MBED_CRC_TABLE_SIZE] as that could be [0], which is illegal.
|
|
* We do need the declaration to always exist so that do_compute_partial<TABLE> is always well-formed,
|
|
* but we never actually use it MBED_CRC_TABLE_SIZE is 0.
|
|
*/
|
|
static const crc_table_t _crc_table[];
|
|
|
|
static uint32_t adjust_initial_value(uint32_t initial_xor, bool reflect_data)
|
|
{
|
|
/* As initial_xor is almost certain to be constant all zeros or ones, try to
|
|
* process that a constant, avoiding an RBIT instruction (or worse).
|
|
*/
|
|
if (initial_xor == 0 || initial_xor == (get_crc_mask() & -1U)) {
|
|
/* Only possible adjustment is shifting to top for bitwise */
|
|
if (mode == CrcMode::BITWISE && !reflect_data) {
|
|
return shift_left(initial_xor);
|
|
} else {
|
|
return initial_xor;
|
|
}
|
|
}
|
|
|
|
/* Weird or non-constant initial value - need to think about reflection */
|
|
if (mode == CrcMode::BITWISE) {
|
|
/* For bitwise calculation, CRC register is reflected if data is, to match input.
|
|
* (MSB at bottom of register). If not reflected, it is at the top of the register
|
|
* (MSB at top of register).
|
|
*/
|
|
return reflect_data ? reflect_crc(initial_xor) : shift_left(initial_xor);
|
|
} else if (mode == CrcMode::TABLE) {
|
|
/* For table calculation, CRC value is reflected, to match tables.
|
|
* (MSB at bottom of register). */
|
|
return reflect_crc(initial_xor);
|
|
} else { // CrcMode::HARDWARE
|
|
return initial_xor;
|
|
}
|
|
}
|
|
|
|
/** Acquire exclusive access to CRC hardware/software.
|
|
*/
|
|
static void lock()
|
|
{
|
|
#if DEVICE_CRC
|
|
if (mode == CrcMode::HARDWARE) {
|
|
mbed_crc_mutex->lock();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/** Release exclusive access to CRC hardware/software.
|
|
*/
|
|
static void unlock()
|
|
{
|
|
#if DEVICE_CRC
|
|
if (mode == CrcMode::HARDWARE) {
|
|
mbed_crc_mutex->unlock();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/** Get the CRC data mask.
|
|
*
|
|
* @return CRC data mask is generated based on current CRC width
|
|
*/
|
|
static constexpr uint32_t get_crc_mask()
|
|
{
|
|
return (uint32_t)((uint32_t)2U << (width - 1)) - 1U;
|
|
}
|
|
|
|
/** Data bytes may need to be reflected.
|
|
*
|
|
* @param data value to be reflected (bottom 8 bits)
|
|
* @return Reflected value (bottom 8 bits)
|
|
*/
|
|
static uint_fast32_t reflect_byte(uint_fast32_t data)
|
|
{
|
|
return __RBIT(data) >> 24;
|
|
}
|
|
|
|
/** CRC values may need to be reflected.
|
|
*
|
|
* @param CRC value to be reflected (width bits at bottom of 32-bit word)
|
|
* @return Reflected value (still at bottom of 32-bit word)
|
|
*/
|
|
static uint32_t reflect_crc(uint32_t data)
|
|
{
|
|
return __RBIT(data) >> (32 - width);
|
|
}
|
|
|
|
/** Register values may need to be reflected.
|
|
*
|
|
* @param Register value to be reflected (full 32-bit value)
|
|
* @return Reflected value (full 32-bit value)
|
|
*/
|
|
static uint32_t reflect_register(uint32_t data)
|
|
{
|
|
return __RBIT(data);
|
|
}
|
|
|
|
/** Register values may need to be shifted left.
|
|
*
|
|
* @param Register value to be shifted up (in bottom width bits)
|
|
* @return Shifted value (in top width bits)
|
|
*/
|
|
static constexpr uint32_t shift_left(uint32_t data)
|
|
{
|
|
return data << (32 - width);
|
|
}
|
|
|
|
/** Register values may need to be shifted right.
