mbed-os/features/FEATURE_BLE/targets/TARGET_STM/stm32wb_HCIDriver.cpp

902 lines
30 KiB
C++
Raw Blame History

/*
* Copyright (c) 2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include "CordioBLE.h"
#include "CordioHCIDriver.h"
#include "CordioHCITransportDriver.h"
#include "mbed.h"
#include "hci_api.h"
#include "hci_cmd.h"
#include "hci_core.h"
#include "dm_api.h"
#include "bstream.h"
#include "hci_mbed_os_adaptation.h"
#include "mbed-trace/mbed_trace.h"
/* STM32WB include files */
#include "stm32wbxx_ll_ipcc.h"
#include "stm32wbxx_ll_system.h"
#include "tl.h"
#include "shci.h"
#include "shci_tl.h"
#include "hw.h"
#include "app_conf.h"
#include "otp.h"
#define TRACE_GROUP "BLE_WB"
/******************************************************************************
* BLE config parameters
******************************************************************************/
/* Defined from WB Cube reference SW */
#define CFG_TLBLE_EVT_QUEUE_LENGTH 5
#define CFG_TLBLE_MOST_EVENT_PAYLOAD_SIZE 255 /**< Set to 255 with the memory manager and the mailbox */
#define TL_BLE_EVENT_FRAME_SIZE ( TL_EVT_HDR_SIZE + CFG_TLBLE_MOST_EVENT_PAYLOAD_SIZE )
#define POOL_SIZE (CFG_TLBLE_EVT_QUEUE_LENGTH*4*DIVC(( sizeof(TL_PacketHeader_t) + TL_BLE_EVENT_FRAME_SIZE ), 4))
#define CONFIG_DATA_PUBADDR_OFFSET (0x00) /**< Bluetooth public address */
#define CONFIG_DATA_PUBADDR_LEN (6)
/* HCI related defines */
#define HCI_RESET_RAND_CNT 4
#define VENDOR_SPECIFIC_EVENT 0xFF
#define ACI_HAL_SET_TX_POWER_LEVEL 0xFC0F
#define ACI_WRITE_CONFIG_DATA_OPCODE 0xFC0C
#define ACI_READ_CONFIG_DATA_OPCODE 0xFC0D
#define MAX_HCI_ACL_PACKET_SIZE (sizeof(TL_PacketHeader_t) + 5 + 251)
#define MAX_HACI_EVT_SIZE (255+5)
/* activate to add debug traces */
#define PRINT_HCI_DATA 1
/******************************************************************************
* BLE config parameters
******************************************************************************/
static void evt_received(TL_EvtPacket_t *hcievt);
static void syscmd_status_not( SHCI_TL_CmdStatus_t status );
static void sysevt_received(void *pdata);
static void acl_data_ack(void);
static bool acl_data_wait(void);
static void init_debug( void );
static bool get_bd_address( uint8_t* bd_addr );
static bool sysevt_wait( void);
namespace ble {
namespace vendor {
namespace stm32wb {
/**
* stm32wb HCI driver implementation
* @see cordio::CordioHCIDriver
*/
class HCIDriver : public cordio::CordioHCIDriver
{
public:
/**
* Construction of the HCIDriver.
* @param transport: Transport of the HCI commands.
