mbed-os/targets/TARGET_NXP/TARGET_LPC176X/serial_api.c

463 lines
16 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// math.h required for floating point operations for baud rate calculation
#include "mbed_assert.h"
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "serial_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "gpio_api.h"
/******************************************************************************
* INITIALIZATION
******************************************************************************/
#define UART_NUM 4
static const PinMap PinMap_UART_TX[] = {
{P0_0, UART_3, 2},
{P0_2, UART_0, 1},
{P0_10, UART_2, 1},
{P0_15, UART_1, 1},
{P0_25, UART_3, 3},
{P2_0 , UART_1, 2},
{P2_8 , UART_2, 2},
{P4_28, UART_3, 3},
{NC , NC , 0}
};
static const PinMap PinMap_UART_RX[] = {
{P0_1 , UART_3, 2},
{P0_3 , UART_0, 1},
{P0_11, UART_2, 1},
{P0_16, UART_1, 1},
{P0_26, UART_3, 3},
{P2_1 , UART_1, 2},
{P2_9 , UART_2, 2},
{P4_29, UART_3, 3},
{NC , NC , 0}
};
static const PinMap PinMap_UART_RTS[] = {
{P0_22, UART_1, 1},
{P2_7, UART_1, 2},
{NC, NC, 0}
};
static const PinMap PinMap_UART_CTS[] = {
{P0_17, UART_1, 1},
{P2_2, UART_1, 2},
{NC, NC, 0}
};
#define UART_MCR_RTSEN_MASK (1 << 6)
#define UART_MCR_CTSEN_MASK (1 << 7)
#define UART_MCR_FLOWCTRL_MASK (UART_MCR_RTSEN_MASK | UART_MCR_CTSEN_MASK)
static uart_irq_handler irq_handler;
int stdio_uart_inited = 0;
serial_t stdio_uart;
struct serial_global_data_s {
uint32_t serial_irq_id;
gpio_t sw_rts, sw_cts;
uint8_t count, rx_irq_set_flow, rx_irq_set_api;
};
static struct serial_global_data_s uart_data[UART_NUM];
void serial_init(serial_t *obj, PinName tx, PinName rx) {
int is_stdio_uart = 0;
// determine the UART to use
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT((int)uart != NC);
obj->uart = (LPC_UART_TypeDef *)uart;
// enable power
switch (uart) {
case UART_0: LPC_SC->PCONP |= 1 << 3; break;
case UART_1: LPC_SC->PCONP |= 1 << 4; break;
case UART_2: LPC_SC->PCONP |= 1 << 24; break;
case UART_3: LPC_SC->PCONP |= 1 << 25; break;
}
// enable fifos and default rx trigger level
obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled
| 0 << 1 // Rx Fifo Reset
| 0 << 2 // Tx Fifo Reset
| 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars
// disable irqs
obj->uart->IER = 0 << 0 // Rx Data available irq enable
| 0 << 1 // Tx Fifo empty irq enable
| 0 << 2; // Rx Line Status irq enable
// set default baud rate and format
serial_baud (obj, 9600);
serial_format(obj, 8, ParityNone, 1);
// pinout the chosen uart
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
// set rx/tx pins in PullUp mode
if (tx != NC) {
pin_mode(tx, PullUp);
}
if (rx != NC) {
pin_mode(rx, PullUp);
}
switch (uart) {
case UART_0: obj->index = 0; break;
case UART_1: obj->index = 1; break;
case UART_2: obj->index = 2; break;
case UART_3: obj->index = 3; break;
}
uart_data[obj->index].sw_rts.pin = NC;
uart_data[obj->index].sw_cts.pin = NC;
serial_set_flow_control(obj, FlowControlNone, NC, NC);
is_stdio_uart = (uart == STDIO_UART) ? (1) : (0);
if (is_stdio_uart) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
}
void serial_free(serial_t *obj) {
