mbed-os/features/lorawan/LoRaWANStack.cpp

1223 lines
41 KiB
C++

/**
/ _____) _ | |
( (____ _____ ____ _| |_ _____ ____| |__
\____ \| ___ | (_ _) ___ |/ ___) _ \
_____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
(C)2013 Semtech
___ _____ _ ___ _ _____ ___ ___ ___ ___
/ __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __|
\__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _|
|___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
embedded.connectivity.solutions===============
Description: LoRaWAN stack layer that controls both MAC and PHY underneath
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Miguel Luis ( Semtech ), Gregory Cristian ( Semtech ) and Daniel Jaeckle ( STACKFORCE )
Copyright (c) 2017, Arm Limited and affiliates.
SPDX-License-Identifier: BSD-3-Clause
*/
#include <string.h>
#include <stdlib.h>
#include "platform/Callback.h"
#include "events/EventQueue.h"
#include "LoRaWANStack.h"
#if defined(FEATURE_COMMON_PAL)
#include "mbed_trace.h"
#define TRACE_GROUP "LSTK"
#else
#define tr_debug(...) (void(0)) //dummies if feature common pal is not added
#define tr_info(...) (void(0)) //dummies if feature common pal is not added
#define tr_error(...) (void(0)) //dummies if feature common pal is not added
#define tr_warn(...) (void(0)) //dummies if feature common pal is not added
#endif //defined(FEATURE_COMMON_PAL)
#define INVALID_PORT 0xFF
#define MAX_CONFIRMED_MSG_RETRIES 255
/**
* Control flags for transient states
*/
#define IDLE_FLAG 0x00000000
#define TX_ONGOING_FLAG 0x00000001
#define MSG_RECVD_FLAG 0x00000002
#define CONNECTED_FLAG 0x00000004
#define USING_OTAA_FLAG 0x00000008
#define TX_DONE_FLAG 0x00000010
using namespace mbed;
using namespace events;
#if defined(LORAWAN_COMPLIANCE_TEST)
#if (MBED_CONF_LORA_PHY == 0 || MBED_CONF_LORA_PHY == 4 || MBED_CONF_LORA_PHY == 6 || MBED_CONF_LORA_PHY == 7)
#define LORAWAN_COMPLIANCE_TEST_DATA_SIZE 16
#elif (MBED_CONF_LORA_PHY == 1 || MBED_CONF_LORA_PHY == 2 || MBED_CONF_LORA_PHY == 8 || MBED_CONF_LORA_PHY == 9)
#define LORAWAN_COMPLIANCE_TEST_DATA_SIZE 11
#else
#error "Must set LoRa PHY layer parameters."
#endif
#endif
/*****************************************************************************
* Constructor *
****************************************************************************/
LoRaWANStack::LoRaWANStack()
: _loramac(),
_device_current_state(DEVICE_STATE_NOT_INITIALIZED),
_lw_session(),
_tx_msg(),
_rx_msg(),
_num_retry(1),
_ctrl_flags(IDLE_FLAG),
_app_port(INVALID_PORT),
_link_check_requested(false),
_automatic_uplink_ongoing(false),
_ready_for_rx(true),
_queue(NULL)
{
#ifdef MBED_CONF_LORA_APP_PORT
if (is_port_valid(MBED_CONF_LORA_APP_PORT)) {
_app_port = MBED_CONF_LORA_APP_PORT;
} else {
tr_error("User defined port in .json is illegal.");
}
#endif
}
/*****************************************************************************
* Public Methods *
****************************************************************************/
void LoRaWANStack::bind_radio_driver(LoRaRadio& radio)
{
radio_events.tx_done = mbed::callback(this, &LoRaWANStack::tx_interrupt_handler);
radio_events.rx_done = mbed::callback(this, &LoRaWANStack::rx_interrupt_handler);
radio_events.rx_error = mbed::callback(this, &LoRaWANStack::rx_error_interrupt_handler);
radio_events.tx_timeout = mbed::callback(this, &LoRaWANStack::tx_timeout_interrupt_handler);
radio_events.rx_timeout = mbed::callback(this, &LoRaWANStack::rx_timeout_interrupt_handler);
_loramac.bind_radio_driver(radio);
radio.lock();
radio.init_radio(&radio_events);
radio.unlock();
}
lorawan_status_t LoRaWANStack::initialize_mac_layer(EventQueue *queue)
{
if(!queue) {
return LORAWAN_STATUS_PARAMETER_INVALID;
}
tr_debug("Initializing MAC layer");
_queue = queue;
return state_controller(DEVICE_STATE_IDLE);
}
lorawan_status_t LoRaWANStack::set_lora_callbacks(const lorawan_app_callbacks_t *callbacks)
{
if (!callbacks || !callbacks->events) {
return LORAWAN_STATUS_PARAMETER_INVALID;
}
_callbacks.events = callbacks->events;
if (callbacks->link_check_resp) {
_callbacks.link_check_resp = callbacks->link_check_resp;
}
if (callbacks->battery_level) {
_callbacks.battery_level = callbacks->battery_level;