* @param rst: Name of the reset pin
*/
HCIDriver(
cordio::CordioHCITransportDriver& transport_driver
) : cordio::CordioHCIDriver(transport_driver) { }
virtual cordio::buf_pool_desc_t get_buffer_pool_description();
/**
* @see CordioHCIDriver::do_initialize
*/
virtual void do_initialize() {
// Nothig needed, init is only at transpot layer level
}
/**
* @see CordioHCIDriver::do_terminate
*/
virtual void do_terminate() {
// Nothig needed, init is only at transpot layer level
}
/**
* @see CordioHCIDriver::start_reset_sequence
*/
virtual void start_reset_sequence() {
/* send an HCI Reset command to start the sequence */
HciResetCmd();
}
/**
* @see CordioHCIDriver::handle_reset_sequence
*/
virtual void handle_reset_sequence(uint8_t *pMsg) {
uint16_t opcode;
static uint8_t randCnt;
/* if event is a command complete event */
if (*pMsg == HCI_CMD_CMPL_EVT)
{
#if (PRINT_HCI_DATA == 1)
tr_debug("Command complete event\r\n");
tr_debug("Command >> ");
for (uint8_t i = 0; i < 20; i++) {
tr_debug("%2X ", *((uint8_t *)pMsg + i));
}
tr_debug("\r\n");
/* parse parameters */
tr_debug("HCI_EVT_HDR_LEN=%d\r\n", HCI_EVT_HDR_LEN);
#endif
pMsg += HCI_EVT_HDR_LEN;
pMsg++; /* skip num packets */
BSTREAM_TO_UINT16(opcode, pMsg);
pMsg++; /* skip status */
/* decode opcode */
switch (opcode) {
case HCI_OPCODE_RESET:
/* initialize rand command count */
randCnt = 0;
tr_debug("WB Reset Received\r\n");
/* Once reset complete evet is received we need
* to send a few more commands:
* Tx power and set bd addr
*/
if(get_bd_address(bd_addr)) {
aciWriteConfigData(CONFIG_DATA_PUBADDR_OFFSET, bd_addr);
tr_debug("Setting Bdaddr: %2x:%2x:%2x:%2x:%2x:%2x\r\n",
bd_addr[0],
bd_addr[1],
bd_addr[2],
bd_addr[3],
bd_addr[4],
bd_addr[5]);
} else {
tr_debug("couldn't find BDaddr\r\n");
/* Skip to next step */
aciSetTxPowerLevel();
}
break;
case ACI_WRITE_CONFIG_DATA_OPCODE:
tr_debug("BD address set\r\n");
/* set the event mask to control which events are generated by the
* controller for the host */
tr_debug("ACI_HAL_SET_TX_POWER_LEVEL\r\n");
aciSetTxPowerLevel();
break;
case ACI_HAL_SET_TX_POWER_LEVEL:
tr_debug("Tx Power Level set\r\n");
//signal_reset_sequence_done();
HciSetEventMaskCmd((uint8_t *) hciEventMask);
break;
case HCI_OPCODE_SET_EVENT_MASK:
// set the event mask to control which LE events are generated by
// the controller for the host
HciLeSetEventMaskCmd((uint8_t *) hciLeEventMask);
break;
case HCI_OPCODE_LE_SET_EVENT_MASK:
/* below command is not supported */
#if COMMAND_NOT_SUPPORTED_SKIP_STEP
// set the event mask to control which events are generated by the
// controller for the host (2nd page of flags )
HciSetEventMaskPage2Cmd((uint8_t *) hciEventMaskPage2);
break;
case HCI_OPCODE_SET_EVENT_MASK_PAGE2:
#endif
// Ask the Bluetooth address of the controller
HciReadBdAddrCmd();
break;
case HCI_OPCODE_READ_BD_ADDR:
// Store the Bluetooth address in the stack runtime parameter
BdaCpy(hciCoreCb.bdAddr, pMsg);
// Read the size of the buffer of the controller
HciLeReadBufSizeCmd();
break;
case HCI_OPCODE_LE_READ_BUF_SIZE:
// Store the buffer parameters in the stack runtime parameters
BSTREAM_TO_UINT16(hciCoreCb.bufSize, pMsg);
BSTREAM_TO_UINT8(hciCoreCb.numBufs, pMsg);
/* initialize ACL buffer accounting */
hciCoreCb.availBufs = hciCoreCb.numBufs;
// read the states and state combinations supported by the link
// layer of the controller
HciLeReadSupStatesCmd();
break;
case HCI_OPCODE_LE_READ_SUP_STATES:
// store supported state and combination in the runtime parameters
// of the stack
memcpy(hciCoreCb.leStates, pMsg, HCI_LE_STATES_LEN);
// read the total of whitelist entries that can be stored in the
// controller.
