mbed-os/targets/TARGET_STM/serial_api.c

776 lines
20 KiB
C

/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2017, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#if DEVICE_SERIAL
#include "serial_api_hal.h"
// Possible choices of the LPUART_CLOCK_SOURCE configuration set in json file
#define USE_LPUART_CLK_LSE 0x01
#define USE_LPUART_CLK_PCLK1 0x02
#define USE_LPUART_CLK_HSI 0x04
int stdio_uart_inited = 0; // used in platform/mbed_board.c and platform/mbed_retarget.cpp
serial_t stdio_uart;
extern UART_HandleTypeDef uart_handlers[];
extern uint32_t serial_irq_ids[];
// Utility functions
HAL_StatusTypeDef init_uart(serial_t *obj);
int8_t get_uart_index(UARTName uart_name);
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
struct serial_s *obj_s = SERIAL_S(obj);
uint8_t stdio_config = 0;
// Determine the UART to use (UART_1, UART_2, ...)
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
// Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
obj_s->uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT(obj_s->uart != (UARTName)NC);
if ((tx == STDIO_UART_TX) || (rx == STDIO_UART_RX)) {
stdio_config = 1;
} else {
if (uart_tx == pinmap_peripheral(STDIO_UART_TX, PinMap_UART_TX)) {
error("Error: new serial object is using same UART as STDIO");
}
}
// Reset and enable clock
#if defined(USART1_BASE)
if (obj_s->uart == UART_1) {
__HAL_RCC_USART1_CLK_ENABLE();
}
#endif
#if defined (USART2_BASE)
if (obj_s->uart == UART_2) {
__HAL_RCC_USART2_CLK_ENABLE();
}
#endif
#if defined(USART3_BASE)
if (obj_s->uart == UART_3) {
__HAL_RCC_USART3_CLK_ENABLE();
}
#endif
#if defined(UART4_BASE)
if (obj_s->uart == UART_4) {
__HAL_RCC_UART4_CLK_ENABLE();
}
#endif
#if defined(USART4_BASE)
if (obj_s->uart == UART_4) {
__HAL_RCC_USART4_CLK_ENABLE();
}
#endif
#if defined(UART5_BASE)
if (obj_s->uart == UART_5) {
__HAL_RCC_UART5_CLK_ENABLE();
}
#endif
#if defined(USART5_BASE)
if (obj_s->uart == UART_5) {
__HAL_RCC_USART5_CLK_ENABLE();
}
#endif
#if defined(USART6_BASE)
if (obj_s->uart == UART_6) {
__HAL_RCC_USART6_CLK_ENABLE();
}
#endif
#if defined(UART7_BASE)
if (obj_s->uart == UART_7) {
__HAL_RCC_UART7_CLK_ENABLE();
}
#endif
#if defined(USART7_BASE)
if (obj_s->uart == UART_7) {
__HAL_RCC_USART7_CLK_ENABLE();
}
#endif
#if defined(UART8_BASE)
if (obj_s->uart == UART_8) {
__HAL_RCC_UART8_CLK_ENABLE();
}
#endif
#if defined(USART8_BASE)
if (obj_s->uart == UART_8) {
__HAL_RCC_USART8_CLK_ENABLE();
}
#endif
#if defined(UART9_BASE)
if (obj_s->uart == UART_9) {
__HAL_RCC_UART9_CLK_ENABLE();
}
#endif
#if defined(UART10_BASE)
if (obj_s->uart == UART_10) {
__HAL_RCC_UART10_CLK_ENABLE();
}
#endif
#if defined(LPUART1_BASE)
if (obj_s->uart == LPUART_1) {
__HAL_RCC_LPUART1_CLK_ENABLE();
}
#endif
// Assign serial object index
obj_s->index = get_uart_index(obj_s->uart);
MBED_ASSERT(obj_s->index >= 0);
// Configure UART pins
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
if (tx != NC) {
pin_mode(tx, PullUp);
}
if (rx != NC) {