uart_data[obj->index].serial_irq_id = 0;
}
// serial_baud
// set the baud rate, taking in to account the current SystemFrequency
void serial_baud(serial_t *obj, int baudrate) {
MBED_ASSERT((int)obj->uart <= UART_3);
// The LPC2300 and LPC1700 have a divider and a fractional divider to control the
// baud rate. The formula is:
//
// Baudrate = (1 / PCLK) * 16 * DL * (1 + DivAddVal / MulVal)
// where:
// 1 < MulVal <= 15
// 0 <= DivAddVal < 14
// DivAddVal < MulVal
//
// set pclk to /1
switch ((int)obj->uart) {
case UART_0: LPC_SC->PCLKSEL0 &= ~(0x3 << 6); LPC_SC->PCLKSEL0 |= (0x1 << 6); break;
case UART_1: LPC_SC->PCLKSEL0 &= ~(0x3 << 8); LPC_SC->PCLKSEL0 |= (0x1 << 8); break;
case UART_2: LPC_SC->PCLKSEL1 &= ~(0x3 << 16); LPC_SC->PCLKSEL1 |= (0x1 << 16); break;
case UART_3: LPC_SC->PCLKSEL1 &= ~(0x3 << 18); LPC_SC->PCLKSEL1 |= (0x1 << 18); break;
default: break;
}
uint32_t PCLK = SystemCoreClock;
// First we check to see if the basic divide with no DivAddVal/MulVal
// ratio gives us an integer result. If it does, we set DivAddVal = 0,
// MulVal = 1. Otherwise, we search the valid ratio value range to find
// the closest match. This could be more elegant, using search methods
// and/or lookup tables, but the brute force method is not that much
// slower, and is more maintainable.
uint16_t DL = PCLK / (16 * baudrate);
uint8_t DivAddVal = 0;
uint8_t MulVal = 1;
int hit = 0;
uint16_t dlv;
uint8_t mv, dav;
if ((PCLK % (16 * baudrate)) != 0) { // Checking for zero remainder
int err_best = baudrate, b;
for (mv = 1; mv < 16 && !hit; mv++)
{
for (dav = 0; dav < mv; dav++)
{
// baudrate = PCLK / (16 * dlv * (1 + (DivAdd / Mul))
// solving for dlv, we get dlv = mul * PCLK / (16 * baudrate * (divadd + mul))
// mul has 4 bits, PCLK has 27 so we have 1 bit headroom which can be used for rounding
// for many values of mul and PCLK we have 2 or more bits of headroom which can be used to improve precision
// note: X / 32 doesn't round correctly. Instead, we use ((X / 16) + 1) / 2 for correct rounding
if ((mv * PCLK * 2) & 0x80000000) // 1 bit headroom
dlv = ((((2 * mv * PCLK) / (baudrate * (dav + mv))) / 16) + 1) / 2;
else // 2 bits headroom, use more precision
dlv = ((((4 * mv * PCLK) / (baudrate * (dav + mv))) / 32) + 1) / 2;
// datasheet says if DLL==DLM==0, then 1 is used instead since divide by zero is ungood
if (dlv == 0)
dlv = 1;
// datasheet says if dav > 0 then DL must be >= 2
if ((dav > 0) && (dlv < 2))
dlv = 2;
// integer rearrangement of the baudrate equation (with rounding)
b = ((PCLK * mv / (dlv * (dav + mv) * 8)) + 1) / 2;
// check to see how we went
b = abs(b - baudrate);
if (b < err_best)
{
err_best = b;
DL = dlv;
MulVal = mv;
DivAddVal = dav;
if (b == baudrate)
{
hit = 1;
break;
}
}
}
}
}
// set LCR[DLAB] to enable writing to divider registers
obj->uart->LCR |= (1 << 7);
// set divider values
obj->uart->DLM = (DL >> 8) & 0xFF;
obj->uart->DLL = (DL >> 0) & 0xFF;
obj->uart->FDR = (uint32_t) DivAddVal << 0
| (uint32_t) MulVal << 4;
// clear LCR[DLAB]
obj->uart->LCR &= ~(1 << 7);
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
MBED_ASSERT((stop_bits == 1) || (stop_bits == 2)); // 0: 1 stop bits, 1: 2 stop bits
