mbed-os/platform/cxxsupport/mstd_functional

500 lines
13 KiB
Plaintext

/* mbed Microcontroller Library
* Copyright (c) 2019 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under tUNChe License.
*/
#ifndef MSTD_FUNCTIONAL_
#define MSTD_FUNCTIONAL_
/* <mstd_functional>
*
* - includes toolchain's <functional>
* - For ARM C 5, standard C++11/14 features:
* - std::mem_fn,
* - std::reference_wrapper, std::ref, std::cref
* - transparent std::plus<> etc
* - std::bit_and, std::bit_or, std::bit_xor, std::bit_not
* - For all toolchains, C++17/20 backports:
* - mstd::not_fn (C++17)
* - mstd::invoke (C++17)
* - mstd::unwrap_reference, mstd::unwrap_ref_decay (C++20)
*/
#include <functional>
#include <mstd_memory> // addressof
#include <mstd_utility> // forward
#include <mstd_type_traits>
#ifdef __CC_ARM
namespace std
{
// [func.memfn]
namespace impl {
template <typename R, typename T>
class mem_fn_t {
R T::* pm;
public:
mem_fn_t(R T::* pm) : pm(pm) { }
template <typename... Args>
invoke_result_t<R T::*, Args...> operator()(Args&&... args) const
{
return std::invoke(pm, std::forward<Args>(args)...);
}
};
}
template <class R, class T>
impl::mem_fn_t<R, T> mem_fn(R T::* pm)
{
return impl::mem_fn_t<R, T>(pm);
}
} // namespace std
#endif // __CC_ARM
namespace mstd {
// [func.invoke]
#if __cpp_lib_invoke >= 201411
using std::invoke;
#else
template <typename F, typename... Args>
invoke_result_t<F, Args...> invoke(F&& f, Args&&... args)
{
return impl::INVOKE(std::forward<F>(f), std::forward<Args>(args)...);
}
#endif // __cpp_lib_invoke
} // namespace mstd
#ifdef __CC_ARM
namespace std {
using mstd::invoke;
// [refwrap]
template <typename T>
class reference_wrapper {
T *ptr;
public:
using type = T;
// [refwrap.const]
// LWG 2993 version of constructor does not seem to work in ARM C 5, so stick with
// this original version.
reference_wrapper(T &x) noexcept : ptr(addressof(x)) { }
reference_wrapper(T &&x) = delete;
reference_wrapper(const reference_wrapper &) noexcept = default;
// [refwrap.assign]
reference_wrapper &operator=(const reference_wrapper &) noexcept = default;
// [refwrap.access]
operator T &() const noexcept { return *ptr; }
T &get() const noexcept { return *ptr; }
// [refwrap.invoke]
template <typename... ArgTypes>
invoke_result_t<T &, ArgTypes...> operator()(ArgTypes&&... args) const
{
return std::invoke(get(), forward<ArgTypes>(args)...);
}
};
// [refwrap.helpers]
template <typename T>
reference_wrapper<T> ref(T &t) noexcept
{
return reference_wrapper<T>(t);
}
template <typename T>
reference_wrapper<T> ref(reference_wrapper<T> &t) noexcept
{
return ref(t.get());
}
template <typename T>
void ref(const T &&) = delete;
template <typename T>
reference_wrapper<const T> cref(const T &t) noexcept
{
return reference_wrapper<const T>(t);
}
template <typename T>
reference_wrapper<const T> cref(reference_wrapper<T> &t) noexcept
{
return cref(t.get());
}
template <typename T>
void cref(const T &&) = delete;
// ARMC5 has basic plus<T> etc - we can add plus<void> specialisations;
// and the language rules allow us to add the default void arguments missing
// from its header.
template <typename T = void> struct plus;
template <typename T = void> struct minus;
template <typename T = void> struct multiplies;
template <typename T = void> struct divides;
template <typename T = void> struct modulus;
template <typename T = void> struct negate;
template <typename T = void> struct equal_to;
template <typename T = void> struct not_equal_to;
template <typename T = void> struct greater;
template <typename T = void> struct less;
template <typename T = void> struct greater_equal;
template <typename T = void> struct less_equal;
template <typename T = void> struct logical_and;
template <typename T = void> struct logical_or;
template <typename T = void> struct logical_not;
// [arithmetic.operations.plus]
template <>
struct plus<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) + std::forward<U>(u))
{
return std::forward<T>(t) + std::forward<U>(u);
}
};
// [arithmetic.operations.minus]
template <>
struct minus<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) - std::forward<U>(u))
{
return std::forward<T>(t) - std::forward<U>(u);
}
};
// [arithmetic.operations.multiplies]
template <>
struct multiplies<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) * std::forward<U>(u))
{
return std::forward<T>(t) * std::forward<U>(u);
}
};
// [arithmetic.operations.divides]
template <>
struct divides<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) / std::forward<U>(u))
{
return std::forward<T>(t) / std::forward<U>(u);
}
};
// [arithmetic.operations.modulus]
template <>
struct modulus<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) % std::forward<U>(u))
{
return std::forward<T>(t) % std::forward<U>(u);
}
};
// [arithmetic.operations.negate]
template <>
struct negate<void> {
using is_transparent = true_type;
template <typename T>
constexpr auto operator()(T&& t) const -> decltype(-std::forward<T>(t))
{
return -std::forward<T>(t);
}
};
// [comparisons.equal_to]
template <>
struct equal_to<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) == std::forward<U>(u))
{
return std::forward<T>(t) == std::forward<U>(u);
}
};
// [comparisons.not_equal_to]
template <>
