mbed-os/targets/TARGET_STM/TARGET_STM32L0/device/stm32l0xx_hal_rcc.h

1616 lines
75 KiB
C

/**
******************************************************************************
* @file stm32l0xx_hal_rcc.h
* @author MCD Application Team
* @version V1.7.0
* @date 31-May-2016
* @brief Header file of RCC HAL module.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32L0xx_HAL_RCC_H
#define __STM32L0xx_HAL_RCC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l0xx_hal_def.h"
/** @addtogroup STM32L0xx_HAL_Driver
* @{
*/
/** @defgroup RCC RCC
* @{
*/
/** @defgroup RCC_Exported_Types RCC Exported Types
* @{
*/
/**
* @brief RCC PLL configuration structure definition
*/
typedef struct
{
uint32_t PLLState; /*!< The new state of the PLL.
This parameter can be a value of @ref RCC_PLL_Config */
uint32_t PLLSource; /*!< RCC_PLLSource: PLL entry clock source.
This parameter must be a value of @ref RCC_PLL_Clock_Source */
uint32_t PLLMUL; /*!< PLLMUL: Multiplication factor for PLL VCO output clock
This parameter must of @ref RCC_PLLMultiplication_Factor */
uint32_t PLLDIV; /*!< PLLDIV: Division factor for main system clock (SYSCLK)
This parameter must be a value of @ref RCC_PLLDivider_Factor */
}RCC_PLLInitTypeDef;
/**
* @brief RCC Internal/External Oscillator (HSE, HSI, LSE and LSI) configuration structure definition
*/
typedef struct
{
uint32_t OscillatorType; /*!< The oscillators to be configured.
This parameter can be a value of @ref RCC_Oscillator_Type */
uint32_t HSEState; /*!< The new state of the HSE.
This parameter can be a value of @ref RCC_HSE_Config */
uint32_t LSEState; /*!< The new state of the LSE.
This parameter can be a value of @ref RCC_LSE_Config */
uint32_t HSIState; /*!< The new state of the HSI.
This parameter can be a value of @ref RCC_HSI_Config */
uint32_t HSICalibrationValue; /*!< The calibration trimming value.
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x1F */
uint32_t LSIState; /*!< The new state of the LSI.
This parameter can be a value of @ref RCC_LSI_Config */
#if !defined (STM32L031xx) && !defined (STM32L041xx) && !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx) && \
!defined (STM32L011xx) && !defined (STM32L021xx)
uint32_t HSI48State; /*!< The new state of the HSI48.
This parameter can be a value of @ref RCC_HSI48_Config */
#endif
uint32_t MSIState; /*!< The new state of the MSI.
This parameter can be a value of @ref RCC_MSI_Config */
uint32_t MSICalibrationValue; /*!< The calibration trimming value.
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF */
uint32_t MSIClockRange; /*!< The MSI frequency range.
This parameter can be a value of @ref RCC_MSI_Clock_Range */
RCC_PLLInitTypeDef PLL; /*!< PLL structure parameters */
}RCC_OscInitTypeDef;
/**
* @brief RCC System, AHB and APB busses clock configuration structure definition
*/
typedef struct
{
uint32_t ClockType; /*!< The clock to be configured.
This parameter can be a value of @ref RCC_System_Clock_Type */
uint32_t SYSCLKSource; /*!< The clock source (SYSCLKS) used as system clock.
This parameter can be a value of @ref RCC_System_Clock_Source */
uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK).
This parameter can be a value of @ref RCC_AHB_Clock_Source */
uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK).
This parameter can be a value of @ref RCC_APB1_APB2_Clock_Source */
uint32_t APB2CLKDivider; /*!< The APB2 clock (PCLK2) divider. This clock is derived from the AHB clock (HCLK).
