mbed-os/targets/TARGET_NORDIC/TARGET_NRF5/i2c_api.c

689 lines
21 KiB
C

/*
* Copyright (c) 2017 Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA
* integrated circuit in a product or a software update for such product, must reproduce
* the above copyright notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific prior
* written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary or object form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "i2c_api.h"
#if DEVICE_I2C
#include "mbed_assert.h"
#include "mbed_error.h"
#include "nrf_twi.h"
#include "nrf_drv_common.h"
#include "nrf_drv_config.h"
#include "app_util_platform.h"
#include "nrf_gpio.h"
#include "nrf_delay.h"
// An arbitrary value used as the counter in loops waiting for given event
// (e.g. STOPPED), needed to avoid infinite loops (and not involve any timers
// or tickers).
#define TIMEOUT_VALUE 1000
#if DEVICE_I2C_ASYNCH
#define TWI_IDX(obj) ((obj)->i2c.twi_idx)
#else
#define TWI_IDX(obj) ((obj)->twi_idx)
#endif
#define TWI_INFO(obj) (&m_twi_info[TWI_IDX(obj)])
typedef struct {
bool initialized;
uint32_t pselsda;
uint32_t pselscl;
nrf_twi_frequency_t frequency;
bool start_twi;
#if DEVICE_I2C_ASYNCH
volatile bool active;
uint8_t const *tx;
size_t tx_length;
uint8_t *rx;
size_t rx_length;
bool stop;
volatile uint32_t events;
void (*handler)(void);
uint32_t evt_mask;
#endif // DEVICE_I2C_ASYNCH
} twi_info_t;
static twi_info_t m_twi_info[TWI_COUNT];
static NRF_TWI_Type * const m_twi_instances[TWI_COUNT] = {
#if TWI0_ENABLED
NRF_TWI0,
#endif
#if TWI1_ENABLED
NRF_TWI1,
#endif
};
void SPI0_TWI0_IRQHandler(void);
void SPI1_TWI1_IRQHandler(void);
static const peripheral_handler_desc_t twi_handlers[TWI_COUNT] =
{
#if TWI0_ENABLED
{
SPI0_TWI0_IRQn,
(uint32_t) SPI0_TWI0_IRQHandler
},
#endif
#if TWI1_ENABLED
{
SPI1_TWI1_IRQn,
(uint32_t) SPI1_TWI1_IRQHandler
}
#endif
};
#ifdef NRF51
#define TWI_IRQ_PRIORITY APP_IRQ_PRIORITY_LOW
#elif defined(NRF52)
#define TWI_IRQ_PRIORITY APP_IRQ_PRIORITY_LOWEST
#endif
#if DEVICE_I2C_ASYNCH
static void start_asynch_rx(twi_info_t *twi_info, NRF_TWI_Type *twi)
{
if (twi_info->rx_length == 1 && twi_info->stop) {
nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_STOP_MASK);
} else {
nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_SUSPEND_MASK);
}
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTRX);
}
static void twi_irq_handler(uint8_t instance_idx)
{
twi_info_t *twi_info = &m_twi_info[instance_idx];
NRF_TWI_Type *twi = m_twi_instances[instance_idx];
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_ERROR)) {
nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR);
// In case of an error, force STOP.
// The current transfer may be suspended (if it is RX), so it must be
// resumed before the STOP task is triggered.
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP);
uint32_t errorsrc = nrf_twi_errorsrc_get_and_clear(twi);
twi_info->events |= I2C_EVENT_ERROR;
if (errorsrc & NRF_TWI_ERROR_ADDRESS_NACK) {
twi_info->events |= I2C_EVENT_ERROR_NO_SLAVE;
}
if (errorsrc & NRF_TWI_ERROR_DATA_NACK) {
twi_info->events |= I2C_EVENT_TRANSFER_EARLY_NACK;
}
}
bool finished = false;
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_TXDSENT)) {
nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT);
MBED_ASSERT(twi_info->tx_length > 0);
--(twi_info->tx_length);
// Send next byte if there is still something to be sent.
if (twi_info->tx_length > 0) {
nrf_twi_txd_set(twi, *(twi_info->tx));
++(twi_info->tx);
// It TX is done, start RX if requested.