_loramac.set_batterylevel_callback(callbacks->battery_level);
}
return LORAWAN_STATUS_OK;
}
lorawan_status_t LoRaWANStack::connect()
{
if (DEVICE_STATE_NOT_INITIALIZED == _device_current_state) {
tr_error("Stack not initialized!");
return LORAWAN_STATUS_NOT_INITIALIZED;
}
lorawan_status_t status = _loramac.prepare_join(NULL, MBED_CONF_LORA_OVER_THE_AIR_ACTIVATION);
if (LORAWAN_STATUS_OK != status) {
return status;
}
return handle_connect(MBED_CONF_LORA_OVER_THE_AIR_ACTIVATION);
}
lorawan_status_t LoRaWANStack::connect(const lorawan_connect_t &connect)
{
if (DEVICE_STATE_NOT_INITIALIZED == _device_current_state) {
tr_error("Stack not initialized!");
return LORAWAN_STATUS_NOT_INITIALIZED;
}
if (!(connect.connect_type == LORAWAN_CONNECTION_OTAA) &&
!(connect.connect_type == LORAWAN_CONNECTION_ABP)) {
return LORAWAN_STATUS_PARAMETER_INVALID;
}
bool is_otaa = (connect.connect_type == LORAWAN_CONNECTION_OTAA);
lorawan_status_t status = _loramac.prepare_join(&connect, is_otaa);
if (LORAWAN_STATUS_OK != status) {
return status;
}
return handle_connect(is_otaa);
}
lorawan_status_t LoRaWANStack::add_channels(const lorawan_channelplan_t &channel_plan)
{
if (_device_current_state == DEVICE_STATE_NOT_INITIALIZED) {
tr_error("Stack not initialized!");
return LORAWAN_STATUS_NOT_INITIALIZED;
}
return _loramac.add_channel_plan(channel_plan);
}
lorawan_status_t LoRaWANStack::remove_a_channel(uint8_t channel_id)
{
if (_device_current_state == DEVICE_STATE_NOT_INITIALIZED) {
tr_error("Stack not initialized!");
return LORAWAN_STATUS_NOT_INITIALIZED;
}
return _loramac.remove_single_channel(channel_id);
}
lorawan_status_t LoRaWANStack::drop_channel_list()
{
if (_device_current_state == DEVICE_STATE_NOT_INITIALIZED) {
tr_error("Stack not initialized!");
return LORAWAN_STATUS_NOT_INITIALIZED;
}
return _loramac.remove_channel_plan();
}
lorawan_status_t LoRaWANStack::get_enabled_channels(lorawan_channelplan_t& channel_plan)
{
if (_device_current_state == DEVICE_STATE_NOT_INITIALIZED) {
tr_error("Stack not initialized!");
return LORAWAN_STATUS_NOT_INITIALIZED;
}
return _loramac.get_channel_plan(channel_plan);
}
lorawan_status_t LoRaWANStack::set_confirmed_msg_retry(uint8_t count)
{
if (count >= MAX_CONFIRMED_MSG_RETRIES) {
return LORAWAN_STATUS_PARAMETER_INVALID;
}
_num_retry = count;
return LORAWAN_STATUS_OK;
}
lorawan_status_t LoRaWANStack::set_channel_data_rate(uint8_t data_rate)
{
if (DEVICE_STATE_NOT_INITIALIZED == _device_current_state)
{
tr_error("Stack not initialized!");
return LORAWAN_STATUS_NOT_INITIALIZED;
}
return _loramac.set_channel_data_rate(data_rate);
}
lorawan_status_t LoRaWANStack::enable_adaptive_datarate(bool adr_enabled)
{
if (_device_current_state == DEVICE_STATE_NOT_INITIALIZED)
{
tr_error("Stack not initialized!");
return LORAWAN_STATUS_NOT_INITIALIZED;
}
_loramac.enable_adaptive_datarate(adr_enabled);
return LORAWAN_STATUS_OK;
}
int16_t LoRaWANStack::handle_tx(const uint8_t port, const uint8_t* data,
uint16_t length, uint8_t flags,
bool null_allowed, bool allow_port_0)
{
if (!null_allowed && !data) {
return LORAWAN_STATUS_PARAMETER_INVALID;
}
// add a link check request with normal data, until the application
// explicitly removes it.
if (_link_check_requested) {
set_link_check_request();
}
if (!_lw_session.active) {
return LORAWAN_STATUS_NO_ACTIVE_SESSIONS;
}
if(_loramac.tx_ongoing()) {
return LORAWAN_STATUS_WOULD_BLOCK;
}
#if defined(LORAWAN_COMPLIANCE_TEST)
if (_compliance_test.running) {
return LORAWAN_STATUS_COMPLIANCE_TEST_ON;
}
#endif
lorawan_status_t status;
if (_loramac.nwk_joined() == false) {
return LORAWAN_STATUS_NO_NETWORK_JOINED;
}
status = set_application_port(port, allow_port_0);
if (status != LORAWAN_STATUS_OK) {
tr_error("Illegal application port definition.");
return status;
}
if (flags == 0 ||
(flags & MSG_FLAG_MASK) == (MSG_CONFIRMED_FLAG|MSG_UNCONFIRMED_FLAG)) {
tr_error("CONFIRMED and UNCONFIRMED are mutually exclusive for send()");
return LORAWAN_STATUS_PARAMETER_INVALID;
}
int16_t len = _loramac.prepare_ongoing_tx(port, data, length, flags, _num_retry);
status = state_controller(DEVICE_STATE_SCHEDULING);
// send user the length of data which is scheduled now.
