mbed-os/targets/TARGET_TOSHIBA/TARGET_TMPM46B/i2c_api.c

592 lines
16 KiB
C
Raw Blame History

/* mbed Microcontroller Library
* (C)Copyright TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION 2017 All rights reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "i2c_api.h"
#if DEVICE_I2C
#include "mbed_error.h"
#include "PeripheralNames.h"
#include "pinmap.h"
#include "tmpm46b_i2c.h"
#include "mbed_wait_api.h"
#include <string.h>
#include <stdlib.h>
#define SBI_I2C_SEND 0x00
#define SBI_I2C_RECEIVE 0x01
#define I2C_TRANSFER_STATE_IDLE (0x0U)
#define I2C_TRANSFER_STATE_BUSY (0x1U)
#define I2C_ACK (1)
#define I2C_NO_DATA (0)
#define I2C_READ_ADDRESSED (1)
#define I2C_WRITE_ADDRESSED (3)
#define I2C_TIMEOUT (100000)
#define I2CCR2_REPEATED_START_CONDITION ((uint32_t)0x00000018)
#if DEVICE_I2C_ASYNCH
#define I2C_S(obj) (struct i2c_s *) (&(obj->i2c))
#else
#define I2C_S(obj) (struct i2c_s *) (obj)
#endif
static inline void repeated_start(struct i2c_s *obj_s);
static int32_t wait_status(i2c_t *obj);
static void I2C_Start_Condition(struct i2c_s *p_obj, uint32_t data);
#if DEVICE_I2C_ASYNCH
static inline void state_idle(struct i2c_s *obj_s);
#endif
static const PinMap PinMap_I2C_SDA[] = {
{PK2, I2C_0, PIN_DATA(3, 2)},
{PF7, I2C_1, PIN_DATA(4, 2)},
{PH0, I2C_2, PIN_DATA(4, 2)},
{NC, NC, 0}
};
static const PinMap PinMap_I2C_SCL[] = {
{PK3, I2C_0, PIN_DATA(3, 2)},
{PF6, I2C_1, PIN_DATA(4, 2)},
{PH1, I2C_2, PIN_DATA(4, 2)},
{NC, NC, 0}
};
// Clock setting structure definition
typedef struct {
uint32_t sck;
uint32_t prsck;
} I2C_clock_setting_t;
static const uint32_t I2C_SCK_DIVIDER_TBL[8] = {
20, 24, 32, 48, 80, 144, 272, 528
}; // SCK Divider value table
static int32_t start_flag = 0;
static I2C_State status;
static I2C_clock_setting_t clk;
static I2C_InitTypeDef myi2c;
// Initialize the I2C peripheral. It sets the default parameters for I2C
void i2c_init(i2c_t *obj, PinName sda, PinName scl)
{
struct i2c_s *obj_s = I2C_S(obj);
MBED_ASSERT(obj != NULL);
I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
I2CName i2c_name = (I2CName)pinmap_merge(i2c_sda, i2c_scl);
MBED_ASSERT((int)i2c_name != NC);
switch (i2c_name) {
case I2C_0:
CG_SetFcPeriphB(CG_FC_PERIPH_I2C0, ENABLE);
CG_SetFcPeriphA(CG_FC_PERIPH_PORTK, ENABLE);
obj_s->i2c = TSB_I2C0;
obj_s->index = 0;
obj_s->IRQn = INTI2C0_IRQn;
break;
case I2C_1:
CG_SetFcPeriphB(CG_FC_PERIPH_I2C1, ENABLE);
CG_SetFcPeriphA(CG_FC_PERIPH_PORTF, ENABLE);
obj_s->i2c = TSB_I2C1;
obj_s->index = 1;
obj_s->IRQn = INTI2C1_IRQn;
break;
case I2C_2:
CG_SetFcPeriphB(CG_FC_PERIPH_I2C2, ENABLE);
CG_SetFcPeriphA(CG_FC_PERIPH_PORTH, ENABLE);
obj_s->i2c = TSB_I2C2;
obj_s->index = 2;
obj_s->IRQn = INTI2C2_IRQn;
break;
default:
error("I2C is not available");
break;
}
#if DEVICE_I2C_ASYNCH
obj_s->state = I2C_TRANSFER_STATE_IDLE;
#endif
pinmap_pinout(sda, PinMap_I2C_SDA);
pin_mode(sda, OpenDrain);
pin_mode(sda, PullUp);
pinmap_pinout(scl, PinMap_I2C_SCL);
pin_mode(scl, OpenDrain);
pin_mode(scl, PullUp);
NVIC_DisableIRQ(obj_s->IRQn);
i2c_reset(obj);
i2c_frequency(obj, 100000);
}
// Configure the I2C frequency
void i2c_frequency(i2c_t *obj, int hz)
{