struct not_equal_to<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) != std::forward<U>(u))
{
return std::forward<T>(t) != std::forward<U>(u);
}
};
// [comparisons.greater]
template <>
struct greater<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) > std::forward<U>(u))
{
return std::forward<T>(t) > std::forward<U>(u);
}
};
// [comparisons.less]
template <>
struct less<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) < std::forward<U>(u))
{
return std::forward<T>(t) < std::forward<U>(u);
}
};
// [comparisons.greater_equal]
template <>
struct greater_equal<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) >= std::forward<U>(u))
{
return std::forward<T>(t) >= std::forward<U>(u);
}
};
// [comparisons.less_equal]
template <>
struct less_equal<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) <= std::forward<U>(u))
{
return std::forward<T>(t) <= std::forward<U>(u);
}
};
// [logical.operations.and]
template <>
struct logical_and<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) && std::forward<U>(u))
{
return std::forward<T>(t) && std::forward<U>(u);
}
};
// [logical.operations.or]
template <>
struct logical_or<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t, U&& u) const -> decltype(std::forward<T>(t) || std::forward<U>(u))
{
return std::forward<T>(t) || std::forward<U>(u);
}
};
// [logical.operations.not]
template <>
struct logical_not<void> {
using is_transparent = true_type;
template <typename T>
constexpr auto operator()(T&& t) const -> decltype(!std::forward<T>(t))
{
return !std::forward<T>(t);
}
};
// [bitwise.operations.and]
template <typename T = void>
struct bit_and {
constexpr T operator()(const T &x, const T &y) const
{
return x & y;
}
};
template <>
struct bit_and<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t,U&& u) const -> decltype(std::forward<T>(t) & std::forward<U>(u))
{
return std::forward<T>(t) & std::forward<U>(u);
}
};
// [bitwise.operations.or]
template <typename T = void>
struct bit_or {
constexpr T operator()(const T &x, const T &y) const
{
return x & y;
}
};
template <>
struct bit_or<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t,U&& u) const -> decltype(std::forward<T>(t) | std::forward<U>(u))
{
return std::forward<T>(t) | std::forward<U>(u);
}
};
// [bitwise.operations.xor]
template <typename T = void>
struct bit_xor {
constexpr T operator()(const T &x, const T &y) const
{
return x ^ y;
}
};
template <>
struct bit_xor<void> {
using is_transparent = true_type;
template <typename T, typename U>
constexpr auto operator()(T&& t,U&& u) const -> decltype(std::forward<T>(t) ^ std::forward<U>(u))
{
return std::forward<T>(t) ^ std::forward<U>(u);
}
};
// [bitwise.operations.not]
template <typename T = void>
struct bit_not {
constexpr T operator()(const T &arg) const
{
return ~arg;
}
};
template <>
struct bit_not<void> {
using is_transparent = true_type;
template <typename T>
constexpr auto operator()(T&& arg) const -> decltype(~std::forward<T>(arg))
{
return ~std::forward<T>(arg);
}
};
} // namespace std
#endif // __CC_ARM
namespace mstd {
using std::reference_wrapper;
using std::ref;
using std::cref;
using std::plus;
using std::minus;
using std::multiplies;
using std::divides;
using std::modulus;
using std::negate;
using std::equal_to;
using std::not_equal_to;
using std::greater;
using std::less;
using std::greater_equal;
using std::less_equal;
using std::logical_and;
using std::logical_or;
using std::logical_not;
using std::bit_and;
using std::bit_or;
using std::bit_xor;
using std::bit_not;
#if __cpp_lib_not_fn >= 201603
using std::not_fn;
#else
namespace impl {
// [func.not_fn]
template <typename F>
class not_fn_t {
std::decay_t<F> fn;
public:
explicit not_fn_t(F&& f) : fn(std::forward<F>(f)) { }
not_fn_t(const not_fn_t &other) = default;
not_fn_t(not_fn_t &&other) = default;
template<typename... Args>
auto operator()(Args&&... args) & -> decltype(!std::declval<invoke_result_t<std::decay_t<F> &, Args...>>())
{
return !mstd::invoke(fn, std::forward<Args>(args)...);
}
template<typename... Args>
auto operator()(Args&&... args) const & -> decltype(!std::declval<invoke_result_t<std::decay_t<F> const &, Args...>>())
{
return !mstd::invoke(fn, std::forward<Args>(args)...);
}
template<typename... Args>
auto operator()(Args&&... args) && -> decltype(!std::declval<invoke_result_t<std::decay_t<F>, Args...>>())
{
return !mstd::invoke(std::move(fn), std::forward<Args>(args)...);
}
template<typename... Args>
auto operator()(Args&&... args) const && -> decltype(!std::declval<invoke_result_t<std::decay_t<F> const, Args...>>())
{
return !mstd::invoke(std::move(fn), std::forward<Args>(args)...);
}
};
}
template <typename F>
impl::not_fn_t<F> not_fn(F&& f)
{
return impl::not_fn_t<F>(std::forward<F>(f));
}
#endif
/* C++20 unwrap_reference */
template <typename T>
struct unwrap_reference : type_identity<T> { };
template <typename T>
struct unwrap_reference<std::reference_wrapper<T>> : type_identity<T &> { };
template <typename T>
using unwrap_reference_t = typename unwrap_reference<T>::type;
/* C++20 unwrap_ref_decay */
template <typename T>
struct unwrap_ref_decay : unwrap_reference<std::decay_t<T>> { };
template <typename T>
using unwrap_ref_decay_t = typename unwrap_ref_decay<T>::type;
}
#endif // MSTD_FUNCTIONAL_