// user should take care of the pending data.
return (status == LORAWAN_STATUS_OK) ? len : (int16_t) status;
}
int16_t LoRaWANStack::handle_rx(uint8_t* data, uint16_t length, uint8_t& port, int& flags, bool validate_params)
{
if (!_lw_session.active) {
return LORAWAN_STATUS_NO_ACTIVE_SESSIONS;
}
// No messages to read.
if (!_rx_msg.receive_ready) {
return LORAWAN_STATUS_WOULD_BLOCK;
}
#if defined(LORAWAN_COMPLIANCE_TEST)
if (_compliance_test.running) {
return LORAWAN_STATUS_COMPLIANCE_TEST_ON;
}
#endif
if (data == NULL || length == 0) {
return LORAWAN_STATUS_PARAMETER_INVALID;
}
int received_flags = convert_to_msg_flag(_rx_msg.msg.mcps_indication.type);
if (validate_params) {
// Check received message port and flags match with the ones requested by user
received_flags &= MSG_FLAG_MASK;
if (_rx_msg.msg.mcps_indication.port != port || !(flags & received_flags)) {
return LORAWAN_STATUS_WOULD_BLOCK;
}
}
// Report values back to user
port = _rx_msg.msg.mcps_indication.port;
flags = received_flags;
const uint8_t *base_ptr = _rx_msg.msg.mcps_indication.buffer;
uint16_t base_size = _rx_msg.msg.mcps_indication.buffer_size;
bool read_complete = false;
// check the length of received message whether we can fit into user
// buffer completely or not
if (_rx_msg.msg.mcps_indication.buffer_size > length &&
_rx_msg.prev_read_size == 0) {
// we can't fit into user buffer. Invoke counter measures
_rx_msg.pending_size = _rx_msg.msg.mcps_indication.buffer_size - length;
base_size = length;
_rx_msg.prev_read_size = base_size;
memcpy(data, base_ptr, base_size);
} else if (_rx_msg.prev_read_size == 0) {
_rx_msg.pending_size = 0;
_rx_msg.prev_read_size = 0;
memcpy(data, base_ptr, base_size);
read_complete = true;
}
// If its the pending read then we should copy only the remaining part of
// the buffer. Due to checks above, in case of a pending read, this block
// will be the only one to get invoked
if (_rx_msg.pending_size > 0 && _rx_msg.prev_read_size > 0) {
memcpy(data, base_ptr+_rx_msg.prev_read_size, base_size);
}
// we are done handing over received buffer to user. check if there is
// anything pending. If not, memset the buffer to zero and indicate
// that no read is in progress
if (read_complete) {
_rx_msg.msg.mcps_indication.buffer = NULL;
_rx_msg.msg.mcps_indication.buffer_size = 0;
_rx_msg.receive_ready = false;
}
return base_size;
}
lorawan_status_t LoRaWANStack::set_link_check_request()
{
_link_check_requested = true;
if (!_callbacks.link_check_resp) {
tr_error("Must assign a callback function for link check request. ");
return LORAWAN_STATUS_PARAMETER_INVALID;
}
_loramac.setup_link_check_request();
return LORAWAN_STATUS_OK;
}
void LoRaWANStack::remove_link_check_request()
{
_link_check_requested = false;
}
lorawan_status_t LoRaWANStack::shutdown()
{
return state_controller(DEVICE_STATE_SHUTDOWN);
}
lorawan_status_t LoRaWANStack::set_device_class(const device_class_t& device_class)
{
if (device_class == CLASS_B) {
return LORAWAN_STATUS_UNSUPPORTED;
}
_loramac.set_device_class(device_class);
return LORAWAN_STATUS_OK;
}
/*****************************************************************************
* Interrupt handlers *
****************************************************************************/
void LoRaWANStack::tx_interrupt_handler(void)
{
const int ret = _queue->call(this, &LoRaWANStack::process_transmission);
MBED_ASSERT(ret != 0);
(void)ret;
}
void LoRaWANStack::rx_interrupt_handler(const uint8_t *payload, uint16_t size,
int16_t rssi, int8_t snr)
{
if (!_ready_for_rx || size > sizeof _rx_payload) {
return;
}
_ready_for_rx = false;
memcpy(_rx_payload, payload, size);
const uint8_t *ptr = _rx_payload;
const int ret = _queue->call(this, &LoRaWANStack::process_reception,
ptr, size, rssi, snr);
MBED_ASSERT(ret != 0);
(void)ret;
}
void LoRaWANStack::rx_error_interrupt_handler(void)
{
const int ret = _queue->call(this, &LoRaWANStack::process_reception_timeout,
false);
MBED_ASSERT(ret != 0);
(void)ret;
}
void LoRaWANStack::tx_timeout_interrupt_handler(void)
{
const int ret = _queue->call(this, &LoRaWANStack::process_transmission_timeout);
MBED_ASSERT(ret != 0);
(void)ret;
}
void LoRaWANStack::rx_timeout_interrupt_handler(void)
{
const int ret = _queue->call(this, &LoRaWANStack::process_reception_timeout,
true);
MBED_ASSERT(ret != 0);
(void)ret;
}
/*****************************************************************************