|
|
*
|
|
* @param Register value to be shifted right (in top width bits)
|
|
* @return Shifted value (in bottom width bits)
|
|
*/
|
|
static constexpr uint32_t shift_right(uint32_t data)
|
|
{
|
|
return data >> (32 - width);
|
|
}
|
|
|
|
/* Check to see if we can do assembler optimizations */
|
|
#if ((defined __GNUC__ || defined __clang__) && !defined __CC_ARM) && \
|
|
(defined __arm__ || defined __ARM_ARCH)
|
|
#if (__ARM_ARCH_7M__ == 1U) || \
|
|
(__ARM_ARCH_7EM__ == 1U) || \
|
|
(__ARM_ARCH_8M_MAIN__ == 1U) || \
|
|
(__ARM_ARCH_7A__ == 1U)
|
|
/* ARM that has Thumb-2 - same unified assembly is good for either ARM or Thumb state (LSRS; IT CS; EORCS reg/imm) */
|
|
#define MBED_CRC_ARM_THUMB2 1
|
|
#define MBED_CRC_THUMB1 0
|
|
#elif (__ARM_ARCH_6M__ == 1U) || \
|
|
(__ARM_ARCH_8M_BASE__ == 1U)
|
|
/* Thumb-1-only ARM-M device - use Thumb-1 compatible assembly with branch (LSRS; BCC; EORS reg) */
|
|
#define MBED_CRC_ARM_THUMB2 0
|
|
#define MBED_CRC_THUMB1 1
|
|
#else // __ARM_ARCH_xxx
|
|
#error "Unknown ARM architecture for CRC optimization"
|
|
#endif // __ARM_ARCH_xxx
|
|
#else // __arm__ || defined __ICC_ARM__ || defined __ARM_ARCH
|
|
/* Seem to be compiling for non-ARM, or an unsupported toolchain, so stick with C implementations */
|
|
#define MBED_CRC_ARM_THUMB2 0
|
|
#define MBED_CRC_THUMB1 0
|
|
#endif
|
|
|
|
// *INDENT-OFF*
|
|
/** Process 1 bit of non-reflected CRC
|
|
*
|
|
* Shift the p_crc register left 1 bit - if a one is shifted
|
|
* out, exclusive-or with the polynomial mask.
|
|
*
|
|
* Assembler optimizations can be applied here, to make
|
|
* use of the CPU's carry output from shifts.
|
|
*
|
|
* @param p_crc input register value
|
|
* @return updated register value
|
|
*/
|
|
static uint_fast32_t do_1_bit_normal(uint_fast32_t p_crc)
|
|
{
|
|
#if MBED_CRC_ARM_THUMB2
|
|
__asm(".syntax unified\n\t"
|
|
"LSLS" "\t%[p_crc], %[p_crc], #1\n\t"
|
|
"IT" "\tCS\n\t"
|
|
"EORCS" "\t%[p_crc], %[poly]"
|
|
: [p_crc] "+&r" (p_crc)
|
|
: [poly] "rI" (get_top_polynomial())
|
|
: "cc");
|
|
#elif MBED_CRC_THUMB1
|
|
__asm(".syntax unified\n\t"
|
|
"LSLS" "\t%[p_crc], %[p_crc], #1\n\t"
|
|
"BCC" "\t%=f\n\t"
|
|
"EORS" "\t%[p_crc], %[poly]\n"
|
|
"%=:"
|
|
: [p_crc] "+&l" (p_crc)
|
|
: [poly] "l" (get_top_polynomial())
|
|
: "cc");
|
|
#else
|
|
if (p_crc & 0x80000000) {
|
|
p_crc = (p_crc << 1) ^ get_top_polynomial();
|
|
} else {
|
|
p_crc = (p_crc << 1);
|
|
}
|
|
#endif
|
|
return p_crc;
|
|
}
|
|
|
|
/** Process 1 bit of reflected CRC
|
|
*
|
|
* Shift the p_crc register right 1 bit - if a one is shifted
|
|
* out, exclusive-or with the polynomial mask.
|
|
*
|
|
* Assembler optimizations can be applied here, to make
|
|
* use of the CPU's carry output from shifts.
|
|
*
|
|
* @param p_crc input register value
|
|
* @return updated register value
|
|
*/
|
|
static uint_fast32_t do_1_bit_reflected(uint_fast32_t p_crc)
|
|
{
|
|
#if MBED_CRC_ARM_THUMB2
|
|
__asm(".syntax unified\n\t"
|
|
"LSRS" "\t%[p_crc], %[p_crc], #1\n\t"
|
|
"IT" "\tCS\n\t"
|
|
"EORCS" "\t%[p_crc], %[poly]"
|
|
: [p_crc] "+&r" (p_crc)
|
|
: [poly] "rI" (get_reflected_polynomial())
|
|
: "cc");
|
|
#elif MBED_CRC_THUMB1
|
|
__asm(".syntax unified\n\t"
|
|
"LSRS" "\t%[p_crc], %[p_crc], #1\n\t"
|
|
"BCC" "\t%=f\n\t"
|
|
"EORS" "\t%[p_crc], %[poly]\n"
|
|
"%=:"
|
|
: [p_crc] "+&l" (p_crc)
|
|
: [poly] "l" (get_reflected_polynomial())
|
|
: "cc");
|
|
#else
|
|
if (p_crc & 1) {
|
|
p_crc = (p_crc >> 1) ^ get_reflected_polynomial();
|
|
} else {
|
|
p_crc = (p_crc >> 1);
|
|
}
|
|
#endif
|
|
return p_crc;
|
|
}
|
|
// *INDENT-ON*
|
|
|
|
/** Bitwise CRC computation.