This parameter can be a value of @ref RCC_APB1_APB2_Clock_Source */
}RCC_ClkInitTypeDef;
/**
* @}
*/
/* Private constants --------------------------------------------------------*/
/** @addtogroup RCC_Private
* @brief RCC registers bit address in the alias region
* @{
*/
#define RCC_OFFSET (RCC_BASE - PERIPH_BASE)
/* --- CR Register ---*/
/* Alias word address of HSION bit */
#define RCC_CR_OFFSET (RCC_OFFSET + 0x00U)
/* --- CFGR Register ---*/
/* Alias word address of I2SSRC bit */
#define RCC_CFGR_OFFSET (RCC_OFFSET + 0x08U)
/* --- CSR Register ---*/
#define RCC_CSR_OFFSET (RCC_OFFSET + 0x74U)
/* CR register byte 3 (Bits[23:16]) base address */
#define RCC_CR_BYTE2_ADDRESS ((uint32_t)0x40023802U)
/* CIER register byte 0 (Bits[0:8]) base address */
#define CIER_BYTE0_ADDRESS ((uint32_t)(RCC_BASE + 0x10U + 0x00U))
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup RCC_Exported_Constants RCC Exported Constants
* @{
*/
/** @defgroup RCC_Timeout_Value Timeout Values
* @{
*/
#define RCC_DBP_TIMEOUT_VALUE ((uint32_t)100U) /* 100 ms */
#define RCC_LSE_TIMEOUT_VALUE LSE_STARTUP_TIMEOUT
#define RCC_HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT
/**
* @}
*/
/** @defgroup RCC_Oscillator_Type Oscillator Type
* @{
*/
#define RCC_OSCILLATORTYPE_NONE ((uint32_t)0x00000000U) /*!< Oscillator configuration unchanged */
#define RCC_OSCILLATORTYPE_HSE ((uint32_t)0x00000001U) /*!< HSE to configure */
#define RCC_OSCILLATORTYPE_HSI ((uint32_t)0x00000002U) /*!< HSI to configure */
#define RCC_OSCILLATORTYPE_LSE ((uint32_t)0x00000004U) /*!< LSE to configure */
#define RCC_OSCILLATORTYPE_LSI ((uint32_t)0x00000008U) /*!< LSI to configure */
#define RCC_OSCILLATORTYPE_MSI ((uint32_t)0x00000010U) /*!< MSI to configure */
#if !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx)
#define RCC_OSCILLATORTYPE_HSI48 ((uint32_t)0x00000020U)
#endif /* !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx) */
/**
* @}
*/
/** @defgroup RCC_HSE_Config RCC HSE Config
* @{
*/
#define RCC_HSE_OFF ((uint32_t)0x00000000U)
#define RCC_HSE_ON RCC_CR_HSEON
#define RCC_HSE_BYPASS ((uint32_t)(RCC_CR_HSEBYP | RCC_CR_HSEON))
/**
* @}
*/
/** @defgroup RCC_LSE_Config RCC LSE Config
* @{
*/
#define RCC_LSE_OFF ((uint32_t)0x00000000U)
#define RCC_LSE_ON RCC_CSR_LSEON
#define RCC_LSE_BYPASS ((uint32_t)(RCC_CSR_LSEBYP | RCC_CSR_LSEON))
/**
* @}
*/
/** @defgroup RCC_LSI_Config RCC LSI Config
* @{
*/
#define RCC_LSI_OFF ((uint8_t)0x00U)
#define RCC_LSI_ON ((uint8_t)0x01U)
#define RCC_MSICALIBRATION_DEFAULT ((uint32_t)0) /* Default MSI calibration trimming value */
/**
* @}
*/
/** @defgroup RCC_MSI_Config RCC MSI Config
* @{
*/
#define RCC_MSI_OFF ((uint8_t)0x00U)