HciLeReadWhiteListSizeCmd();
break;
case HCI_OPCODE_LE_READ_WHITE_LIST_SIZE:
// store the number of whitelist entries in the stack runtime
// parameters
BSTREAM_TO_UINT8(hciCoreCb.whiteListSize, pMsg);
// Read the LE features supported by the controller
HciLeReadLocalSupFeatCmd();
break;
case HCI_OPCODE_LE_READ_LOCAL_SUP_FEAT:
// Store the set of LE features supported by the controller
BSTREAM_TO_UINT16(hciCoreCb.leSupFeat, pMsg);
// read the total number of address translation entries which can be
// stored in the controller resolving list.
hciCoreReadResolvingListSize();
break;
case HCI_OPCODE_LE_READ_RES_LIST_SIZE:
// store the number of address translation entries in the stack
// runtime parameter
BSTREAM_TO_UINT8(hciCoreCb.resListSize, pMsg);
// read the Controller<65>s maximum supported payload octets and packet
// duration times for transmission and reception
hciCoreReadMaxDataLen();
break;
case HCI_OPCODE_LE_READ_MAX_DATA_LEN:
{
// store payload definition in the runtime stack parameters.
uint16_t maxTxOctets;
uint16_t maxTxTime;
BSTREAM_TO_UINT16(maxTxOctets, pMsg);
BSTREAM_TO_UINT16(maxTxTime, pMsg);
/* use Controller's maximum supported payload octets and packet duration times
* for transmission as Host's suggested values for maximum transmission number
* of payload octets and maximum packet transmission time for new connections.
*/
HciLeWriteDefDataLen(maxTxOctets, maxTxTime);
}
break;
case HCI_OPCODE_LE_WRITE_DEF_DATA_LEN:
if (hciCoreCb.extResetSeq)
{
/* send first extended command */
(*hciCoreCb.extResetSeq)(pMsg, opcode);
}
else
{
/* initialize extended parameters */
hciCoreCb.maxAdvDataLen = 0;
hciCoreCb.numSupAdvSets = 0;
hciCoreCb.perAdvListSize = 0;
/* send next command in sequence */
HciLeRandCmd();
}
break;
case HCI_OPCODE_LE_READ_MAX_ADV_DATA_LEN:
case HCI_OPCODE_LE_READ_NUM_SUP_ADV_SETS:
case HCI_OPCODE_LE_READ_PER_ADV_LIST_SIZE:
// handle extended command
if (hciCoreCb.extResetSeq)
{
/* send next extended command in sequence */
(*hciCoreCb.extResetSeq)(pMsg, opcode);
}
break;
case HCI_OPCODE_LE_RAND:
/* check if need to send second rand command */
if (randCnt < (HCI_RESET_RAND_CNT-1)) {
randCnt++;
HciLeRandCmd();
} else {
uint8_t addr[6] = { 0 };
memcpy(addr, pMsg, sizeof(addr));
DM_RAND_ADDR_SET(addr, DM_RAND_ADDR_STATIC);
// note: will invoke set rand address
cordio::BLE::deviceInstance().getGap().setAddress(
BLEProtocol::AddressType::RANDOM_STATIC,
addr
);
}
break;
case HCI_OPCODE_LE_SET_RAND_ADDR:
/* send next command in sequence */
signal_reset_sequence_done();
break;
default:
tr_debug("Complete Event in reset seq with unknown opcode =0x%4X\r\n", opcode);
break;
}
} else if (*pMsg == HCI_CMD_STATUS_EVT) {
uint8_t status;
/* get status */
/* parse parameters */
pMsg += HCI_EVT_HDR_LEN;
status = *pMsg;
pMsg++;
pMsg++; /* skip num packets */
BSTREAM_TO_UINT16(opcode, pMsg);
tr_debug("Command Status event, status:%d, opcode=0x%4X\r\n", status, opcode);