} else if (twi_info->rx_length > 0) {
start_asynch_rx(twi_info, twi);
// If there is nothing more to do, finalize the transfer.
} else {
if (twi_info->stop) {
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP);
} else {
nrf_twi_task_trigger(twi, NRF_TWI_TASK_SUSPEND);
finished = true;
}
twi_info->events |= I2C_EVENT_TRANSFER_COMPLETE;
}
}
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_RXDREADY)) {
nrf_twi_event_clear(twi, NRF_TWI_EVENT_RXDREADY);
MBED_ASSERT(twi_info->rx_length > 0);
*(twi_info->rx) = nrf_twi_rxd_get(twi);
++(twi_info->rx);
--(twi_info->rx_length);
if (twi_info->rx_length > 0) {
// If more bytes should be received, resume the transfer
// (in case the stop condition should be generated after the next
// byte, change the shortcuts configuration first).
if (twi_info->rx_length == 1 && twi_info->stop) {
nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_STOP_MASK);
}
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
} else {
// If all requested bytes were received, finalize the transfer.
finished = true;
twi_info->events |= I2C_EVENT_TRANSFER_COMPLETE;
}
}
if (finished ||
nrf_twi_event_check(twi, NRF_TWI_EVENT_STOPPED) ||
(nrf_twi_int_enable_check(twi, NRF_TWI_INT_SUSPENDED_MASK) &&
nrf_twi_event_check(twi, NRF_TWI_EVENT_SUSPENDED))) {
// There is no need to clear the STOPPED and SUSPENDED events here,
// they will no longer generate the interrupt - see below.
nrf_twi_shorts_set(twi, 0);
// Disable all interrupt sources.
nrf_twi_int_disable(twi, UINT32_MAX);
twi_info->active = false;
if (twi_info->handler) {
twi_info->handler();
}
}
}
#if TWI0_ENABLED
static void irq_handler_twi0(void)
{
twi_irq_handler(TWI0_INSTANCE_INDEX);
}
#endif
#if TWI1_ENABLED
static void irq_handler_twi1(void)
{
twi_irq_handler(TWI1_INSTANCE_INDEX);
}
#endif
static nrf_drv_irq_handler_t const m_twi_irq_handlers[TWI_COUNT] =
{
#if TWI0_ENABLED
irq_handler_twi0,
#endif
#if TWI1_ENABLED
irq_handler_twi1,
#endif
};
#endif // DEVICE_I2C_ASYNCH
static void configure_twi_pin(uint32_t pin, nrf_gpio_pin_dir_t dir)
{
nrf_gpio_cfg(pin,
dir,
NRF_GPIO_PIN_INPUT_CONNECT,
NRF_GPIO_PIN_PULLUP,
NRF_GPIO_PIN_S0D1,
NRF_GPIO_PIN_NOSENSE);
}
static void twi_clear_bus(twi_info_t *twi_info)
{
// Try to set SDA high, and check if no slave tries to drive it low.
nrf_gpio_pin_set(twi_info->pselsda);
configure_twi_pin(twi_info->pselsda, NRF_GPIO_PIN_DIR_OUTPUT);
// In case SDA is low, make up to 9 cycles on SCL line to help the slave
// that pulls SDA low release it.
if (!nrf_gpio_pin_read(twi_info->pselsda)) {
nrf_gpio_pin_set(twi_info->pselscl);
configure_twi_pin(twi_info->pselscl, NRF_GPIO_PIN_DIR_OUTPUT);
nrf_delay_us(4);
for (int i = 0; i < 9; i++) {
if (nrf_gpio_pin_read(twi_info->pselsda)) {
break;
}
nrf_gpio_pin_clear(twi_info->pselscl);
nrf_delay_us(4);
nrf_gpio_pin_set(twi_info->pselscl);
nrf_delay_us(4);
}
// Finally, generate STOP condition to put the bus into initial state.