struct i2c_s *obj_s = I2C_S(obj);
uint32_t sck = 0;
uint32_t tmp_sck = 0;
uint32_t prsck = 1;
uint32_t tmp_prsck = 1;
uint32_t fscl = 0;
uint32_t tmp_fscl = 0;
uint64_t fx = 0;
if (hz <= 400000) { // Maximum 400khz clock frequency supported by M46B
for (prsck = 1; prsck <= 32; prsck++) {
fx = ((uint64_t)SystemCoreClock / prsck);
if ((fx < 20000000U) && (fx > 6666666U)) {
for (sck = 0; sck <= 7; sck++) {
fscl = (fx / (uint64_t)I2C_SCK_DIVIDER_TBL[sck]);
if ((fscl <= (uint64_t)hz) && (fscl > tmp_fscl)) {
tmp_fscl = fscl;
tmp_sck = sck;
tmp_prsck = (prsck < 32)? prsck: 1;
}
}
}
}
clk.sck = (uint32_t)tmp_sck;
clk.prsck = (tmp_prsck < 32)? (uint32_t)tmp_prsck - 1 : 1;
} else {
clk.sck = I2C_SCK_CLK_DIV_24;
clk.prsck = I2C_PRESCALER_DIV_4;
}
myi2c.I2CSelfAddr = 0xE0; // Self Address
myi2c.I2CDataLen = I2C_DATA_LEN_8;
myi2c.I2CACKState = ENABLE;
myi2c.I2CClkDiv = clk.sck;
myi2c.PrescalerClkDiv = clk.prsck;
I2C_SWReset(obj_s->i2c);
I2C_Init(obj_s->i2c, &myi2c);
NVIC_DisableIRQ(obj_s->IRQn);
}
int i2c_start(i2c_t *obj)
{
start_flag = 1;
return 0;
}
int i2c_stop(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
I2C_GenerateStop(obj_s->i2c);
return 0;
}
void i2c_reset(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
I2C_SWReset(obj_s->i2c);
}
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
{
int32_t result = 0;
int32_t count = 0;
if (length > 0) {
start_flag = 1; // Start Condition
if (i2c_byte_write(obj, (int32_t)((uint32_t)address | 1U)) == I2C_ACK) {
while (count < length) {
int32_t pdata = i2c_byte_read(obj, ((count < (length - 1)) ? 0 : 1));
if (pdata < 0) {
break;
}
data[count++] = (uint8_t)pdata;
}
result = count;
} else {
stop = 1;
result = I2C_ERROR_NO_SLAVE;
}
if (stop) { // Stop Condition
i2c_stop(obj);
}
}
return (result);
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
{
int32_t result = 0;
int32_t count = 0;
start_flag = 1; // Start Condition
if (i2c_byte_write(obj, address) == I2C_ACK) {
while (count < length) {
if (i2c_byte_write(obj, (int32_t)data[count++]) < I2C_ACK) {
break;
}
}
result = count;
} else {
stop = 1;
result = I2C_ERROR_NO_SLAVE;
}
if (stop) { // Stop Condition
i2c_stop(obj);
}
return (result);
}
int i2c_byte_read(i2c_t *obj, int last)
{
struct i2c_s *obj_s = I2C_S(obj);
int32_t result;
I2C_ClearINTOutput(obj_s->i2c);
if (last) {
I2C_SetACK(obj_s->i2c, DISABLE);
} else {
I2C_SetACK(obj_s->i2c, ENABLE);
}
I2C_SetSendData(obj_s->i2c, 0x00);
if (wait_status(obj) < 0) {
result = -1;
} else {
result = (int32_t)I2C_GetReceiveData(obj_s->i2c);
}
return (result);
}
int i2c_byte_write(i2c_t *obj, int data)
{
struct i2c_s *obj_s = I2C_S(obj);
int32_t result;
I2C_ClearINTOutput(obj_s->i2c);
if (start_flag == 1) {
I2C_Start_Condition(obj_s, (uint32_t)data);
start_flag = 0;
} else {
I2C_SetSendData(obj_s->i2c, (uint32_t)data);
}
if (wait_status(obj) < 0) {
return (-1);
}
status = I2C_GetState(obj_s->i2c);
if (!status.Bit.LastRxBit) {
result = 1;
} else {
result = 0;
}
return (result);
}
void i2c_slave_mode(i2c_t *obj, int enable_slave)
{
i2c_reset(obj);
struct i2c_s *obj_s = I2C_S(obj);
obj_s->myi2c.I2CDataLen = I2C_DATA_LEN_8;