|
|
*
|
|
* @param buffer data buffer
|
|
* @param size size of the data
|
|
* @param crc CRC value is filled in, but the value is not the final
|
|
* @return 0 on success or a negative error code on failure
|
|
*/
|
|
template<CrcMode mode_ = mode>
|
|
std::enable_if_t<mode_ == CrcMode::BITWISE, int32_t>
|
|
do_compute_partial(const uint8_t *data, crc_data_size_t size, uint32_t *crc) const
|
|
{
|
|
uint_fast32_t p_crc = *crc;
|
|
|
|
if (_reflect_data) {
|
|
/* Everything is reflected to match data - MSB of polynomial at bottom of 32-bit register */
|
|
for (crc_data_size_t byte = 0; byte < size; byte++) {
|
|
p_crc ^= data[byte];
|
|
|
|
// Perform modulo-2 division, a bit at a time
|
|
for (unsigned int bit = 8; bit > 0; --bit) {
|
|
p_crc = do_1_bit_reflected(p_crc);
|
|
}
|
|
}
|
|
} else {
|
|
/* Polynomial is shifted to put MSB of polynomial at top of 32-bit register */
|
|
for (crc_data_size_t byte = 0; byte < size; byte++) {
|
|
p_crc ^= (uint_fast32_t) data[byte] << 24;
|
|
|
|
// Perform modulo-2 division, a bit at a time
|
|
for (unsigned int bit = 8; bit > 0; --bit) {
|
|
p_crc = do_1_bit_normal(p_crc);
|
|
}
|
|
}
|
|
}
|
|
|
|
*crc = p_crc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** CRC computation using ROM tables.
|
|
*
|
|
* @param buffer data buffer
|
|
* @param size size of the data
|
|
* @param crc CRC value is filled in, but the value is not the final
|
|
* @return 0 on success or a negative error code on failure
|
|
*/
|
|
template<CrcMode mode_ = mode>
|
|
std::enable_if_t<mode_ == CrcMode::TABLE, int32_t>
|
|
do_compute_partial(const uint8_t *data, crc_data_size_t size, uint32_t *crc) const
|
|
{
|
|
uint_fast32_t p_crc = *crc;
|
|
// GCC has been observed to not hoist the load of _reflect_data out of the loop
|
|
// Note the inversion because table and CRC are reflected - data must be
|
|
bool reflect = !_reflect_data;
|
|
|
|
for (crc_data_size_t byte = 0; byte < size; byte++) {
|
|
uint_fast32_t data_byte = data[byte];
|
|
if (reflect) {
|
|
data_byte = reflect_byte(data_byte);
|
|
}
|
|
#if MBED_CRC_TABLE_SIZE == 16
|
|
p_crc = _crc_table[(data_byte ^ p_crc) & 0xF] ^ (p_crc >> 4);
|
|
data_byte >>= 4;
|
|
p_crc = _crc_table[(data_byte ^ p_crc) & 0xF] ^ (p_crc >> 4);
|
|
#else
|
|
p_crc = _crc_table[(data_byte ^ p_crc) & 0xFF] ^ (p_crc >> 8);
|
|
#endif
|
|
}
|
|
*crc = p_crc;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DEVICE_CRC
|
|
/** Hardware CRC computation.
|
|
*
|
|
* @param buffer data buffer
|
|
* @param size size of the data
|
|
* @return 0 on success or a negative error code on failure
|
|
*/
|
|
template<CrcMode mode_ = mode>
|
|
std::enable_if_t<mode_ == CrcMode::HARDWARE, int32_t>
|
|
do_compute_partial(const uint8_t *data, crc_data_size_t size, uint32_t *) const
|
|
{
|
|
hal_crc_compute_partial(data, size);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
};
|
|
|
|
} // namespace impl
|
|
|
|
#endif // !defined(DOXYGEN_ONLY)
|
|
|
|
/* Default values for different types of polynomials
|
|
*/
|
|
template<>
|
|
inline MbedCRC<POLY_32BIT_ANSI, 32>::MbedCRC() : MbedCRC(0xFFFFFFFF, 0xFFFFFFFF, true, true)
|
|
{
|
|
}
|
|
|
|
template<>
|
|
inline MbedCRC<POLY_16BIT_IBM, 16>::MbedCRC() : MbedCRC(0, 0, true, true)
|
|
{
|
|
}
|
|
|
|
template<>
|
|
inline MbedCRC<POLY_16BIT_CCITT, 16>::MbedCRC() : MbedCRC(0xFFFF, 0, false, false)
|
|
{
|
|
}
|
|
|
|
template<>
|
|
inline MbedCRC<POLY_7BIT_SD, 7>::MbedCRC(): MbedCRC(0, 0, false, false)
|
|
{
|
|
}
|
|
|
|
template<>
|
|
inline MbedCRC<POLY_8BIT_CCITT, 8>::MbedCRC(): MbedCRC(0, 0, false, false)
|
|
{
|
|
}
|
|
|
|
/** @}*/
|
|
/** @}*/
|
|
|
|
} // namespace mbed
|
|
|
|
#endif // __cplusplus
|
|
|
|
/* Internal helper for mbed_error.c crash recovery */
|
|
#ifdef __cplusplus
|
|
extern "C"
|
|
#endif
|
|
uint32_t mbed_tiny_compute_crc32(const void *data, int datalen);
|
|
|
|
#endif
|