mirror of https://github.com/ARMmbed/mbed-os.git
465 lines
12 KiB
C
465 lines
12 KiB
C
/* mbed Microcontroller Library
|
|
* Copyright (c) 2006-2013 ARM Limited
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "mbed_assert.h"
|
|
#include "can_api.h"
|
|
|
|
#include "cmsis.h"
|
|
#include "pinmap.h"
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#define CAN_NUM 2
|
|
|
|
/* Acceptance filter mode in AFMR register */
|
|
#define ACCF_OFF 0x01
|
|
#define ACCF_BYPASS 0x02
|
|
#define ACCF_ON 0x00
|
|
#define ACCF_FULLCAN 0x04
|
|
|
|
/* There are several bit timing calculators on the internet.
|
|
http://www.port.de/engl/canprod/sv_req_form.html
|
|
http://www.kvaser.com/can/index.htm
|
|
*/
|
|
|
|
static const PinMap PinMap_CAN_RD[] = {
|
|
{P0_0 , CAN_1, 1},
|
|
{P0_4 , CAN_2, 2},
|
|
{P0_21, CAN_1, 3},
|
|
{P2_7 , CAN_2, 1},
|
|
{NC , NC , 0}
|
|
};
|
|
|
|
static const PinMap PinMap_CAN_TD[] = {
|
|
{P0_1 , CAN_1, 1},
|
|
{P0_5 , CAN_2, 2},
|
|
{P0_22, CAN_1, 3},
|
|
{P2_8 , CAN_2, 1},
|
|
{NC , NC , 0}
|
|
};
|
|
|
|
// Type definition to hold a CAN message
|
|
struct CANMsg {
|
|
unsigned int reserved1 : 16;
|
|
unsigned int dlc : 4; // Bits 16..19: DLC - Data Length Counter
|
|
unsigned int reserved0 : 10;
|
|
unsigned int rtr : 1; // Bit 30: Set if this is a RTR message
|
|
unsigned int type : 1; // Bit 31: Set if this is a 29-bit ID message
|
|
unsigned int id; // CAN Message ID (11-bit or 29-bit)
|
|
unsigned char data[8]; // CAN Message Data Bytes 0-7
|
|
};
|
|
typedef struct CANMsg CANMsg;
|
|
|
|
static uint32_t can_irq_ids[CAN_NUM] = {0};
|
|
static can_irq_handler irq_handler;
|
|
|
|
static uint32_t can_disable(can_t *obj) {
|
|
uint32_t sm = obj->dev->MOD;
|
|
obj->dev->MOD |= 1;
|
|
return sm;
|
|
}
|
|
|
|
static inline void can_enable(can_t *obj) {
|
|
if (obj->dev->MOD & 1) {
|
|
obj->dev->MOD &= ~(1);
|
|
}
|
|
}
|
|
|
|
int can_mode(can_t *obj, CanMode mode) {
|
|
int success = 0;
|
|
switch (mode) {
|
|
case MODE_RESET:
|
|
// Clear all special modes
|
|
can_reset(obj);
|
|
obj->dev->MOD &=~ 0x06;
|
|
success = 1;
|
|
break;
|
|
case MODE_NORMAL:
|
|
// Clear all special modes
|
|
can_disable(obj);
|
|
obj->dev->MOD &=~ 0x06;
|
|
can_enable(obj);
|
|
success = 1;
|
|
break;
|
|
case MODE_SILENT:
|
|
// Set listen-only mode and clear self-test mode
|
|
can_disable(obj);
|
|
obj->dev->MOD |= 0x02;
|
|
obj->dev->MOD &=~ 0x04;
|
|
can_enable(obj);
|
|
success = 1;
|
|
break;
|
|
case MODE_TEST_LOCAL:
|
|
// Set self-test mode and clear listen-only mode
|
|
can_disable(obj);
|
|
obj->dev->MOD |= 0x04;
|
|
obj->dev->MOD &=~ 0x02;
|
|
can_enable(obj);
|
|
success = 1;
|
|
break;
|
|
case MODE_TEST_SILENT:
|
|
case MODE_TEST_GLOBAL:
|
|
default:
|
|
success = 0;
|
|
break;
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) {
|
|
return 0; // not implemented
|
|
}
|
|
|
|
static inline void can_irq(uint32_t icr, uint32_t index) {
|
|
uint32_t i;
|
|
|
|
for(i = 0; i < 8; i++)
|
|
{
|
|