#define RCC_MSI_ON ((uint8_t)0x01U)
#define RCC_HSICALIBRATION_DEFAULT ((uint32_t)0x10U) /* Default HSI calibration trimming value */
/**
* @}
*/
#if !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx)
/** @defgroup RCC_HSI48_Config RCC HSI48 Configuration
* @{
*/
#define RCC_HSI48_OFF ((uint8_t)0x00U)
#define RCC_HSI48_ON ((uint8_t)0x01U)
/**
* @}
*/
#endif /* !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx) */
/** @defgroup RCC_PLL_Config RCC PLL Config
* @{
*/
#define RCC_PLL_NONE ((uint8_t)0x00U)
#define RCC_PLL_OFF ((uint8_t)0x01U)
#define RCC_PLL_ON ((uint8_t)0x02U)
/**
* @}
*/
/** @defgroup RCC_PLL_Clock_Source RCC PLL Clock Source
* @{
*/
#define RCC_PLLSOURCE_HSI RCC_CFGR_PLLSRC_HSI
#define RCC_PLLSOURCE_HSE RCC_CFGR_PLLSRC_HSE
/**
* @}
*/
/** @defgroup RCC_PLLMultiplication_Factor RCC PLL Multipliers
* @{
*/
#define RCC_PLLMUL_3 RCC_CFGR_PLLMUL3
#define RCC_PLLMUL_4 RCC_CFGR_PLLMUL4
#define RCC_PLLMUL_6 RCC_CFGR_PLLMUL6
#define RCC_PLLMUL_8 RCC_CFGR_PLLMUL8
#define RCC_PLLMUL_12 RCC_CFGR_PLLMUL12
#define RCC_PLLMUL_16 RCC_CFGR_PLLMUL16
#define RCC_PLLMUL_24 RCC_CFGR_PLLMUL24
#define RCC_PLLMUL_32 RCC_CFGR_PLLMUL32
#define RCC_PLLMUL_48 RCC_CFGR_PLLMUL48
/**
* @}
*/
/** @defgroup RCC_PLLDivider_Factor RCC PLL Dividers
* @{
*/
#define RCC_PLLDIV_2 RCC_CFGR_PLLDIV2
#define RCC_PLLDIV_3 RCC_CFGR_PLLDIV3
#define RCC_PLLDIV_4 RCC_CFGR_PLLDIV4
/**
* @}
*/
/** @defgroup RCC_MSI_Clock_Range RCC MSI Clock Range
* @{
*/
#define RCC_MSIRANGE_0 RCC_ICSCR_MSIRANGE_0 /*!< MSI = 65.536 KHz */
#define RCC_MSIRANGE_1 RCC_ICSCR_MSIRANGE_1 /*!< MSI = 131.072 KHz */
#define RCC_MSIRANGE_2 RCC_ICSCR_MSIRANGE_2 /*!< MSI = 262.144 KHz */
#define RCC_MSIRANGE_3 RCC_ICSCR_MSIRANGE_3 /*!< MSI = 524.288 KHz */
#define RCC_MSIRANGE_4 RCC_ICSCR_MSIRANGE_4 /*!< MSI = 1.048 MHz */
#define RCC_MSIRANGE_5 RCC_ICSCR_MSIRANGE_5 /*!< MSI = 2.097 MHz */
#define RCC_MSIRANGE_6 RCC_ICSCR_MSIRANGE_6 /*!< MSI = 4.194 MHz */
/**
* @}
*/
/** @defgroup RCC_System_Clock_Type RCC System Clock Type
* @{
*/
#define RCC_CLOCKTYPE_SYSCLK ((uint32_t)0x00000001U) /*!< SYSCLK to configure */
#define RCC_CLOCKTYPE_HCLK ((uint32_t)0x00000002U) /*!< HCLK to configure */
#define RCC_CLOCKTYPE_PCLK1 ((uint32_t)0x00000004U) /*!< PCLK1 to configure */
#define RCC_CLOCKTYPE_PCLK2 ((uint32_t)0x00000008U) /*!< PCLK2 to configure */
/**
* @}
*/
/** @defgroup RCC_System_Clock_Source RCC System Clock Source
* @{
*/
#define RCC_SYSCLKSOURCE_MSI RCC_CFGR_SW_MSI /*!< MSI selection as system clock */
#define RCC_SYSCLKSOURCE_HSI RCC_CFGR_SW_HSI /*!< HSI selection as system clock */
#define RCC_SYSCLKSOURCE_HSE RCC_CFGR_SW_HSE /*!< HSE selection as system clock */