} else {
/**
* vendor specific event
*/
if (pMsg[0] == VENDOR_SPECIFIC_EVENT) {
/* parse parameters */
pMsg += HCI_EVT_HDR_LEN;
BSTREAM_TO_UINT16(opcode, pMsg);
tr_debug("Vendor specific event, opcode=0x%4X\r\n", opcode);
} else {
tr_debug("Unknown event %d!\r\n", pMsg[0]);
}
}
}
private:
uint8_t bd_addr[6];
void aciSetTxPowerLevel() {
uint8_t *pBuf = hciCmdAlloc(ACI_HAL_SET_TX_POWER_LEVEL, 2);
if (!pBuf) {
return;
}
pBuf[HCI_CMD_HDR_LEN] = 0x1;
pBuf[HCI_CMD_HDR_LEN+1] = 0x18;
hciCmdSend(pBuf);
}
void aciReadConfigParameter(uint8_t offset) {
uint8_t *pBuf = hciCmdAlloc(ACI_READ_CONFIG_DATA_OPCODE, 1);
if (!pBuf) {
return;
}
pBuf[3] = offset;
hciCmdSend(pBuf);
}
template<size_t N>
void aciWriteConfigData(uint8_t offset, uint8_t (&buf)[N]) {
uint8_t *pBuf = hciCmdAlloc(ACI_WRITE_CONFIG_DATA_OPCODE, 2 + N);
if (!pBuf) {
return;
}
pBuf[3] = offset;
pBuf[4] = N;
memcpy(pBuf + 5, buf, N);
hciCmdSend(pBuf);
}
void hciCoreReadResolvingListSize(void)
{
/* if LL Privacy is supported by Controller and included */
if ((hciCoreCb.leSupFeat & HCI_LE_SUP_FEAT_PRIVACY) &&
(hciLeSupFeatCfg & HCI_LE_SUP_FEAT_PRIVACY))
{
/* send next command in sequence */
HciLeReadResolvingListSize();
}
else
{
hciCoreCb.resListSize = 0;
/* send next command in sequence */
hciCoreReadMaxDataLen();
}
}
void hciCoreReadMaxDataLen(void)
{
/* if LE Data Packet Length Extensions is supported by Controller and included */
if ((hciCoreCb.leSupFeat & HCI_LE_SUP_FEAT_DATA_LEN_EXT) &&
(hciLeSupFeatCfg & HCI_LE_SUP_FEAT_DATA_LEN_EXT))
{
/* send next command in sequence */
HciLeReadMaxDataLen();
}
else
{
/* send next command in sequence */
HciLeRandCmd();
}
}
};
ble::vendor::cordio::buf_pool_desc_t ble::vendor::stm32wb::HCIDriver::get_buffer_pool_description()
{
// Use default buffer pool
return ble::vendor::cordio::CordioHCIDriver::get_default_buffer_pool_description();
}
class TransportDriver : public cordio::CordioHCITransportDriver
{
public:
TransportDriver(TL_CmdPacket_t *BleCmdBuffer, TL_CmdPacket_t *SystemCmdBuffer, uint8_t *EvtPool, uint8_t *SystemSpareEvtBuffer, uint8_t *BleSpareEvtBuffer, uint8_t *HciAclDataBuffer) {
bleCmdBuf = BleCmdBuffer;
sysCmdBuf = SystemCmdBuffer;
evtPool = EvtPool;
sysSpareEvtBuf = SystemSpareEvtBuffer;
bleSpareEvtBuf = BleSpareEvtBuffer;
aclDataBuffer = HciAclDataBuffer;
}
virtual ~TransportDriver() { }
/**
* @see CordioHCITransportDriver::initialize
*/
virtual void initialize()
{
init_debug();
stm32wb_reset();
transport_init();
}
/**
* @see CordioHCITransportDriver::terminate
*/
virtual void terminate() { }
/**
* @see CordioHCITransportDriver::write
*/
virtual uint16_t write(uint8_t type, uint16_t len, uint8_t *pData)
{
return mbox_write(type, len, pData);
}
private:
void transport_init(void) {
TL_MM_Config_t tl_mm_config;
TL_BLE_InitConf_t tl_ble_Config;
/* STM32WB offers a System Channel HCI interface for
offering system services, with proprietary commands.