* Processors for deferred interrupts *
****************************************************************************/
void LoRaWANStack::process_transmission_timeout()
{
// this is a fatal error and should not happen
tr_debug("TX Timeout");
_loramac.on_radio_tx_timeout();
_ctrl_flags &= ~TX_ONGOING_FLAG;
_ctrl_flags |= TX_DONE_FLAG;
state_controller(DEVICE_STATE_STATUS_CHECK);
state_machine_run_to_completion();
}
void LoRaWANStack::process_transmission(void)
{
_loramac.on_radio_tx_done();
tr_debug("Transmission completed");
if (_device_current_state == DEVICE_STATE_JOINING) {
_device_current_state = DEVICE_STATE_AWAITING_JOIN_ACCEPT;
}
if (_device_current_state == DEVICE_STATE_SENDING) {
if (_loramac.get_mcps_confirmation()->req_type == MCPS_CONFIRMED) {
_ctrl_flags |= TX_ONGOING_FLAG;
_ctrl_flags &= ~TX_DONE_FLAG;
_device_current_state = DEVICE_STATE_AWAITING_ACK;
return;
}
// Class A unconfirmed message sent, TX_DONE event will be sent to
// application when RX2 windows is elapsed, i.e., in process_reception_timeout()
_ctrl_flags &= ~TX_ONGOING_FLAG;
_ctrl_flags |= TX_DONE_FLAG;
// In Class C, reception timeout never happens, so we handle the state
// progression here
if (_loramac.get_device_class() == CLASS_C) {
_loramac.post_process_mcps_req();
state_controller(DEVICE_STATE_STATUS_CHECK);
state_machine_run_to_completion();
}
}
}
void LoRaWANStack::process_reception(const uint8_t* const payload, uint16_t size,
int16_t rssi, int8_t snr)
{
_device_current_state = DEVICE_STATE_RECEIVING;
_ctrl_flags &= ~MSG_RECVD_FLAG;
_loramac.on_radio_rx_done(payload, size, rssi, snr);
if (_loramac.get_mlme_confirmation()->pending) {
_loramac.post_process_mlme_request();
mlme_confirm_handler();
}
if (_loramac.nwk_joined()) {
if (_loramac.get_mcps_confirmation()->req_type == MCPS_CONFIRMED) {
// if ack was not received, we will try retransmission after
// ACK_TIMEOUT. handle_data_frame() already disables ACK_TIMEOUT timer
// if ack was received
if (_loramac.get_mcps_indication()->is_ack_recvd) {
tr_debug("Ack=OK, NbTrials=%d", _loramac.get_mcps_confirmation()->nb_retries);
_loramac.post_process_mcps_req();
_ctrl_flags |= TX_DONE_FLAG;
state_controller(DEVICE_STATE_STATUS_CHECK);
}
} else {
// handle UNCONFIRMED case here, RX slots were turned off due to
// valid packet reception
_loramac.post_process_mcps_req();
_ctrl_flags |= TX_DONE_FLAG;
state_controller(DEVICE_STATE_STATUS_CHECK);
}
// handle any pending MCPS indication
if (_loramac.get_mcps_indication()->pending) {
_loramac.post_process_mcps_ind();
_ctrl_flags |= MSG_RECVD_FLAG;
state_controller(DEVICE_STATE_STATUS_CHECK);
}
// change the state only if a TX cycle completes for Class A
// For class C it's not needed as it will already be in receiving
// state, no matter if the TX cycle completed or not.
if (!(_ctrl_flags & TX_ONGOING_FLAG)) {
// we are done here, update the state
state_machine_run_to_completion();
}
if (_loramac.get_mlme_indication()->pending) {
tr_debug("MLME Indication pending");
_loramac.post_process_mlme_ind();
tr_debug("Automatic uplink requested");
mlme_indication_handler();
}
}
_ready_for_rx = true;
}
void LoRaWANStack::process_reception_timeout(bool is_timeout)
{
// when is_timeout == false, a CRC error took place in the received frame
// we treat that erroneous frame as no frame received at all, hence handle
// it exactly as we would handle timeout
rx_slot_t slot = _loramac.on_radio_rx_timeout(is_timeout);
if (slot == RX_SLOT_WIN_2 && !_loramac.nwk_joined()) {
state_controller(DEVICE_STATE_JOINING);
return;
}
/**
* LoRaWAN Specification 1.0.2. Section 3.3.6
* Main point:
* We indicate successful transmission
* of UNCONFIRMED message after RX windows are done with.
* For a CONFIRMED message, it means that we have not received
* ack (actually nothing was received), and we should retransmit if we can.
*/
if (slot == RX_SLOT_WIN_2) {
_loramac.post_process_mcps_req();
if (_loramac.get_mcps_confirmation()->req_type == MCPS_CONFIRMED
&& _loramac.continue_sending_process()) {
return;
}
state_controller(DEVICE_STATE_STATUS_CHECK);
state_machine_run_to_completion();
}
}
/*****************************************************************************
* Private methods *
****************************************************************************/
bool LoRaWANStack::is_port_valid(const uint8_t port, bool allow_port_0)
{
//Application should not use reserved and illegal port numbers.