obj_s->myi2c.I2CACKState = ENABLE;
obj_s->myi2c.I2CClkDiv = clk.sck;
obj_s->myi2c.PrescalerClkDiv = clk.prsck;
if (enable_slave) {
obj_s->myi2c.I2CSelfAddr = obj_s->address;
I2C_SetINTReq(obj_s->i2c, ENABLE);
} else {
obj_s->myi2c.I2CSelfAddr = 0xE0;
NVIC_DisableIRQ(obj_s->IRQn);
I2C_ClearINTOutput(obj_s->i2c);
}
I2C_Init(obj_s->i2c, &obj_s->myi2c);
}
int i2c_slave_receive(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
int32_t result = I2C_NO_DATA;
if ((I2C_GetINTStatus(obj_s->i2c)) && (I2C_GetSlaveAddrMatchState(obj_s->i2c))) {
status = I2C_GetState(obj_s->i2c);
if (!status.Bit.TRx) {
result = I2C_WRITE_ADDRESSED;
} else {
result = I2C_READ_ADDRESSED;
}
}
return (result);
}
int i2c_slave_read(i2c_t *obj, char *data, int length)
{
struct i2c_s *obj_s = I2C_S(obj);
int32_t count = 0;
while (count < length) {
int32_t pdata = i2c_byte_read(obj, 0);
status = I2C_GetState(obj_s->i2c);
if (status.Bit.TRx) {
return (count);
} else {
if (pdata < 0) {
break;
}
data[count++] = (uint8_t)pdata;
}
}
i2c_slave_mode(obj, 1);
return (count);
}
int i2c_slave_write(i2c_t *obj, const char *data, int length)
{
int32_t count = 0;
while (count < length) {
if (i2c_byte_write(obj, (int32_t)data[count++]) < I2C_ACK) {
break;
}
}
i2c_slave_mode(obj, 1);
return (count);
}
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask)
{
struct i2c_s *obj_s = I2C_S(obj);
obj_s->address = address & 0xFE;
i2c_slave_mode(obj, 1);
}
#if DEVICE_I2C_ASYNCH
void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t address,
uint32_t stop, uint32_t handler, uint32_t event, DMAUsage hint)
{
struct i2c_s *obj_s = I2C_S(obj);
obj_s->event_mask = event;
obj_s->stop = stop;
obj_s->address = address;
// copy the buffers to the I2C object
obj->tx_buff.buffer = (void *) tx;
obj->tx_buff.length = tx ? tx_length : 0;
obj->tx_buff.pos = 0;
obj->rx_buff.buffer = rx;
obj->rx_buff.length = rx ? rx_length : 0;
obj->rx_buff.pos = 0;
obj_s->state = I2C_TRANSFER_STATE_BUSY;
I2C_SetINTReq(obj_s->i2c, ENABLE);
NVIC_ClearPendingIRQ(obj_s->IRQn);
NVIC_SetVector(obj_s->IRQn, (uint32_t)handler);
NVIC_EnableIRQ(obj_s->IRQn);
if ((tx_length == 0) && (rx_length != 0)) {
I2C_SetSendData(obj_s->i2c, address | SBI_I2C_RECEIVE);
} else {
I2C_SetSendData(obj_s->i2c, address | SBI_I2C_SEND);
}
I2C_GenerateStart(obj_s->i2c);
}
uint32_t i2c_irq_handler_asynch(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
uint32_t tmp_read = 0U;
uint32_t event = 0;
I2C_State flag_state;
flag_state = I2C_GetState(obj_s->i2c);
if ((!flag_state.Bit.MasterSlave) || (obj_s->state != I2C_TRANSFER_STATE_BUSY)) {
I2C_GenerateStop(obj_s->i2c);
event = I2C_EVENT_ERROR;
state_idle(obj_s);
return (event & obj_s->event_mask);
}
if (flag_state.Bit.TRx) { // Transmit
if (flag_state.Bit.LastRxBit) { // NACK Recieved
I2C_GenerateStop(obj_s->i2c);
if (obj->tx_buff.pos == 0) {
I2C_GenerateStop(obj_s->i2c);
event = (I2C_EVENT_ERROR | I2C_EVENT_ERROR_NO_SLAVE);
state_idle(obj_s);
} else {
I2C_GenerateStop(obj_s->i2c);
event = (I2C_EVENT_ERROR | I2C_EVENT_TRANSFER_EARLY_NACK);
state_idle(obj_s);
}
} else { // ACK Received
if (obj->tx_buff.pos < obj->tx_buff.length) {