pin_mode(rx, PullUp);
}
// Configure UART
obj_s->baudrate = 9600; // baudrate default value
if (stdio_config) {
#if MBED_CONF_PLATFORM_STDIO_BAUD_RATE
obj_s->baudrate = MBED_CONF_PLATFORM_STDIO_BAUD_RATE; // baudrate takes value from platform/mbed_lib.json
#endif /* MBED_CONF_PLATFORM_STDIO_BAUD_RATE */
} else {
#if MBED_CONF_PLATFORM_DEFAULT_SERIAL_BAUD_RATE
obj_s->baudrate = MBED_CONF_PLATFORM_DEFAULT_SERIAL_BAUD_RATE; // baudrate takes value from platform/mbed_lib.json
#endif /* MBED_CONF_PLATFORM_DEFAULT_SERIAL_BAUD_RATE */
}
obj_s->databits = UART_WORDLENGTH_8B;
obj_s->stopbits = UART_STOPBITS_1;
obj_s->parity = UART_PARITY_NONE;
#if DEVICE_SERIAL_FC
obj_s->hw_flow_ctl = UART_HWCONTROL_NONE;
#endif
obj_s->pin_tx = tx;
obj_s->pin_rx = rx;
init_uart(obj); /* init_uart will be called again in serial_baud function, so don't worry if init_uart returns HAL_ERROR */
// For stdio management in platform/mbed_board.c and platform/mbed_retarget.cpp
if (stdio_config) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
// Reset UART and disable clock
#if defined(USART1_BASE)
if (obj_s->uart == UART_1) {
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_DISABLE();
}
#endif
#if defined(USART2_BASE)
if (obj_s->uart == UART_2) {
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_DISABLE();
}
#endif
#if defined(USART3_BASE)
if (obj_s->uart == UART_3) {
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_DISABLE();
}
#endif
#if defined(UART4_BASE)
if (obj_s->uart == UART_4) {
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_DISABLE();
}
#endif
#if defined(USART4_BASE)
if (obj_s->uart == UART_4) {
__HAL_RCC_USART4_FORCE_RESET();
__HAL_RCC_USART4_RELEASE_RESET();
__HAL_RCC_USART4_CLK_DISABLE();
}
#endif
#if defined(UART5_BASE)
if (obj_s->uart == UART_5) {
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_DISABLE();
}
#endif
#if defined(USART5_BASE)
if (obj_s->uart == UART_5) {
__HAL_RCC_USART5_FORCE_RESET();
__HAL_RCC_USART5_RELEASE_RESET();
__HAL_RCC_USART5_CLK_DISABLE();
}
#endif
#if defined(USART6_BASE)
if (obj_s->uart == UART_6) {
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_DISABLE();
}
#endif
#if defined(UART7_BASE)
if (obj_s->uart == UART_7) {
__HAL_RCC_UART7_FORCE_RESET();
__HAL_RCC_UART7_RELEASE_RESET();
__HAL_RCC_UART7_CLK_DISABLE();
}
#endif
#if defined(USART7_BASE)
if (obj_s->uart == UART_7) {
__HAL_RCC_USART7_FORCE_RESET();
__HAL_RCC_USART7_RELEASE_RESET();
__HAL_RCC_USART7_CLK_DISABLE();
}
#endif
#if defined(UART8_BASE)
if (obj_s->uart == UART_8) {
__HAL_RCC_UART8_FORCE_RESET();
__HAL_RCC_UART8_RELEASE_RESET();
__HAL_RCC_UART8_CLK_DISABLE();
}
#endif
#if defined(USART8_BASE)
if (obj_s->uart == UART_8) {
__HAL_RCC_USART8_FORCE_RESET();
__HAL_RCC_USART8_RELEASE_RESET();
__HAL_RCC_USART8_CLK_DISABLE();
}
#endif
#if defined(UART9_BASE)
if (obj_s->uart == UART_9) {
__HAL_RCC_UART9_FORCE_RESET();
__HAL_RCC_UART9_RELEASE_RESET();
__HAL_RCC_UART9_CLK_DISABLE();
}
#endif
#if defined(UART10_BASE)