if (port == 0) {
return allow_port_0;
} else {
return true;
}
}
lorawan_status_t LoRaWANStack::set_application_port(const uint8_t port, bool allow_port_0)
{
if (is_port_valid(port, allow_port_0)) {
_app_port = port;
return LORAWAN_STATUS_OK;
}
return LORAWAN_STATUS_PORT_INVALID;
}
void LoRaWANStack::state_machine_run_to_completion()
{
if (_loramac.get_device_class() == CLASS_C) {
_device_current_state = DEVICE_STATE_RECEIVING;
return;
}
_device_current_state = DEVICE_STATE_IDLE;
}
void LoRaWANStack::send_event_to_application(const lorawan_event_t event) const
{
if (_callbacks.events) {
const int ret = _queue->call(_callbacks.events, event);
MBED_ASSERT(ret != 0);
(void)ret;
}
}
void LoRaWANStack::send_automatic_uplink_message(const uint8_t port)
{
const int16_t ret = handle_tx(port, NULL, 0, MSG_CONFIRMED_FLAG, true, true);
if (ret < 0) {
send_event_to_application(AUTOMATIC_UPLINK_ERROR);
}
}
int LoRaWANStack::convert_to_msg_flag(const mcps_type_t type)
{
int msg_flag = MSG_UNCONFIRMED_FLAG;
switch (type) {
case MCPS_UNCONFIRMED:
msg_flag = MSG_UNCONFIRMED_FLAG;
break;
case MCPS_CONFIRMED:
msg_flag = MSG_CONFIRMED_FLAG;
break;
case MCPS_MULTICAST:
msg_flag = MSG_MULTICAST_FLAG;
break;
case MCPS_PROPRIETARY:
msg_flag = MSG_PROPRIETARY_FLAG;
break;
default:
tr_error("Unknown message type!");
MBED_ASSERT(0);
}
return msg_flag;
}
lorawan_status_t LoRaWANStack::handle_connect(bool is_otaa)
{
if (is_otaa) {
tr_debug("Initiating OTAA");
// In 1.0.2 spec, counters are always set to zero for new connection.
// This section is common for both normal and
// connection restore at this moment. Will change in future with 1.1 support.
_lw_session.downlink_counter = 0;
_lw_session.uplink_counter = 0;
_ctrl_flags |= USING_OTAA_FLAG;
} else {
// If current state is SHUTDOWN, device may be trying to re-establish
// communication. In case of ABP specification is meddled about frame counters.
// It says to reset counters to zero but there is no mechanism to tell the
// network server that the device was disconnected or restarted.
// At the moment, this implementation does not support a non-volatile
// memory storage.
//_lw_session.downlink_counter; //Get from NVM
//_lw_session.uplink_counter; //Get from NVM
tr_debug("Initiating ABP");
tr_debug("Frame Counters. UpCnt=%lu, DownCnt=%lu",
_lw_session.uplink_counter, _lw_session.downlink_counter);
_ctrl_flags &= ~USING_OTAA_FLAG;
}
return state_controller(DEVICE_STATE_CONNECTING);
}
void LoRaWANStack::mlme_indication_handler()
{
if (_loramac.get_mlme_indication()->indication_type == MLME_SCHEDULE_UPLINK) {
// The MAC signals that we shall provide an uplink as soon as possible
#if MBED_CONF_LORA_AUTOMATIC_UPLINK_MESSAGE
_automatic_uplink_ongoing = true;
tr_debug("mlme indication: sending empty uplink to port 0 to acknowledge MAC commands...");
send_automatic_uplink_message(0);
#else
send_event_to_application(UPLINK_REQUIRED);
#endif
return;
}
tr_error("Unknown MLME Indication type.");
}
void LoRaWANStack::mlme_confirm_handler()
{
if (_loramac.get_mlme_confirmation()->req_type == MLME_LINK_CHECK) {
if (_loramac.get_mlme_confirmation()->status == LORAMAC_EVENT_INFO_STATUS_OK) {
#if defined(LORAWAN_COMPLIANCE_TEST)
if (_compliance_test.running == true) {
_compliance_test.link_check = true;
_compliance_test.demod_margin = _loramac.get_mlme_confirmation()->demod_margin;
_compliance_test.nb_gateways = _loramac.get_mlme_confirmation()->nb_gateways;
} else
#endif
{
if (_callbacks.link_check_resp) {
const int ret = _queue->call(_callbacks.link_check_resp,
_loramac.get_mlme_confirmation()->demod_margin,
_loramac.get_mlme_confirmation()->nb_gateways);
MBED_ASSERT(ret != 0);
(void)ret;
}
}
}
} else if (_loramac.get_mlme_confirmation()->req_type == MLME_JOIN) {
if (_loramac.get_mlme_confirmation()->status == LORAMAC_EVENT_INFO_STATUS_OK) {
state_controller(DEVICE_STATE_CONNECTED);
} else {
tr_error("Joining error: %d", _loramac.get_mlme_confirmation()->status);
_device_current_state = DEVICE_STATE_AWAITING_JOIN_ACCEPT;
state_controller(DEVICE_STATE_JOINING);
}
}
}
void LoRaWANStack::mcps_confirm_handler()
{
// success case
if (_loramac.get_mcps_confirmation()->status == LORAMAC_EVENT_INFO_STATUS_OK) {
_lw_session.uplink_counter = _loramac.get_mcps_confirmation()->ul_frame_counter;
send_event_to_application(TX_DONE);
return;
}
// failure case
tr_error("mcps_confirmation: Error code = %d", _loramac.get_mcps_confirmation()->status);
if (_loramac.get_mcps_confirmation()->status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT) {
send_event_to_application(TX_TIMEOUT);
return;
}
// if no ack was received, send TX_ERROR
send_event_to_application(TX_ERROR);
}
void LoRaWANStack::mcps_indication_handler()
{
const loramac_mcps_indication_t *mcps_indication = _loramac.get_mcps_indication();
if (mcps_indication->status != LORAMAC_EVENT_INFO_STATUS_OK) {
tr_error("RX_ERROR: mcps_indication status = %d", mcps_indication->status);
send_event_to_application(RX_ERROR);
return;
}
_lw_session.downlink_counter = mcps_indication->dl_frame_counter;
#if defined(LORAWAN_COMPLIANCE_TEST)
if (_compliance_test.running == true) {
_compliance_test.downlink_counter++;
}
#endif
if (mcps_indication->port == 224) {
#if defined(LORAWAN_COMPLIANCE_TEST)
tr_debug("Compliance test command received.");
compliance_test_handler(mcps_indication);
#else
tr_info("Compliance test disabled.");
#endif
} else {
if (mcps_indication->is_data_recvd) {
// Valid message arrived.