nrf_gpio_pin_clear(twi_info->pselsda);
nrf_delay_us(4);
nrf_gpio_pin_set(twi_info->pselsda);
}
}
void i2c_init(i2c_t *obj, PinName sda, PinName scl)
{
int i;
for (i = 0; i < TWI_COUNT; ++i) {
if (m_twi_info[i].initialized &&
m_twi_info[i].pselsda == (uint32_t)sda &&
m_twi_info[i].pselscl == (uint32_t)scl) {
TWI_IDX(obj) = i;
TWI_INFO(obj)->frequency = NRF_TWI_FREQ_100K;
i2c_reset(obj);
return;
}
}
for (i = 0; i < TWI_COUNT; ++i) {
if (!m_twi_info[i].initialized) {
TWI_IDX(obj) = i;
twi_info_t *twi_info = TWI_INFO(obj);
twi_info->initialized = true;
twi_info->pselsda = (uint32_t)sda;
twi_info->pselscl = (uint32_t)scl;
twi_info->frequency = NRF_TWI_FREQ_100K;
twi_info->start_twi = false;
#if DEVICE_I2C_ASYNCH
twi_info->active = false;
#endif
twi_clear_bus(twi_info);
configure_twi_pin(twi_info->pselsda, NRF_GPIO_PIN_DIR_INPUT);
configure_twi_pin(twi_info->pselscl, NRF_GPIO_PIN_DIR_INPUT);
i2c_reset(obj);
#if DEVICE_I2C_ASYNCH
nrf_drv_common_per_res_acquire(m_twi_instances[i],
m_twi_irq_handlers[i]);
NVIC_SetVector(twi_handlers[i].IRQn, twi_handlers[i].vector);
nrf_drv_common_irq_enable(twi_handlers[i].IRQn, TWI_IRQ_PRIORITY);
#endif
return;
}
}
error("No available I2C peripheral\r\n");
}
void i2c_reset(i2c_t *obj)
{
twi_info_t *twi_info = TWI_INFO(obj);
NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)];
nrf_twi_disable(twi);
nrf_twi_pins_set(twi, twi_info->pselscl, twi_info->pselsda);
nrf_twi_frequency_set(twi, twi_info->frequency);
nrf_twi_enable(twi);
}
int i2c_start(i2c_t *obj)
{
twi_info_t *twi_info = TWI_INFO(obj);
#if DEVICE_I2C_ASYNCH
if (twi_info->active) {
return I2C_ERROR_BUS_BUSY;
}
#endif
twi_info->start_twi = true;
return 0;
}
int i2c_stop(i2c_t *obj)
{
NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)];
// The current transfer may be suspended (if it is RX), so it must be
// resumed before the STOP task is triggered.
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP);
uint32_t remaining_time = TIMEOUT_VALUE;
do {
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_STOPPED)) {
return 0;
}
} while (--remaining_time);
return 1;
}
void i2c_frequency(i2c_t *obj, int hz)
{
twi_info_t *twi_info = TWI_INFO(obj);
NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)];
if (hz < 250000) {
twi_info->frequency = NRF_TWI_FREQ_100K;
} else if (hz < 400000) {
twi_info->frequency = NRF_TWI_FREQ_250K;
} else {
twi_info->frequency = NRF_TWI_FREQ_400K;
}
nrf_twi_frequency_set(twi, twi_info->frequency);
}
static uint8_t twi_address(int i2c_address)
{
// The TWI peripheral requires 7-bit slave address (without R/W bit).
return (i2c_address >> 1);
}
static void start_twi_read(NRF_TWI_Type *twi, int address)
{
nrf_twi_event_clear(twi, NRF_TWI_EVENT_STOPPED);
nrf_twi_event_clear(twi, NRF_TWI_EVENT_RXDREADY);
nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR);
(void)nrf_twi_errorsrc_get_and_clear(twi);
nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_SUSPEND_MASK);
nrf_twi_address_set(twi, twi_address(address));
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTRX);
}
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
{
// Zero-length RX transfers are not supported. Such transfers cannot
// be easily achieved with TWI peripheral (some dirty tricks would be
// required for this), and they are actually useless (TX can be used
// to check if the address is acknowledged by a slave).