System Channel must be used as well for starting up
BLE service so we need to initialize it. */
SHCI_TL_HciInitConf_t shci_init_config;
/**< Reference table initialization */
TL_Init();
/**< System channel initialization */
shci_init_config.p_cmdbuffer = (uint8_t*)sysCmdBuf;
shci_init_config.StatusNotCallBack = syscmd_status_not;
shci_init(sysevt_received, (void*) &shci_init_config);
/**< Memory Manager channel initialization */
tl_mm_config.p_BleSpareEvtBuffer = bleSpareEvtBuf;
tl_mm_config.p_SystemSpareEvtBuffer = sysSpareEvtBuf;
tl_mm_config.p_AsynchEvtPool = evtPool;
tl_mm_config.AsynchEvtPoolSize = POOL_SIZE;
TL_MM_Init(&tl_mm_config);
TL_Enable();
/* At this stage, we'll need to wait for ready event,
* passed thru TL_SYS_EvtReceived */
if(!sysevt_wait()) {
tr_debug("ERROR booting WB controler\r\n");
return;
}
// TO DO : check if we need to disable LPM
// requires to import as well all lpm driver
tl_ble_Config.p_AclDataBuffer = aclDataBuffer;
tl_ble_Config.IoBusAclDataTxAck = acl_data_ack;
tl_ble_Config.p_cmdbuffer = (uint8_t *)bleCmdBuf;
tl_ble_Config.IoBusEvtCallBack = evt_received;
TL_BLE_Init(&tl_ble_Config);
/* Now start BLE service on firmware side, using Vendor specific
* command on the System Channe
*/
stm32wb_start_ble();
}
uint16_t mbox_write(uint8_t type, uint16_t len, uint8_t *pData) {
// Note:
// 01 command
// type 02 ACL DATA not yet supported
// type 03 SCO Voice
// type 04 event - sens remontant
// BleCmdBuffer.cmdserial.cmd.cmdcode = opcode;
#if (PRINT_HCI_DATA == 1)
tr_debug("mbox_write type:%d, len:%d\r\n", type, len);
#endif
/* TO DO : MANAGE ACL DATA CASE in separate buffer */
switch(type) {
case 1://BLE command
bleCmdBuf->cmdserial.type = type; // for now this param is overwritten in TL_BLE_SendCmd
memcpy( (void*) &bleCmdBuf->cmdserial.cmd, pData, len );
#if (PRINT_HCI_DATA == 1)
/* We're tracing here the command, after copy in shared mem but before
* * M0 trigger. */
tr_debug("TX>> BLE CMD: ");
/* Trace the buffer including Type (+1 on lngth) */
tr_debug("Type %2X ", bleCmdBuf->cmdserial.type);
tr_debug("Cmd %4X ", bleCmdBuf->cmdserial.cmd.cmdcode);
tr_debug("Len %2X ", bleCmdBuf->cmdserial.cmd.plen);
tr_debug("Payload ");
for (uint8_t i = 0; i < bleCmdBuf->cmdserial.cmd.plen; i++) {
tr_debug("%2X ", *(((uint8_t *)&bleCmdBuf->cmdserial.cmd.payload) + i));
}
tr_debug("\r\n");
#endif
TL_BLE_SendCmd(NULL,0); // unused parameters for now
break;
case 2://ACL DATA
if (!acl_data_wait()) {
#if (PRINT_HCI_DATA == 1)
tr_debug("ERROR: previous ACL message not ACK'd\r\n");
#endif
/* return number of bytes sent, 0 in this error case */
return 0;
}
TL_AclDataSerial_t* aclDataSerial = (TL_AclDataSerial_t*) (aclDataBuffer + sizeof(TL_PacketHeader_t));
aclDataSerial->type = type; // for now this param is overwritten in TL_BLE_SendCmd