_rx_msg.type = LORAMAC_RX_MCPS_INDICATION;
_rx_msg.msg.mcps_indication.buffer_size = mcps_indication->buffer_size;
_rx_msg.msg.mcps_indication.port = mcps_indication->port;
_rx_msg.msg.mcps_indication.buffer = mcps_indication->buffer;
_rx_msg.msg.mcps_indication.type = mcps_indication->type;
// Notify application about received frame..
tr_debug("Packet Received %d bytes",
_rx_msg.msg.mcps_indication.buffer_size);
_rx_msg.receive_ready = true;
send_event_to_application(RX_DONE);
}
/*
* If fPending bit is set we try to generate an empty packet
* with CONFIRMED flag set. We always set a CONFIRMED flag so
* that we could retry a certain number of times if the uplink
* failed for some reason
* or
* Class C and node received a confirmed message so we need to
* send an empty packet to acknowledge the message.
* This scenario is unspecified by LoRaWAN 1.0.2 specification,
* but version 1.1.0 says that network SHALL not send any new
* confirmed messages until ack has been sent
*/
if ((_loramac.get_device_class() != CLASS_C && mcps_indication->fpending_status)
||
(_loramac.get_device_class() == CLASS_C && mcps_indication->type == MCPS_CONFIRMED)) {
#if (MBED_CONF_LORA_AUTOMATIC_UPLINK_MESSAGE)
tr_debug("Sending empty uplink message...");
_automatic_uplink_ongoing = true;
send_automatic_uplink_message(mcps_indication->port);
#else
send_event_to_application(UPLINK_REQUIRED);
#endif
}
}
}
lorawan_status_t LoRaWANStack::state_controller(device_states_t new_state)
{
lorawan_status_t status = LORAWAN_STATUS_OK;
switch (new_state) {
case DEVICE_STATE_IDLE:
process_idle_state(status);
break;
case DEVICE_STATE_CONNECTING:
process_connecting_state(status);
break;
case DEVICE_STATE_JOINING:
process_joining_state(status);
break;
case DEVICE_STATE_CONNECTED:
process_connected_state();
break;
case DEVICE_STATE_SCHEDULING:
process_scheduling_state(status);
break;
case DEVICE_STATE_STATUS_CHECK:
process_status_check_state();
break;
case DEVICE_STATE_SHUTDOWN:
process_shutdown_state(status);
break;
default:
tr_debug("state_controller: Unknown state!");
status = LORAWAN_STATUS_SERVICE_UNKNOWN;
break;
}
return status;
}
void LoRaWANStack::process_shutdown_state(lorawan_status_t& op_status)
{
/**
* Remove channels
* Radio will be put to sleep by the APIs underneath
*/
drop_channel_list();
_loramac.disconnect();
_lw_session.active = false;
_device_current_state = DEVICE_STATE_SHUTDOWN;
op_status = LORAWAN_STATUS_DEVICE_OFF;
_ctrl_flags &= ~CONNECTED_FLAG;
send_event_to_application(DISCONNECTED);
}
void LoRaWANStack::process_status_check_state()
{
if (_device_current_state == DEVICE_STATE_SENDING ||
_device_current_state == DEVICE_STATE_AWAITING_ACK) {
// this happens after RX2 slot is exhausted
// we may or may not have a successful UNCONFIRMED transmission
// here. In CONFIRMED case this block is invoked only
// when the MAX number of retries are exhausted, i.e., only error
// case will fall here.