if (obj_s->uart == UART_10) {
__HAL_RCC_UART10_FORCE_RESET();
__HAL_RCC_UART10_RELEASE_RESET();
__HAL_RCC_UART10_CLK_DISABLE();
}
#endif
#if defined(LPUART1_BASE)
if (obj_s->uart == LPUART_1) {
__HAL_RCC_LPUART1_FORCE_RESET();
__HAL_RCC_LPUART1_RELEASE_RESET();
__HAL_RCC_LPUART1_CLK_DISABLE();
}
#endif
// Configure GPIOs
pin_function(obj_s->pin_tx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
pin_function(obj_s->pin_rx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
serial_irq_ids[obj_s->index] = 0;
}
void serial_baud(serial_t *obj, int baudrate)
{
struct serial_s *obj_s = SERIAL_S(obj);
obj_s->baudrate = baudrate;
#if defined(LPUART1_BASE)
/* Note that LPUART clock source must be in the range [3 x baud rate, 4096 x baud rate], check Ref Manual */
if (obj_s->uart == LPUART_1) {
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LPUART1;
#if ((MBED_CONF_TARGET_LPUART_CLOCK_SOURCE) & USE_LPUART_CLK_LSE)
if (baudrate <= 9600) {
// Enable LSE in case it is not already done
if (!__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY)) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_OFF;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
}
// Keep it to verify if HAL_RCC_OscConfig didn't exit with a timeout
if (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY)) {
PeriphClkInitStruct.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_LSE;
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);
if (init_uart(obj) == HAL_OK) {
return;
}
}
}
#endif
#if ((MBED_CONF_TARGET_LPUART_CLOCK_SOURCE) & USE_LPUART_CLK_PCLK1)
PeriphClkInitStruct.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_PCLK1;
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);
if (init_uart(obj) == HAL_OK) {
return;
}
#endif
#if ((MBED_CONF_TARGET_LPUART_CLOCK_SOURCE) & USE_LPUART_CLK_HSI)
// Enable HSI in case it is not already done
if (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY)) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_OFF;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
}
// Keep it to verify if HAL_RCC_OscConfig didn't exit with a timeout
if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY)) {
PeriphClkInitStruct.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_HSI;
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);
if (init_uart(obj) == HAL_OK) {
return;
}
}
#endif
// Last chance using SYSCLK
PeriphClkInitStruct.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_SYSCLK;
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);
}
#endif /* LPUART1_BASE */
if (init_uart(obj) != HAL_OK) {
debug("Cannot initialize UART with baud rate %u\n", baudrate);
}
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
struct serial_s *obj_s = SERIAL_S(obj);
switch (parity) {
case ParityOdd:
obj_s->parity = UART_PARITY_ODD;
break;
case ParityEven:
obj_s->parity = UART_PARITY_EVEN;
break;
default: // ParityNone
case ParityForced0: // unsupported!
case ParityForced1: // unsupported!