if((can_irq_ids[index] != 0) && (icr & (1 << i)))
|
|
{
|
|
switch (i) {
|
|
case 0: irq_handler(can_irq_ids[index], IRQ_RX); break;
|
|
case 1: irq_handler(can_irq_ids[index], IRQ_TX); break;
|
|
case 2: irq_handler(can_irq_ids[index], IRQ_ERROR); break;
|
|
case 3: irq_handler(can_irq_ids[index], IRQ_OVERRUN); break;
|
|
case 4: irq_handler(can_irq_ids[index], IRQ_WAKEUP); break;
|
|
case 5: irq_handler(can_irq_ids[index], IRQ_PASSIVE); break;
|
|
case 6: irq_handler(can_irq_ids[index], IRQ_ARB); break;
|
|
case 7: irq_handler(can_irq_ids[index], IRQ_BUS); break;
|
|
case 8: irq_handler(can_irq_ids[index], IRQ_READY); break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Have to check that the CAN block is active before reading the Interrupt
|
|
// Control Register, or the mbed hangs
|
|
void can_irq_n() {
|
|
uint32_t icr;
|
|
|
|
if(LPC_SC->PCONP & (1 << 13)) {
|
|
icr = LPC_CAN1->ICR & 0x1FF;
|
|
can_irq(icr, 0);
|
|
}
|
|
|
|
if(LPC_SC->PCONP & (1 << 14)) {
|
|
icr = LPC_CAN2->ICR & 0x1FF;
|
|
can_irq(icr, 1);
|
|
}
|
|
}
|
|
|
|
// Register CAN object's irq handler
|
|
void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id) {
|
|
irq_handler = handler;
|
|
can_irq_ids[obj->index] = id;
|
|
}
|
|
|
|
// Unregister CAN object's irq handler
|
|
void can_irq_free(can_t *obj) {
|
|
obj->dev->IER &= ~(1);
|
|
can_irq_ids[obj->index] = 0;
|
|
|
|
if ((can_irq_ids[0] == 0) && (can_irq_ids[1] == 0)) {
|
|
NVIC_DisableIRQ(CAN_IRQn);
|
|
}
|
|
}
|
|
|
|
// Clear or set a irq
|
|
void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable) {
|
|
uint32_t ier;
|
|
|
|
switch (type) {
|
|
case IRQ_RX: ier = (1 << 0); break;
|
|
case IRQ_TX: ier = (1 << 1); break;
|
|
case IRQ_ERROR: ier = (1 << 2); break;
|
|
case IRQ_OVERRUN: ier = (1 << 3); break;
|
|
case IRQ_WAKEUP: ier = (1 << 4); break;
|
|
case IRQ_PASSIVE: ier = (1 << 5); break;
|
|
case IRQ_ARB: ier = (1 << 6); break;
|
|
case IRQ_BUS: ier = (1 << 7); break;
|
|
case IRQ_READY: ier = (1 << 8); break;
|
|
default: return;
|
|
}
|
|
|
|
obj->dev->MOD |= 1;
|
|
if(enable == 0) {
|
|
obj->dev->IER &= ~ier;
|
|
}
|
|
else {
|
|
obj->dev->IER |= ier;
|
|
}
|
|
obj->dev->MOD &= ~(1);
|
|
|
|
// Enable NVIC if at least 1 interrupt is active
|
|
if(((LPC_SC->PCONP & (1 << 13)) && LPC_CAN1->IER) || ((LPC_SC->PCONP & (1 << 14)) && LPC_CAN2->IER)) {
|
|
NVIC_SetVector(CAN_IRQn, (uint32_t) &can_irq_n);
|
|
NVIC_EnableIRQ(CAN_IRQn);
|
|
}
|
|
else {
|
|
NVIC_DisableIRQ(CAN_IRQn);
|
|
}
|
|
}
|
|
|
|
static int can_pclk(can_t *obj) {
|
|
int value = 0;
|
|
switch ((int)obj->dev) {
|
|
case CAN_1: value = (LPC_SC->PCLKSEL0 & (0x3 << 26)) >> 26; break;
|
|
case CAN_2: value = (LPC_SC->PCLKSEL0 & (0x3 << 28)) >> 28; break;
|
|
}
|
|
|
|
switch (value) {
|
|
case 1: return 1;
|
|
case 2: return 2;
|
|
case 3: return 6;
|
|
default: return 4;
|
|
}
|
|
}
|
|
|
|
// This table has the sampling points as close to 75% as possible. The first
|
|
// value is TSEG1, the second TSEG2.