_ctrl_flags &= ~TX_DONE_FLAG;
_ctrl_flags &= ~TX_ONGOING_FLAG;
_loramac.set_tx_ongoing(false);
_loramac.reset_ongoing_tx();
mcps_confirm_handler();
} else if (_device_current_state == DEVICE_STATE_RECEIVING) {
if (_ctrl_flags & TX_DONE_FLAG) {
// for CONFIRMED case, ack validity is already checked
_ctrl_flags &= ~TX_DONE_FLAG;
_ctrl_flags &= ~TX_ONGOING_FLAG;
_loramac.set_tx_ongoing(false);
_loramac.reset_ongoing_tx();
// if an automatic uplink is ongoing, we should not send a TX_DONE
// event to application
if (_automatic_uplink_ongoing) {
_automatic_uplink_ongoing = false;
} else {
mcps_confirm_handler();
}
}
// handle any received data and send event accordingly
if (_ctrl_flags & MSG_RECVD_FLAG) {
_ctrl_flags &= ~MSG_RECVD_FLAG;
mcps_indication_handler();
}
}
}
void LoRaWANStack::process_scheduling_state(lorawan_status_t& op_status)
{
if (_device_current_state != DEVICE_STATE_IDLE) {
if (_device_current_state != DEVICE_STATE_RECEIVING
&& _loramac.get_device_class() != CLASS_C) {
op_status = LORAWAN_STATUS_BUSY;
return;
}
}
op_status = _loramac.send_ongoing_tx();
if (op_status == LORAWAN_STATUS_OK) {
_ctrl_flags |= TX_ONGOING_FLAG;
_ctrl_flags &= ~TX_DONE_FLAG;
_loramac.set_tx_ongoing(true);
_device_current_state = DEVICE_STATE_SENDING;
}
}
void LoRaWANStack::process_joining_state(lorawan_status_t& op_status)
{
if (_device_current_state == DEVICE_STATE_CONNECTING) {
_device_current_state = DEVICE_STATE_JOINING;
tr_debug("Sending Join Request ...");
op_status = _loramac.join(true);
return;
}
if (_device_current_state == DEVICE_STATE_AWAITING_JOIN_ACCEPT) {
_device_current_state = DEVICE_STATE_JOINING;
// retry join
bool can_continue = _loramac.continue_joining_process();
if (!can_continue) {
send_event_to_application(JOIN_FAILURE);
_device_current_state = DEVICE_STATE_IDLE;
return;
}
}
}
void LoRaWANStack::process_connected_state()
{
if (_ctrl_flags & USING_OTAA_FLAG) {
tr_debug("OTAA Connection OK!");
}
_lw_session.active = true;
send_event_to_application(CONNECTED);
_ctrl_flags |= CONNECTED_FLAG;
_device_current_state = DEVICE_STATE_IDLE;
}
void LoRaWANStack::process_connecting_state(lorawan_status_t& op_status)
{
if (_device_current_state != DEVICE_STATE_IDLE
&&
_device_current_state != DEVICE_STATE_SHUTDOWN) {
op_status = LORAWAN_STATUS_BUSY;
return;
}
if (_ctrl_flags & CONNECTED_FLAG) {
tr_debug("Already connected");
op_status = LORAWAN_STATUS_OK;
return;
}
_device_current_state = DEVICE_STATE_CONNECTING;
if (_ctrl_flags & USING_OTAA_FLAG) {
process_joining_state(op_status);
return;
}
op_status = _loramac.join(false);
tr_debug("ABP connection OK.");
process_connected_state();
}
void LoRaWANStack::process_idle_state(lorawan_status_t& op_status)
{
if (_device_current_state == DEVICE_STATE_NOT_INITIALIZED) {
_device_current_state = DEVICE_STATE_IDLE;
process_uninitialized_state(op_status);
return;
}
_device_current_state = DEVICE_STATE_IDLE;
op_status = LORAWAN_STATUS_OK;
}
void LoRaWANStack::process_uninitialized_state(lorawan_status_t& op_status)
{
op_status = _loramac.initialize(_queue);
if (op_status == LORAWAN_STATUS_OK) {
_device_current_state = DEVICE_STATE_IDLE;
}
}
#if defined(LORAWAN_COMPLIANCE_TEST)
lorawan_status_t LoRaWANStack::send_compliance_test_frame_to_mac()
{
loramac_compliance_test_req_t test_req;
//TODO: What if the port is not 224 ???
if (_compliance_test.app_port == 224) {
// Clear any normal message stuff before compliance test.
memset(&test_req, 0, sizeof(test_req));
if (_compliance_test.link_check == true) {
_compliance_test.link_check = false;
_compliance_test.state = 1;
test_req.f_buffer_size = 3;
test_req.f_buffer[0] = 5;
test_req.f_buffer[1] = _compliance_test.demod_margin;
test_req.f_buffer[2] = _compliance_test.nb_gateways;
} else {
switch (_compliance_test.state) {
case 4:
_compliance_test.state = 1;
test_req.f_buffer_size = _compliance_test.app_data_size;
test_req.f_buffer[0] = _compliance_test.app_data_buffer[0];
for(uint8_t i = 1; i < MIN(_compliance_test.app_data_size, MBED_CONF_LORA_TX_MAX_SIZE); ++i) {
test_req.f_buffer[i] = _compliance_test.app_data_buffer[i];
}
break;
case 1:
test_req.f_buffer_size = 2;
test_req.f_buffer[0] = _compliance_test.downlink_counter >> 8;
test_req.f_buffer[1] = _compliance_test.downlink_counter;
break;
}
}
}
//TODO: If port is not 224, this might not work!
//Is there a test case where same _tx_msg's buffer would be used, when port is not 224???