obj_s->parity = UART_PARITY_NONE;
break;
}
switch (data_bits) {
case 7:
if (parity != UART_PARITY_NONE) {
obj_s->databits = UART_WORDLENGTH_8B;
} else {
#if defined UART_WORDLENGTH_7B
obj_s->databits = UART_WORDLENGTH_7B;
#else
error("7-bit data format without parity is not supported");
#endif
}
break;
case 8:
if (parity != UART_PARITY_NONE) {
obj_s->databits = UART_WORDLENGTH_9B;
} else {
obj_s->databits = UART_WORDLENGTH_8B;
}
break;
case 9:
if (parity != UART_PARITY_NONE) {
error("Parity is not supported with 9-bit data format");
} else {
obj_s->databits = UART_WORDLENGTH_9B;
}
break;
default:
error("Only 7, 8 or 9-bit data formats are supported");
break;
}
if (stop_bits == 2) {
obj_s->stopbits = UART_STOPBITS_2;
} else {
obj_s->stopbits = UART_STOPBITS_1;
}
init_uart(obj);
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_readable(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
/* To avoid a target blocking case, let's check for
* possible OVERRUN error and discard it
*/
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE)) {
__HAL_UART_CLEAR_OREFLAG(huart);
}
// Check if data is received
return (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE) != RESET) ? 1 : 0;
}
int serial_writable(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
// Check if data is transmitted
return (__HAL_UART_GET_FLAG(huart, UART_FLAG_TXE) != RESET) ? 1 : 0;
}
void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_clear(serial_t *obj)
{
(void)obj;
}
/******************************************************************************
* UTILITY FUNCTIONS
******************************************************************************/
HAL_StatusTypeDef init_uart(serial_t *obj)
{
struct serial_s *obj_s = SERIAL_S(obj);
UART_HandleTypeDef *huart = &uart_handlers[obj_s->index];
huart->Instance = (USART_TypeDef *)(obj_s->uart);
huart->Init.BaudRate = obj_s->baudrate;
huart->Init.WordLength = obj_s->databits;
huart->Init.StopBits = obj_s->stopbits;
huart->Init.Parity = obj_s->parity;
#if DEVICE_SERIAL_FC
huart->Init.HwFlowCtl = obj_s->hw_flow_ctl;
#else
huart->Init.HwFlowCtl = UART_HWCONTROL_NONE;
#endif
huart->Init.OverSampling = UART_OVERSAMPLING_16;
huart->TxXferCount = 0;
huart->TxXferSize = 0;
huart->RxXferCount = 0;
huart->RxXferSize = 0;
if (obj_s->pin_rx == NC) {
huart->Init.Mode = UART_MODE_TX;
} else if (obj_s->pin_tx == NC) {
huart->Init.Mode = UART_MODE_RX;
} else {
huart->Init.Mode = UART_MODE_TX_RX;
}
#if defined(LPUART1_BASE)
if (huart->Instance == LPUART1) {
if (obj_s->baudrate <= 9600) {
#if ((MBED_CONF_TARGET_LPUART_CLOCK_SOURCE) & USE_LPUART_CLK_LSE) && !TARGET_STM32H7
HAL_UARTEx_EnableClockStopMode(huart);
#endif
HAL_UARTEx_EnableStopMode(huart);
} else {
#if !TARGET_STM32H7
HAL_UARTEx_DisableClockStopMode(huart);
#endif
HAL_UARTEx_DisableStopMode(huart);
}
}
#endif
return HAL_UART_Init(huart);
}
int8_t get_uart_index(UARTName uart_name)
{
uint8_t index = 0;
#if defined(USART1_BASE)
if (uart_name == UART_1) {
return index;
}
index++;
#endif
#if defined(USART2_BASE)
if (uart_name == UART_2) {
return index;
}
index++;
#endif
#if defined(USART3_BASE)
if (uart_name == UART_3) {
return index;
}
index++;
#endif
#if defined(UART4_BASE)
if (uart_name == UART_4) {
return index;
}
index++;
#endif
#if defined(USART4_BASE)
if (uart_name == UART_4) {
return index;
}
index++;
#endif
#if defined(UART5_BASE)
if (uart_name == UART_5) {
return index;
}
index++;
#endif
#if defined(USART5_BASE)
if (uart_name == UART_5) {
return index;
}
index++;
#endif
#if defined(USART6_BASE)
if (uart_name == UART_6) {
return index;
}
index++;
#endif
#if defined(UART7_BASE)
if (uart_name == UART_7) {
return index;
}
index++;
#endif
#if defined(USART7_BASE)
if (uart_name == UART_7) {
return index;
}
index++;
#endif
#if defined(UART8_BASE)
if (uart_name == UART_8) {
return index;
}
index++;
#endif
#if defined(USART8_BASE)
if (uart_name == UART_8) {
return index;
}
index++;
#endif
#if defined(UART9_BASE)
if (uart_name == UART_9) {
return index;
}
index++;
#endif
#if defined(UART10_BASE)
if (uart_name == UART_10) {
return index;
}
index++;
#endif
#if defined(LPUART1_BASE)
if (uart_name == LPUART_1) {
return index;
}
index++;
#endif
return -1;
}
/* Function used to protect deep sleep while a serial transmission is on-going.