#define RCC_SYSCLKSOURCE_PLLCLK RCC_CFGR_SW_PLL /*!< PLL selection as system clock */
/**
* @}
*/
/** @defgroup RCC_System_Clock_SOURCE_Status RCC System Clock Source Status
* @{
*/
#define RCC_SYSCLKSOURCE_STATUS_MSI RCC_CFGR_SWS_MSI /*!< MSI used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_HSI RCC_CFGR_SWS_HSI /*!< HSI used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_HSE RCC_CFGR_SWS_HSE /*!< HSE used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_PLLCLK RCC_CFGR_SWS_PLL /*!< PLL used as system clock */
/**
* @}
*/
/** @defgroup RCC_AHB_Clock_Source RCC AHB Clock Source
* @{
*/
#define RCC_SYSCLK_DIV1 RCC_CFGR_HPRE_DIV1 /*!< SYSCLK not divided */
#define RCC_SYSCLK_DIV2 RCC_CFGR_HPRE_DIV2 /*!< SYSCLK divided by 2 */
#define RCC_SYSCLK_DIV4 RCC_CFGR_HPRE_DIV4 /*!< SYSCLK divided by 4 */
#define RCC_SYSCLK_DIV8 RCC_CFGR_HPRE_DIV8 /*!< SYSCLK divided by 8 */
#define RCC_SYSCLK_DIV16 RCC_CFGR_HPRE_DIV16 /*!< SYSCLK divided by 16 */
#define RCC_SYSCLK_DIV64 RCC_CFGR_HPRE_DIV64 /*!< SYSCLK divided by 64 */
#define RCC_SYSCLK_DIV128 RCC_CFGR_HPRE_DIV128 /*!< SYSCLK divided by 128 */
#define RCC_SYSCLK_DIV256 RCC_CFGR_HPRE_DIV256 /*!< SYSCLK divided by 256 */
#define RCC_SYSCLK_DIV512 RCC_CFGR_HPRE_DIV512 /*!< SYSCLK divided by 512 */
/**
* @}
*/
/** @defgroup RCC_APB1_APB2_Clock_Source RCC APB1 APB2 Clock Source
* @{
*/
#define RCC_HCLK_DIV1 RCC_CFGR_PPRE1_DIV1 /*!< HCLK not divided */
#define RCC_HCLK_DIV2 RCC_CFGR_PPRE1_DIV2 /*!< HCLK divided by 2 */
#define RCC_HCLK_DIV4 RCC_CFGR_PPRE1_DIV4 /*!< HCLK divided by 4 */
#define RCC_HCLK_DIV8 RCC_CFGR_PPRE1_DIV8 /*!< HCLK divided by 8 */
#define RCC_HCLK_DIV16 RCC_CFGR_PPRE1_DIV16 /*!< HCLK divided by 16 */
/**
* @}
*/
/** @defgroup RCC_RTC_Clock_Source RCC RTC Clock Source
* @{
*/
#define RCC_RTCCLKSOURCE_NO_CLK ((uint32_t)0x00000000U)
#define RCC_RTCCLKSOURCE_LSE RCC_CSR_RTCSEL_LSE
#define RCC_RTCCLKSOURCE_LSI RCC_CSR_RTCSEL_LSI
#define RCC_RTCCLKSOURCE_HSE_DIVX RCC_CSR_RTCSEL_HSE
#define RCC_RTCCLKSOURCE_HSE_DIV2 RCC_CSR_RTCSEL_HSE
#define RCC_RTCCLKSOURCE_HSE_DIV4 ((uint32_t)RCC_CSR_RTCSEL_HSE | RCC_CR_RTCPRE_0)
#define RCC_RTCCLKSOURCE_HSE_DIV8 ((uint32_t)RCC_CSR_RTCSEL_HSE | RCC_CR_RTCPRE_1)
#define RCC_RTCCLKSOURCE_HSE_DIV16 ((uint32_t)RCC_CSR_RTCSEL_HSE | RCC_CR_RTCPRE)
#define RCC_RTC_HSE_DIV_2 (uint32_t)0x00000000U /*!< HSE is divided by 2 for RTC clock */
#define RCC_RTC_HSE_DIV_4 RCC_CR_RTCPRE_0 /*!< HSE is divided by 4 for RTC clock */
#define RCC_RTC_HSE_DIV_8 RCC_CR_RTCPRE_1 /*!< HSE is divided by 8 for RTC clock */
#define RCC_RTC_HSE_DIV_16 RCC_CR_RTCPRE /*!< HSE is divided by 16 for RTC clock */
/**