|
|
static const int timing_pts[23][2] = {
|
|
{0x0, 0x0}, // 2, 50%
|
|
{0x1, 0x0}, // 3, 67%
|
|
{0x2, 0x0}, // 4, 75%
|
|
{0x3, 0x0}, // 5, 80%
|
|
{0x3, 0x1}, // 6, 67%
|
|
{0x4, 0x1}, // 7, 71%
|
|
{0x5, 0x1}, // 8, 75%
|
|
{0x6, 0x1}, // 9, 78%
|
|
{0x6, 0x2}, // 10, 70%
|
|
{0x7, 0x2}, // 11, 73%
|
|
{0x8, 0x2}, // 12, 75%
|
|
{0x9, 0x2}, // 13, 77%
|
|
{0x9, 0x3}, // 14, 71%
|
|
{0xA, 0x3}, // 15, 73%
|
|
{0xB, 0x3}, // 16, 75%
|
|
{0xC, 0x3}, // 17, 76%
|
|
{0xD, 0x3}, // 18, 78%
|
|
{0xD, 0x4}, // 19, 74%
|
|
{0xE, 0x4}, // 20, 75%
|
|
{0xF, 0x4}, // 21, 76%
|
|
{0xF, 0x5}, // 22, 73%
|
|
{0xF, 0x6}, // 23, 70%
|
|
{0xF, 0x7}, // 24, 67%
|
|
};
|
|
|
|
static unsigned int can_speed(unsigned int sclk, unsigned int pclk, unsigned int cclk, unsigned char psjw) {
|
|
uint32_t btr;
|
|
uint16_t brp = 0;
|
|
uint32_t calcbit;
|
|
uint32_t bitwidth;
|
|
int hit = 0;
|
|
int bits;
|
|
|
|
bitwidth = sclk / (pclk * cclk);
|
|
|
|
brp = bitwidth / 0x18;
|
|
while ((!hit) && (brp < bitwidth / 4)) {
|
|
brp++;
|
|
for (bits = 22; bits > 0; bits--) {
|
|
calcbit = (bits + 3) * (brp + 1);
|
|
if (calcbit == bitwidth) {
|
|
hit = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (hit) {
|
|
btr = ((timing_pts[bits][1] << 20) & 0x00700000)
|
|
| ((timing_pts[bits][0] << 16) & 0x000F0000)
|
|
| ((psjw << 14) & 0x0000C000)
|
|
| ((brp << 0) & 0x000003FF);
|
|
} else {
|
|
btr = 0xFFFFFFFF;
|
|
}
|
|
|
|
return btr;
|
|
|
|
}
|
|
|
|
void can_init_freq(can_t *obj, PinName rd, PinName td, int hz) {
|
|
CANName can_rd = (CANName)pinmap_peripheral(rd, PinMap_CAN_RD);
|
|
CANName can_td = (CANName)pinmap_peripheral(td, PinMap_CAN_TD);
|
|
obj->dev = (LPC_CAN_TypeDef *)pinmap_merge(can_rd, can_td);
|
|
MBED_ASSERT((int)obj->dev != NC);
|
|
|
|
switch ((int)obj->dev) {
|
|
case CAN_1: LPC_SC->PCONP |= 1 << 13; break;
|
|
case CAN_2: LPC_SC->PCONP |= 1 << 14; break;
|
|
}
|
|
|
|
pinmap_pinout(rd, PinMap_CAN_RD);
|
|
pinmap_pinout(td, PinMap_CAN_TD);
|
|
|
|
switch ((int)obj->dev) {
|
|
case CAN_1: obj->index = 0; break;
|
|
case CAN_2: obj->index = 1; break;
|
|
}
|
|
|
|
can_reset(obj);
|
|
obj->dev->IER = 0; // Disable Interrupts
|
|
can_frequency(obj, hz);
|
|
|
|
LPC_CANAF->AFMR = ACCF_BYPASS; // Bypass Filter
|
|
}
|
|
|
|
void can_init(can_t *obj, PinName rd, PinName td) {
|
|
can_init_freq(obj, rd, td, 100000);
|
|
}
|
|
|
|
void can_free(can_t *obj) {
|
|
switch ((int)obj->dev) {
|
|
case CAN_1: LPC_SC->PCONP &= ~(1 << 13); break;
|
|
case CAN_2: LPC_SC->PCONP &= ~(1 << 14); break;
|
|
}
|
|
}
|
|
|
|
int can_frequency(can_t *obj, int f) {
|
|
int pclk = can_pclk(obj);
|
|
|
|
int btr = can_speed(SystemCoreClock, pclk, (unsigned int)f, 1);
|
|
|
|
if (btr > 0) {
|
|
uint32_t modmask = can_disable(obj);