MBED_ASSERT((data_bits > 4) && (data_bits < 9)); // 0: 5 data bits ... 3: 8 data bits
MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven) ||
(parity == ParityForced1) || (parity == ParityForced0));
stop_bits -= 1;
data_bits -= 5;
int parity_enable = 0, parity_select = 0;
switch (parity) {
case ParityNone: parity_enable = 0; parity_select = 0; break;
case ParityOdd : parity_enable = 1; parity_select = 0; break;
case ParityEven: parity_enable = 1; parity_select = 1; break;
case ParityForced1: parity_enable = 1; parity_select = 2; break;
case ParityForced0: parity_enable = 1; parity_select = 3; break;
default:
break;
}
obj->uart->LCR = data_bits << 0
| stop_bits << 2
| parity_enable << 3
| parity_select << 4;
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static inline void uart_irq(uint32_t iir, uint32_t index, LPC_UART_TypeDef *puart) {
// [Chapter 14] LPC17xx UART0/2/3: UARTn Interrupt Handling
SerialIrq irq_type;
switch (iir) {
case 1: irq_type = TxIrq; break;
case 2: irq_type = RxIrq; break;
default: return;
}
if ((RxIrq == irq_type) && (NC != uart_data[index].sw_rts.pin)) {
gpio_write(&uart_data[index].sw_rts, 1);
// Disable interrupt if it wasn't enabled by other part of the application
if (!uart_data[index].rx_irq_set_api)
puart->IER &= ~(1 << RxIrq);
}
if (uart_data[index].serial_irq_id != 0)
if ((irq_type != RxIrq) || (uart_data[index].rx_irq_set_api))
irq_handler(uart_data[index].serial_irq_id, irq_type);
}
void uart0_irq() {uart_irq((LPC_UART0->IIR >> 1) & 0x7, 0, (LPC_UART_TypeDef*)LPC_UART0);}
void uart1_irq() {uart_irq((LPC_UART1->IIR >> 1) & 0x7, 1, (LPC_UART_TypeDef*)LPC_UART1);}
void uart2_irq() {uart_irq((LPC_UART2->IIR >> 1) & 0x7, 2, (LPC_UART_TypeDef*)LPC_UART2);}
void uart3_irq() {uart_irq((LPC_UART3->IIR >> 1) & 0x7, 3, (LPC_UART_TypeDef*)LPC_UART3);}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
irq_handler = handler;
uart_data[obj->index].serial_irq_id = id;
}
static void serial_irq_set_internal(serial_t *obj, SerialIrq irq, uint32_t enable) {
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
switch ((int)obj->uart) {
case UART_0: irq_n=UART0_IRQn; vector = (uint32_t)&uart0_irq; break;
case UART_1: irq_n=UART1_IRQn; vector = (uint32_t)&uart1_irq; break;
case UART_2: irq_n=UART2_IRQn; vector = (uint32_t)&uart2_irq; break;
case UART_3: irq_n=UART3_IRQn; vector = (uint32_t)&uart3_irq; break;
}
if (enable) {
obj->uart->IER |= 1 << irq;
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
} else if ((TxIrq == irq) || (uart_data[obj->index].rx_irq_set_api + uart_data[obj->index].rx_irq_set_flow == 0)) { // disable
int all_disabled = 0;
SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq);
obj->uart->IER &= ~(1 << irq);
all_disabled = (obj->uart->IER & (1 << other_irq)) == 0;
if (all_disabled)
NVIC_DisableIRQ(irq_n);
}
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
if (RxIrq == irq)
uart_data[obj->index].rx_irq_set_api = enable;
serial_irq_set_internal(obj, irq, enable);
}
static void serial_flow_irq_set(serial_t *obj, uint32_t enable) {
uart_data[obj->index].rx_irq_set_flow = enable;
serial_irq_set_internal(obj, RxIrq, enable);