memcpy(aclDataBuffer + + sizeof(TL_PacketHeader_t) + sizeof(type), pData, len);
TL_BLE_SendAclData(NULL, 0); // unused parameters for now
#if (PRINT_HCI_DATA == 1)
tr_debug(" TX>> BLE ACL: ");
/* Trace the buffer for debug purpose */
for (uint8_t i = 0; i < len+1+8; i++) {
tr_debug("%2X ", *(((uint8_t*) aclDataBuffer) + i));
}
tr_debug("\r\n");
#endif
break;
}
return len;
}
void stm32wb_reset(void)
{
// Reset IPCC
LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_IPCC);
LL_C1_IPCC_ClearFlag_CHx(
IPCC,
LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4
| LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);
LL_C2_IPCC_ClearFlag_CHx(
IPCC,
LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4
| LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);
LL_C1_IPCC_DisableTransmitChannel(
IPCC,
LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4
| LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);
LL_C2_IPCC_DisableTransmitChannel(
IPCC,
LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4
| LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);
LL_C1_IPCC_DisableReceiveChannel(
IPCC,
LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4
| LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);
LL_C2_IPCC_DisableReceiveChannel(
IPCC,
LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4
| LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);
/* Set IPCC default IRQ handlers */
NVIC_SetVector(IPCC_C1_TX_IRQn, (uint32_t)HW_IPCC_Tx_Handler);
NVIC_SetVector(IPCC_C1_RX_IRQn, (uint32_t)HW_IPCC_Rx_Handler);
return;
} // stm32wb_reset
void stm32wb_start_ble(void) {
SHCI_C2_Ble_Init_Cmd_Packet_t ble_init_cmd_packet =
{
0,0,0, /**< Header unused */
0, /** pBleBufferAddress not used */
0, /** BleBufferSize not used */
CFG_BLE_NUM_GATT_ATTRIBUTES,
CFG_BLE_NUM_GATT_SERVICES,
CFG_BLE_ATT_VALUE_ARRAY_SIZE,
CFG_BLE_NUM_LINK,
CFG_BLE_DATA_LENGTH_EXTENSION,
CFG_BLE_PREPARE_WRITE_LIST_SIZE,
CFG_BLE_MBLOCK_COUNT,
CFG_BLE_MAX_ATT_MTU,
CFG_BLE_SLAVE_SCA,
CFG_BLE_MASTER_SCA,
CFG_BLE_LSE_SOURCE,
CFG_BLE_MAX_CONN_EVENT_LENGTH,
CFG_BLE_HSE_STARTUP_TIME,
CFG_BLE_VITERBI_MODE,
CFG_BLE_LL_ONLY,
0 /** TODO Should be read from HW */
};
/**
* Starts the BLE Stack on CPU2
*/
SHCI_C2_BLE_Init( &ble_init_cmd_packet );
}
TL_CmdPacket_t *bleCmdBuf;
TL_CmdPacket_t *sysCmdBuf;
uint8_t *evtPool;
uint8_t *sysSpareEvtBuf;
uint8_t *aclDataBuffer;
uint8_t *bleSpareEvtBuf;
}; // class TransportDriver
} // namespace stm32wb
} // namespace vendor
} // namespace ble
/* There must be only 1 instance of the Transport Driver in STM32WB
* and the command buffers needs to be located in correct memory areas
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
PLACE_IN_SECTION("MB_MEM1") ALIGN(4) static TL_CmdPacket_t BleCmdBuffer;
PLACE_IN_SECTION("MB_MEM2") ALIGN(4) static uint8_t HciAclDataBuffer[MAX_HCI_ACL_PACKET_SIZE];