I2C_SetSendData(obj_s->i2c, (*((uint8_t *)obj->tx_buff.buffer + obj->tx_buff.pos) & 0xFF)); // Send next data
obj->tx_buff.pos++;
} else if (obj->rx_buff.length != 0) { // Transmit complete Receive Pending
repeated_start(obj_s);
I2C_SetSendData(obj_s->i2c, obj_s->address | SBI_I2C_RECEIVE);
} else { // Transmit complete and NO data to Receive
I2C_GenerateStop(obj_s->i2c);
event = I2C_EVENT_TRANSFER_COMPLETE;
state_idle(obj_s);
}
}
} else { // Receive
if (obj->rx_buff.pos > obj->rx_buff.length) {
I2C_GenerateStop(obj_s->i2c);
event = I2C_EVENT_TRANSFER_COMPLETE;
state_idle(obj_s);
I2C_SetACK(obj_s->i2c, ENABLE);
} else {
if (obj->rx_buff.pos == obj->rx_buff.length) {
I2C_SetBitNum(obj_s->i2c, I2C_DATA_LEN_1);
} else if (obj->rx_buff.pos == (obj->rx_buff.length - 1)) {
I2C_SetACK(obj_s->i2c, DISABLE);
} else {
// Do nothing
}
tmp_read = I2C_GetReceiveData(obj_s->i2c);
if (obj->rx_buff.pos > 0) {
*((uint8_t *)obj->rx_buff.buffer + (obj->rx_buff.pos - 1)) = tmp_read;
} else {
// first read is dummy read
}
obj->rx_buff.pos++;
}
}
return (event & obj_s->event_mask);
}
uint8_t i2c_active(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
return (obj_s->state != I2C_TRANSFER_STATE_IDLE);
}
void i2c_abort_asynch(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
I2C_ClearINTReq(obj_s->i2c);
NVIC_ClearPendingIRQ(obj_s->IRQn);
I2C_GenerateStop(obj_s->i2c);
state_idle(obj_s);
I2C_SWReset(obj_s->i2c);
I2C_Init(obj_s->i2c, &obj_s->myi2c);
}
static inline void state_idle(struct i2c_s *obj_s)
{
I2C_State flag_state;
obj_s->state = I2C_TRANSFER_STATE_IDLE;
NVIC_DisableIRQ(obj_s->IRQn);
I2C_SetINTReq(obj_s->i2c, DISABLE);
// wait until bus state releases after stop condition
do {
flag_state = I2C_GetState(obj_s->i2c);
} while (flag_state.Bit.BusState);
// To satisfy the setup time of restart, at least 4.7<EFBFBD>s wait must be created by software (Ref. TRM pg. 561)
wait_us(5);
}
#endif //DEVICE_I2C_ASYNCH
static int32_t wait_status(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
volatile int32_t timeout = I2C_TIMEOUT;
while (I2C_GetINTStatus(obj_s->i2c) == DISABLE) {
if ((timeout--) == 0) {
return (-1);
}
}
return (0);
}
static inline void repeated_start(struct i2c_s *obj_s)
{
I2C_State flag_state;
obj_s->i2c->CR2 = I2CCR2_REPEATED_START_CONDITION;
// wait until bus state releases
do {
flag_state = I2C_GetState(obj_s->i2c);
} while (flag_state.Bit.BusState);
// Checks that no other device is pulling the SCL pin to "Low".
do {
flag_state = I2C_GetState(obj_s->i2c);
} while (!flag_state.Bit.LastRxBit);
I2C_GenerateStart(obj_s->i2c);
}
static void I2C_Start_Condition(struct i2c_s *p_obj, uint32_t data)
{
status = I2C_GetState(p_obj->i2c);
if (status.Bit.BusState) {
repeated_start(p_obj);
I2C_SetSendData(p_obj->i2c, (uint32_t)data);
} else {
I2C_SetSendData(p_obj->i2c, (uint32_t)data);
I2C_GenerateStart(p_obj->i2c);
}
}
const PinMap *i2c_master_sda_pinmap()
{
return PinMap_I2C_SDA;
}
const PinMap *i2c_master_scl_pinmap()
{
return PinMap_I2C_SCL;
}
const PinMap *i2c_slave_sda_pinmap()
{
return PinMap_I2C_SDA;
}
const PinMap *i2c_slave_scl_pinmap()
{
return PinMap_I2C_SCL;
}
#endif // #if DEVICE_I2C