|
|
obj->dev->BTR = btr;
|
|
obj->dev->MOD = modmask;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int can_write(can_t *obj, CAN_Message msg, int cc) {
|
|
unsigned int CANStatus;
|
|
CANMsg m;
|
|
|
|
can_enable(obj);
|
|
|
|
m.id = msg.id ;
|
|
m.dlc = msg.len & 0xF;
|
|
m.rtr = msg.type;
|
|
m.type = msg.format;
|
|
memcpy(m.data, msg.data, msg.len);
|
|
const unsigned int *buf = (const unsigned int *)&m;
|
|
|
|
CANStatus = obj->dev->SR;
|
|
|
|
// Send the message to ourself if in a test mode
|
|
if (obj->dev->MOD & 0x04) {
|
|
cc = 1;
|
|
}
|
|
|
|
if (CANStatus & 0x00000004) {
|
|
obj->dev->TFI1 = buf[0] & 0xC00F0000;
|
|
obj->dev->TID1 = buf[1];
|
|
obj->dev->TDA1 = buf[2];
|
|
obj->dev->TDB1 = buf[3];
|
|
if(cc) {
|
|
obj->dev->CMR = 0x30;
|
|
} else {
|
|
obj->dev->CMR = 0x21;
|
|
}
|
|
return 1;
|
|
|
|
} else if (CANStatus & 0x00000400) {
|
|
obj->dev->TFI2 = buf[0] & 0xC00F0000;
|
|
obj->dev->TID2 = buf[1];
|
|
obj->dev->TDA2 = buf[2];
|
|
obj->dev->TDB2 = buf[3];
|
|
if (cc) {
|
|
obj->dev->CMR = 0x50;
|
|
} else {
|
|
obj->dev->CMR = 0x41;
|
|
}
|
|
return 1;
|
|
|
|
} else if (CANStatus & 0x00040000) {
|
|
obj->dev->TFI3 = buf[0] & 0xC00F0000;
|
|
obj->dev->TID3 = buf[1];
|
|
obj->dev->TDA3 = buf[2];
|
|
obj->dev->TDB3 = buf[3];
|
|
if (cc) {
|
|
obj->dev->CMR = 0x90;
|
|
} else {
|
|
obj->dev->CMR = 0x81;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int can_read(can_t *obj, CAN_Message *msg, int handle) {
|
|
CANMsg x;
|
|
unsigned int *i = (unsigned int *)&x;
|
|
|
|
can_enable(obj);
|
|
|
|
if (obj->dev->GSR & 0x1) {
|
|
*i++ = obj->dev->RFS; // Frame
|
|
*i++ = obj->dev->RID; // ID
|
|
*i++ = obj->dev->RDA; // Data A
|
|
*i++ = obj->dev->RDB; // Data B
|
|
obj->dev->CMR = 0x04; // release receive buffer
|
|
|
|
msg->id = x.id;
|
|
msg->len = x.dlc;
|
|
msg->format = (x.type)? CANExtended : CANStandard;
|
|
msg->type = (x.rtr)? CANRemote: CANData;
|
|
memcpy(msg->data,x.data,x.dlc);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void can_reset(can_t *obj) {
|
|
can_disable(obj);
|
|
obj->dev->GSR = 0; // Reset error counter when CAN1MOD is in reset
|
|
}
|
|
|
|
unsigned char can_rderror(can_t *obj) {
|
|
return (obj->dev->GSR >> 16) & 0xFF;
|
|
}
|
|
|
|
unsigned char can_tderror(can_t *obj) {
|
|
return (obj->dev->GSR >> 24) & 0xFF;
|
|
}
|
|
|
|
void can_monitor(can_t *obj, int silent) {
|
|
uint32_t mod_mask = can_disable(obj);
|
|
if (silent) {
|
|
obj->dev->MOD |= (1 << 1);
|
|
} else {
|
|
obj->dev->MOD &= ~(1 << 1);
|
|
}
|
|
if (!(mod_mask & 1)) {
|
|
can_enable(obj);
|
|
}
|
|
}
|
|
|
|
const PinMap *can_rd_pinmap()
|
|
{
|
|
return PinMap_CAN_TD;
|
|
}
|
|
|
|
const PinMap *can_td_pinmap()
|
|
{
|
|
return PinMap_CAN_RD;
|
|
}
|