if (!_compliance_test.is_tx_confirmed) {
test_req.type = MCPS_UNCONFIRMED;
test_req.fport = _compliance_test.app_port;
test_req.nb_trials = 1;
test_req.data_rate = _loramac.get_default_tx_datarate();
tr_info("Transmit unconfirmed compliance test frame %d bytes.", test_req.f_buffer_size);
for (uint8_t i = 0; i < test_req.f_buffer_size; ++i) {
tr_info("Byte %d, data is 0x%x", i+1, ((uint8_t*)test_req.f_buffer)[i]);
}
} else if (_compliance_test.is_tx_confirmed) {
test_req.type = MCPS_CONFIRMED;
test_req.fport = _compliance_test.app_port;
test_req.nb_trials = _num_retry;
test_req.data_rate = _loramac.get_default_tx_datarate();
tr_info("Transmit confirmed compliance test frame %d bytes.", test_req.f_buffer_size);
for (uint8_t i = 0; i < test_req.f_buffer_size; ++i) {
tr_info("Byte %d, data is 0x%x", i+1, ((uint8_t*)test_req.f_buffer)[i]);
}
} else {
return LORAWAN_STATUS_SERVICE_UNKNOWN;
}
return _loramac.test_request(&test_req);
}
void LoRaWANStack::compliance_test_handler(loramac_mcps_indication_t *mcps_indication)
{
if (_compliance_test.running == false) {
// Check compliance test enable command (i)
if ((mcps_indication->buffer_size == 4) &&
(mcps_indication->buffer[0] == 0x01) &&
(mcps_indication->buffer[1] == 0x01) &&
(mcps_indication->buffer[2] == 0x01) &&
(mcps_indication->buffer[3] == 0x01)) {
_compliance_test.is_tx_confirmed = false;
_compliance_test.app_port = 224;
_compliance_test.app_data_size = 2;
_compliance_test.downlink_counter = 0;
_compliance_test.link_check = false;
_compliance_test.demod_margin = 0;
_compliance_test.nb_gateways = 0;
_compliance_test.running = true;
_compliance_test.state = 1;
_loramac.enable_adaptive_datarate(true);
#if MBED_CONF_LORA_PHY == 0
_loramac.LoRaMacTestSetDutyCycleOn(false);
#endif
//5000ms
_loramac.LoRaMacSetTxTimer(5000);
//TODO: Should we call lora_state_machine here instead of just setting the state?
_device_current_state = DEVICE_STATE_COMPLIANCE_TEST;
// lora_state_machine(DEVICE_STATE_COMPLIANCE_TEST);
tr_debug("Compliance test activated.");
}
} else {
_compliance_test.state = mcps_indication->buffer[0];
switch (_compliance_test.state) {
case 0: // Check compliance test disable command (ii)
_compliance_test.is_tx_confirmed = true;
_compliance_test.app_port = MBED_CONF_LORA_APP_PORT;
_compliance_test.app_data_size = LORAWAN_COMPLIANCE_TEST_DATA_SIZE;
_compliance_test.downlink_counter = 0;
_compliance_test.running = false;
_loramac.enable_adaptive_datarate(MBED_CONF_LORA_ADR_ON);
#if MBED_CONF_LORA_PHY == 0
_loramac.LoRaMacTestSetDutyCycleOn(MBED_CONF_LORA_DUTY_CYCLE_ON);
#endif
// Go to idle state after compliance test mode.
tr_debug("Compliance test disabled.");
_loramac.LoRaMacStopTxTimer();
// Clear any compliance test message stuff before going back to normal operation.
_loramac.reset_ongoing_tx();
lora_state_machine(DEVICE_STATE_IDLE);
break;
case 1: // (iii, iv)
_compliance_test.app_data_size = 2;
break;
case 2: // Enable confirmed messages (v)
_compliance_test.is_tx_confirmed = true;
_compliance_test.state = 1;
break;
case 3: // Disable confirmed messages (vi)
_compliance_test.is_tx_confirmed = false;
_compliance_test.state = 1;
break;
case 4: // (vii)
_compliance_test.app_data_size = mcps_indication->buffer_size;
_compliance_test.app_data_buffer[0] = 4;
for(uint8_t i = 1; i < MIN(_compliance_test.app_data_size, LORAMAC_PHY_MAXPAYLOAD); ++i) {
_compliance_test.app_data_buffer[i] = mcps_indication->buffer[i] + 1;
}
send_compliance_test_frame_to_mac();
break;
case 5: // (viii)
_loramac.setup_link_check_request();
break;
case 6: // (ix)
// Disable TestMode and revert back to normal operation
_compliance_test.is_tx_confirmed = true;
_compliance_test.app_port = MBED_CONF_LORA_APP_PORT;
_compliance_test.app_data_size = LORAWAN_COMPLIANCE_TEST_DATA_SIZE;
_compliance_test.downlink_counter = 0;
_compliance_test.running = false;
_loramac.enable_adaptive_datarate(MBED_CONF_LORA_ADR_ON);
#if MBED_CONF_LORA_PHY == 0
_loramac.LoRaMacTestSetDutyCycleOn(MBED_CONF_LORA_DUTY_CYCLE_ON);
#endif
_loramac.join(true);
break;
case 7: // (x)
if (mcps_indication->buffer_size == 3) {
loramac_mlme_req_t mlme_req;
mlme_req.type = MLME_TXCW;
mlme_req.cw_tx_mode.timeout = (uint16_t)((mcps_indication->buffer[1] << 8) | mcps_indication->buffer[2]);
_loramac.mlme_request(&mlme_req);
} else if (mcps_indication->buffer_size == 7) {
loramac_mlme_req_t mlme_req;
mlme_req.type = MLME_TXCW_1;
mlme_req.cw_tx_mode.timeout = (uint16_t)((mcps_indication->buffer[1] << 8) | mcps_indication->buffer[2]);
mlme_req.cw_tx_mode.frequency = (uint32_t)((mcps_indication->buffer[3] << 16) | (mcps_indication->buffer[4] << 8)
| mcps_indication->buffer[5]) * 100;
mlme_req.cw_tx_mode.power = mcps_indication->buffer[6];
_loramac.mlme_request(&mlme_req);
}
_compliance_test.state = 1;
break;
}
}
}
#endif