PLACE_IN_SECTION("MB_MEM2") ALIGN(4) static uint8_t EvtPool[POOL_SIZE];
PLACE_IN_SECTION("MB_MEM2") ALIGN(4) static TL_CmdPacket_t SystemCmdBuffer;
PLACE_IN_SECTION("MB_MEM2") ALIGN(4) static uint8_t SystemSpareEvtBuffer[sizeof(TL_PacketHeader_t) + TL_EVT_HDR_SIZE + 255];
PLACE_IN_SECTION("MB_MEM2") ALIGN(4) static uint8_t BleSpareEvtBuffer[sizeof(TL_PacketHeader_t) + TL_EVT_HDR_SIZE + 255];
/**
* Cordio HCI driver factory
*/
ble::vendor::cordio::CordioHCIDriver& ble_cordio_get_hci_driver() {
static ble::vendor::stm32wb::TransportDriver transport_driver(
&BleCmdBuffer,
&SystemCmdBuffer,
EvtPool,
SystemSpareEvtBuffer,
BleSpareEvtBuffer,
HciAclDataBuffer
);
static ble::vendor::stm32wb::HCIDriver hci_driver(
transport_driver /* other hci driver parameters */
);
return hci_driver;
}
static void evt_received(TL_EvtPacket_t *hcievt) {
uint16_t len = 0;
// We need to memcpy the data before passing to higher layers.
switch (hcievt->evtserial.type) {
case TL_BLEEVT_PKT_TYPE:
len = hcievt->evtserial.evt.plen + TL_EVT_HDR_SIZE;
ble::vendor::stm32wb::TransportDriver::on_data_received((uint8_t *)&hcievt->evtserial, len);
break;
case TL_ACL_DATA_PKT_TYPE:
{
TL_AclDataSerial_t *acl = &(((TL_AclDataPacket_t *)hcievt)->AclDataSerial);
len = acl->length + 5;
ble::vendor::stm32wb::TransportDriver::on_data_received((uint8_t *)acl, len);
}
break;
default:
// should not happen - let's block to check
tr_error("BLE TL evt_received, wrong type:%d \r\n");
break;
}
/* In case Event belongs to the Evt Pool we need to inform */
if (((uint8_t*)hcievt >= EvtPool) && ((uint8_t*)hcievt < (EvtPool + POOL_SIZE))) {
/* Free the message from shared memory */
TL_MM_EvtDone(hcievt);
}
}
/**
* TL Mailbox synchronisation means
*/
/* Using Semaphore to implemented blocking cmd/resp on system channel */
static rtos::Semaphore sys_event_sem(0, 1);
static rtos::Semaphore sys_resp_sem(0, 1);
static rtos::Semaphore acl_ack_sem(1, 1);
static void acl_data_ack(void) {
/**
* The current implementation assumes the tackGUI will not send a new HCI ACL DATA packet before this ack is received
* ( which means the CPU2 has handled the previous packet )
* In order to implement a secure mechanism, it is required either
* - a flow control with the stack
* - a local pool of buffer to store packets received from the stack
*/
acl_ack_sem.release();
return;
}
static bool acl_data_wait(void) {
/* Wait 10 sec for previous ACL command to be ack'ed by Low Layers
* before sending the next one */
if(acl_ack_sem.wait(10000) < 1) {
return false;
} else {
return true;
}
}
/* WEAK callbacks from the BLE TL driver - will be called under Interrupt */
static void sysevt_received( void* pdata) {
/* For now only READY event is received, so we know this is it */
sys_event_sem.release();
/* But later on ... we'll have to parse the answer */
return;
}