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj) {
while (!serial_readable(obj));
int data = obj->uart->RBR;
if (NC != uart_data[obj->index].sw_rts.pin) {
gpio_write(&uart_data[obj->index].sw_rts, 0);
obj->uart->IER |= 1 << RxIrq;
}
return data;
}
void serial_putc(serial_t *obj, int c) {
while (!serial_writable(obj));
obj->uart->THR = c;
uart_data[obj->index].count++;
}
int serial_readable(serial_t *obj) {
return obj->uart->LSR & 0x01;
}
int serial_writable(serial_t *obj) {
int isWritable = 1;
if (NC != uart_data[obj->index].sw_cts.pin)
isWritable = (gpio_read(&uart_data[obj->index].sw_cts) == 0) && (obj->uart->LSR & 0x40); //If flow control: writable if CTS low + UART done
else {
if (obj->uart->LSR & 0x20)
uart_data[obj->index].count = 0;
else if (uart_data[obj->index].count >= 16)
isWritable = 0;
}
return isWritable;
}
void serial_clear(serial_t *obj) {
obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled
| 1 << 1 // rx FIFO reset
| 1 << 2 // tx FIFO reset
| 0 << 6; // interrupt depth
}
void serial_pinout_tx(PinName tx) {
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj) {
obj->uart->LCR |= (1 << 6);
}
void serial_break_clear(serial_t *obj) {
obj->uart->LCR &= ~(1 << 6);
}
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) {
// Only UART1 has hardware flow control on LPC176x
LPC_UART1_TypeDef *uart1 = (uint32_t)obj->uart == (uint32_t)LPC_UART1 ? LPC_UART1 : NULL;
int index = obj->index;
// First, disable flow control completely
if (uart1)
uart1->MCR = uart1->MCR & ~UART_MCR_FLOWCTRL_MASK;
uart_data[index].sw_rts.pin = uart_data[index].sw_cts.pin = NC;
serial_flow_irq_set(obj, 0);
if (FlowControlNone == type)
return;
// Check type(s) of flow control to use
UARTName uart_rts = (UARTName)pinmap_find_peripheral(rxflow, PinMap_UART_RTS);
UARTName uart_cts = (UARTName)pinmap_find_peripheral(txflow, PinMap_UART_CTS);
if (((FlowControlCTS == type) || (FlowControlRTSCTS == type)) && (NC != txflow)) {
// Can this be enabled in hardware?
if ((UART_1 == uart_cts) && (NULL != uart1)) {
// Enable auto-CTS mode
uart1->MCR |= UART_MCR_CTSEN_MASK;
pinmap_pinout(txflow, PinMap_UART_CTS);
} else {
// Can't enable in hardware, use software emulation
gpio_init_in(&uart_data[index].sw_cts, txflow);
}
}
if (((FlowControlRTS == type) || (FlowControlRTSCTS == type)) && (NC != rxflow)) {
// Enable FIFOs, trigger level of 1 char on RX FIFO
obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled
| 1 << 1 // Rx Fifo Reset
| 1 << 2 // Tx Fifo Reset
| 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars
// Can this be enabled in hardware?
if ((UART_1 == uart_rts) && (NULL != uart1)) {
// Enable auto-RTS mode
uart1->MCR |= UART_MCR_RTSEN_MASK;
pinmap_pinout(rxflow, PinMap_UART_RTS);
} else { // can't enable in hardware, use software emulation
gpio_init_out_ex(&uart_data[index].sw_rts, rxflow, 0);
// Enable RX interrupt
serial_flow_irq_set(obj, 1);
}
}
}
const PinMap *serial_tx_pinmap()
{
return PinMap_UART_TX;
}
const PinMap *serial_rx_pinmap()
{
return PinMap_UART_RX;
}
const PinMap *serial_cts_pinmap()
{
return PinMap_UART_CTS;
}
const PinMap *serial_rts_pinmap()
{
return PinMap_UART_RTS;
}