.* Returns 1 if there is at least 1 serial instance with an on-going transfer
* and 0 otherwise.
*/
int serial_is_tx_ongoing(void)
{
int TxOngoing = 0;
#if defined(USART1_BASE)
if (LL_USART_IsEnabled(USART1) && !LL_USART_IsActiveFlag_TC(USART1)) {
TxOngoing |= 1;
}
#endif
#if defined(USART2_BASE)
if (LL_USART_IsEnabled(USART2) && !LL_USART_IsActiveFlag_TC(USART2)) {
TxOngoing |= 1;
}
#endif
#if defined(USART3_BASE)
if (LL_USART_IsEnabled(USART3) && !LL_USART_IsActiveFlag_TC(USART3)) {
TxOngoing |= 1;
}
#endif
#if defined(UART4_BASE)
if (LL_USART_IsEnabled(UART4) && !LL_USART_IsActiveFlag_TC(UART4)) {
TxOngoing |= 1;
}
#endif
#if defined(USART4_BASE)
if (LL_USART_IsEnabled(USART4) && !LL_USART_IsActiveFlag_TC(USART4)) {
TxOngoing |= 1;
}
#endif
#if defined(UART5_BASE)
if (LL_USART_IsEnabled(UART5) && !LL_USART_IsActiveFlag_TC(UART5)) {
TxOngoing |= 1;
}
#endif
#if defined(USART5_BASE)
if (LL_USART_IsEnabled(USART5) && !LL_USART_IsActiveFlag_TC(USART5)) {
TxOngoing |= 1;
}
#endif
#if defined(USART6_BASE)
if (LL_USART_IsEnabled(USART6) && !LL_USART_IsActiveFlag_TC(USART6)) {
TxOngoing |= 1;
}
#endif
#if defined(UART7_BASE)
if (LL_USART_IsEnabled(UART7) && !LL_USART_IsActiveFlag_TC(UART7)) {
TxOngoing |= 1;
}
#endif
#if defined(USART7_BASE)
if (LL_USART_IsEnabled(USART7) && !LL_USART_IsActiveFlag_TC(USART7)) {
TxOngoing |= 1;
}
#endif
#if defined(UART8_BASE)
if (LL_USART_IsEnabled(UART8) && !LL_USART_IsActiveFlag_TC(UART8)) {
TxOngoing |= 1;
}
#endif
#if defined(USART8_BASE)
if (LL_USART_IsEnabled(USART8) && !LL_USART_IsActiveFlag_TC(USART8)) {
TxOngoing |= 1;
}
#endif
#if defined(UART9_BASE)
if (LL_USART_IsEnabled(UART9) && !LL_USART_IsActiveFlag_TC(UART9)) {
TxOngoing |= 1;
}
#endif
#if defined(UART10_BASE)
if (LL_USART_IsEnabled(UART10) && !LL_USART_IsActiveFlag_TC(UART10)) {
TxOngoing |= 1;
}
#endif
#if defined(LPUART1_BASE)
if (LL_USART_IsEnabled(LPUART1) && !LL_USART_IsActiveFlag_TC(LPUART1)) {
TxOngoing |= 1;
}
#endif
return TxOngoing;
}
#else
int serial_is_tx_ongoing(void)
{
return 0;
}
#endif /* DEVICE_SERIAL */