/* returns true if ssyevt was received, false otherwise */
static bool sysevt_wait( void) {
/* Wait for 10sec max - if not return an error */
if(sys_event_sem.wait(10000) < 1) {
return false;
} else {
return true;
}
}
static void syscmd_status_not( SHCI_TL_CmdStatus_t status )
{
tr_debug("syscmd_status_not, status:%d\r\n", status);
return;
}
void shci_notify_asynch_evt(void* pdata)
{
/* Need to parse data in future version */
shci_user_evt_proc();
return;
}
void shci_cmd_resp_release(uint32_t flag)
{
sys_resp_sem.release();
return;
}
void shci_cmd_resp_wait(uint32_t timeout)
{
/* TO DO: manage timeouts if we can return an error */
if(sys_resp_sem.wait(timeout) < 1) {
tr_error("shci_cmd_resp_wait timed out\r\n");
}
}
void shci_register_io_bus(tSHciIO* fops)
{
/* Register IO bus services */
fops->Init = TL_SYS_Init;
fops->Send = TL_SYS_SendCmd;
}
/**
* Few utilities functions
*/
static void init_debug( void )
{
tr_debug("WB init_debug: ");
#if (CFG_DEBUGGER_SUPPORTED == 1)
tr_debug("ENABLED\r\n");
/**
* Keep debugger enabled while in any low power mode
*/
HAL_DBGMCU_EnableDBGSleepMode();
HAL_DBGMCU_EnableDBGStopMode();
HAL_DBGMCU_EnableDBGStandbyMode();
/***************** ENABLE DEBUGGER *************************************/
LL_EXTI_EnableIT_32_63(LL_EXTI_LINE_48);
LL_C2_EXTI_EnableIT_32_63(LL_EXTI_LINE_48);
#else
tr_debug("DISABLED\r\n");
GPIO_InitTypeDef gpio_config = {0};
gpio_config.Pull = GPIO_NOPULL;
gpio_config.Mode = GPIO_MODE_ANALOG;
gpio_config.Pin = GPIO_PIN_15 | GPIO_PIN_14 | GPIO_PIN_13;
__HAL_RCC_GPIOA_CLK_ENABLE();
HAL_GPIO_Init(GPIOA, &gpio_config);
__HAL_RCC_GPIOA_CLK_DISABLE();
gpio_config.Pin = GPIO_PIN_4 | GPIO_PIN_3;
__HAL_RCC_GPIOB_CLK_ENABLE();
HAL_GPIO_Init(GPIOB, &gpio_config);
__HAL_RCC_GPIOB_CLK_DISABLE();
HAL_DBGMCU_DisableDBGSleepMode();
HAL_DBGMCU_DisableDBGStopMode();
HAL_DBGMCU_DisableDBGStandbyMode();
#endif /* (CFG_DEBUGGER_SUPPORTED == 1) */
return;
}
/* This function fills in a BD address table */
bool get_bd_address( uint8_t* bd_addr )
{
uint8_t *otp_addr;
uint32_t udn;
uint32_t company_id;
uint32_t device_id;
bool bd_found;
udn = LL_FLASH_GetUDN();
if(udn != 0xFFFFFFFF)
{
tr_debug("Found UDN: 0x%8lX\r\n", udn);
company_id = LL_FLASH_GetSTCompanyID();
device_id = LL_FLASH_GetDeviceID();
bd_addr[0] = (uint8_t)(udn & 0x000000FF);
bd_addr[1] = (uint8_t)( (udn & 0x0000FF00) >> 8 );
bd_addr[2] = (uint8_t)( (udn & 0x00FF0000) >> 16 );
bd_addr[3] = (uint8_t)device_id;
bd_addr[4] = (uint8_t)(company_id & 0x000000FF);
bd_addr[5] = (uint8_t)( (company_id & 0x0000FF00) >> 8 );
bd_found = true;
}
else
{
otp_addr = OTP_Read(0);
if(otp_addr)
{
memcpy(bd_addr, ((OTP_ID0_t*)otp_addr)->bd_address, CONFIG_DATA_PUBADDR_LEN);
bd_found = false;
}
else
{
tr_debug("Can't find BD ADDRESS to program - will leave hw default\r\n");
bd_found = true;
}
}
return bd_found;
}