MBED_ASSERT(length > 0);
twi_info_t *twi_info = TWI_INFO(obj);
#if DEVICE_I2C_ASYNCH
if (twi_info->active) {
return I2C_ERROR_BUS_BUSY;
}
#endif
twi_info->start_twi = false;
NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)];
start_twi_read(twi, address);
int result = length;
while (length > 0) {
int byte_read_result = i2c_byte_read(obj, (stop && length == 1));
if (byte_read_result < 0) {
// When an error occurs, return the number of bytes that have been
// received successfully.
result -= length;
// Force STOP condition.
stop = 1;
break;
}
*data++ = (uint8_t)byte_read_result;
--length;
}
if (stop) {
(void)i2c_stop(obj);
}
return result;
}
static uint8_t twi_byte_write(NRF_TWI_Type *twi, uint8_t data)
{
nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT);
nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR);
nrf_twi_txd_set(twi, data);
uint32_t remaining_time = TIMEOUT_VALUE;
do {
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_TXDSENT)) {
nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT);
return 1; // ACK received
}
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_ERROR)) {
nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR);
return 0; // some error occurred
}
} while (--remaining_time);
return 2; // timeout;
}
static void start_twi_write(NRF_TWI_Type *twi, int address)
{
nrf_twi_event_clear(twi, NRF_TWI_EVENT_STOPPED);
nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT);
nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR);
(void)nrf_twi_errorsrc_get_and_clear(twi);
nrf_twi_shorts_set(twi, 0);
nrf_twi_address_set(twi, twi_address(address));
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTTX);
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
{
twi_info_t *twi_info = TWI_INFO(obj);
#if DEVICE_I2C_ASYNCH
if (twi_info->active) {
return I2C_ERROR_BUS_BUSY;
}
#endif
twi_info->start_twi = false;
NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)];
start_twi_write(twi, address);
// Special case - transaction with no data.
// It can be used to check if a slave acknowledges the address.
if (length == 0) {
nrf_twi_event_t event;
if (stop) {
event = NRF_TWI_EVENT_STOPPED;
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP);
} else {
event = NRF_TWI_EVENT_SUSPENDED;
nrf_twi_event_clear(twi, event);
nrf_twi_task_trigger(twi, NRF_TWI_TASK_SUSPEND);
}
uint32_t remaining_time = TIMEOUT_VALUE;
do {
if (nrf_twi_event_check(twi, event)) {
break;
}
} while (--remaining_time);
uint32_t errorsrc = nrf_twi_errorsrc_get_and_clear(twi);
if (errorsrc & NRF_TWI_ERROR_ADDRESS_NACK) {
if (!stop) {
i2c_stop(obj);
}
return I2C_ERROR_NO_SLAVE;
}
return (remaining_time ? 0 : I2C_ERROR_BUS_BUSY);
}
int result = length;
do {
uint8_t byte_write_result = twi_byte_write(twi, (uint8_t)*data++);
if (byte_write_result != 1) {
if (byte_write_result == 0) {
// Check what kind of error has been signaled by TWI.
uint32_t errorsrc = nrf_twi_errorsrc_get_and_clear(twi);
if (errorsrc & NRF_TWI_ERROR_ADDRESS_NACK) {
result = I2C_ERROR_NO_SLAVE;
} else {
// Some other error - return the number of bytes that
// have been sent successfully.
result -= length;
}
} else {
result = I2C_ERROR_BUS_BUSY;
}
// Force STOP condition.
stop = 1;
break;
}
--length;
} while (length > 0);
if (stop) {
(void)i2c_stop(obj);
}
return result;
}
int i2c_byte_read(i2c_t *obj, int last)
{
NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)];
if (last) {
nrf_twi_shorts_set(twi, NRF_TWI_SHORT_BB_STOP_MASK);
}
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
uint32_t remaining_time = TIMEOUT_VALUE;
do {
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_RXDREADY)) {
nrf_twi_event_clear(twi, NRF_TWI_EVENT_RXDREADY);
return nrf_twi_rxd_get(twi);
}
if (nrf_twi_event_check(twi, NRF_TWI_EVENT_ERROR)) {
nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR);
return I2C_ERROR_NO_SLAVE;
}
} while (--remaining_time);
return I2C_ERROR_BUS_BUSY;
}
int i2c_byte_write(i2c_t *obj, int data)
{
NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)];
twi_info_t *twi_info = TWI_INFO(obj);
if (twi_info->start_twi) {
twi_info->start_twi = false;
if (data & 1) {
start_twi_read(twi, data);
} else {
start_twi_write(twi, data);
}
return 1;
} else {
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
// 0 - TWI signaled error (NAK is the only possibility here)
// 1 - ACK received
// 2 - timeout (clock stretched for too long?)
return twi_byte_write(twi, (uint8_t)data);
}
}
#if DEVICE_I2C_ASYNCH
void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length,
void *rx, size_t rx_length, uint32_t address,
uint32_t stop, uint32_t handler,
uint32_t event, DMAUsage hint)
{
(void)hint;
twi_info_t *twi_info = TWI_INFO(obj);
if (twi_info->active) {
return;
}
twi_info->active = true;
twi_info->events = 0;
twi_info->handler = (void (*)(void))handler;
twi_info->evt_mask = event;
twi_info->tx_length = tx_length;
twi_info->tx = tx;
twi_info->rx_length = rx_length;
twi_info->rx = rx;
twi_info->stop = stop;
NRF_TWI_Type *twi = m_twi_instances[TWI_IDX(obj)];
nrf_twi_event_clear(twi, NRF_TWI_EVENT_TXDSENT);
nrf_twi_event_clear(twi, NRF_TWI_EVENT_RXDREADY);
nrf_twi_event_clear(twi, NRF_TWI_EVENT_STOPPED);
nrf_twi_event_clear(twi, NRF_TWI_EVENT_SUSPENDED);
nrf_twi_event_clear(twi, NRF_TWI_EVENT_ERROR);
(void)nrf_twi_errorsrc_get_and_clear(twi);
nrf_twi_address_set(twi, twi_address(address));
nrf_twi_task_trigger(twi, NRF_TWI_TASK_RESUME);
// TX only, or TX + RX (after a repeated start).
if (tx_length > 0) {
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTTX);
nrf_twi_txd_set(twi, *(twi_info->tx));
++(twi_info->tx);
// RX only.
} else if (rx_length > 0) {
start_asynch_rx(twi_info, twi);
// Both 'tx_length' and 'rx_length' are 0 - this case may be used
// to test if the slave is presentand ready for transfer (by just
// sending the address and checking if it is acknowledged).
} else {
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STARTTX);
if (stop) {
nrf_twi_task_trigger(twi, NRF_TWI_TASK_STOP);
} else {
nrf_twi_task_trigger(twi, NRF_TWI_TASK_SUSPEND);
nrf_twi_int_enable(twi, NRF_TWI_INT_SUSPENDED_MASK);
}
twi_info->events |= I2C_EVENT_TRANSFER_COMPLETE;
}
nrf_twi_int_enable(twi, NRF_TWI_INT_TXDSENT_MASK |
NRF_TWI_INT_RXDREADY_MASK |
NRF_TWI_INT_STOPPED_MASK |
NRF_TWI_INT_ERROR_MASK);
}
uint32_t i2c_irq_handler_asynch(i2c_t *obj)
{
twi_info_t *twi_info = TWI_INFO(obj);
return (twi_info->events & twi_info->evt_mask);
}
uint8_t i2c_active(i2c_t *obj)
{
twi_info_t *twi_info = TWI_INFO(obj);
return twi_info->active;
}
void i2c_abort_asynch(i2c_t *obj)
{
i2c_reset(obj);
}
#endif // DEVICE_I2C_ASYNCH
#endif // DEVICE_I2C