* @}
*/
/** @defgroup RCC_MCO1_Clock_Source RCC MCO1 Clock Source
* @{
*/
#define RCC_MCO1SOURCE_NOCLOCK RCC_CFGR_MCO_NOCLOCK
#define RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCO_SYSCLK
#define RCC_MCO1SOURCE_HSI RCC_CFGR_MCO_HSI
#define RCC_MCO1SOURCE_MSI RCC_CFGR_MCO_MSI
#define RCC_MCO1SOURCE_HSE RCC_CFGR_MCO_HSE
#define RCC_MCO1SOURCE_PLLCLK RCC_CFGR_MCO_PLL
#define RCC_MCO1SOURCE_LSI RCC_CFGR_MCO_LSI
#define RCC_MCO1SOURCE_LSE RCC_CFGR_MCO_LSE
#if !defined (STM32L031xx) && !defined (STM32L041xx) && !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx) \
&& !defined (STM32L011xx) && !defined (STM32L021xx)
#define RCC_MCO1SOURCE_HSI48 RCC_CFGR_MCO_HSI48
#endif
/**
* @}
*/
/** @defgroup RCC_MCOPrescaler RCC MCO Prescaler
* @{
*/
#define RCC_MCODIV_1 RCC_CFGR_MCO_PRE_1
#define RCC_MCODIV_2 RCC_CFGR_MCO_PRE_2
#define RCC_MCODIV_4 RCC_CFGR_MCO_PRE_4
#define RCC_MCODIV_8 RCC_CFGR_MCO_PRE_8
#define RCC_MCODIV_16 RCC_CFGR_MCO_PRE_16
/**
* @}
*/
/** @defgroup RCC_MCO_Index RCC MCO Index
* @{
*/
#define RCC_MCO1 ((uint32_t)0x00000000U)
#define RCC_MCO2 ((uint32_t)0x00000001U)
#if defined(STM32L031xx) || defined(STM32L041xx) || defined(STM32L073xx) || defined(STM32L083xx) || \
defined(STM32L072xx) || defined(STM32L082xx) || defined(STM32L071xx) || defined(STM32L081xx)
#define RCC_MCO3 ((uint32_t)0x00000002U)
#endif
/**
* @}
*/
/** @defgroup RCC_Interrupt RCC Interruptions
* @{
*/
#define RCC_IT_LSIRDY RCC_CIFR_LSIRDYF
#define RCC_IT_LSERDY RCC_CIFR_LSERDYF
#define RCC_IT_HSIRDY RCC_CIFR_HSIRDYF
#define RCC_IT_HSERDY RCC_CIFR_HSERDYF
#define RCC_IT_PLLRDY RCC_CIFR_PLLRDYF
#define RCC_IT_MSIRDY RCC_CIFR_MSIRDYF
#define RCC_IT_CSSLSE RCC_CIFR_CSSLSEF
#define RCC_IT_CSSHSE RCC_CIFR_CSSHSEF
#if !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx)
#define RCC_IT_HSI48RDY RCC_CIFR_HSI48RDYF
#endif /* !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx) */
/**
* @}
*/
/** @defgroup RCC_Flag RCC Flag
* Elements values convention: 0XXYYYYYb
* - YYYYY : Flag position in the register
* - 0XX : Register index
* - 01: CR register
* - 10: CSR register
* - 11: CRRCR register
* @{
*/
/* Flags in the CR register */
#define RCC_FLAG_HSIRDY ((uint8_t)0x22U)
#define RCC_FLAG_HSIDIV ((uint8_t)0x24U)
#define RCC_FLAG_MSIRDY ((uint8_t)0x29U)
#define RCC_FLAG_HSERDY ((uint8_t)0x31U)
#define RCC_FLAG_PLLRDY ((uint8_t)0x39U)
/* Flags in the CSR register */
#define RCC_FLAG_LSERDY ((uint8_t)0x49U)
#define RCC_FLAG_LSECSS ((uint8_t)0x4EU)
#define RCC_FLAG_LSIRDY ((uint8_t)0x41U)
#define RCC_FLAG_FWRST ((uint8_t)0x58U)
#define RCC_FLAG_OBLRST ((uint8_t)0x59U)
#define RCC_FLAG_PINRST ((uint8_t)0x5AU)
#define RCC_FLAG_PORRST ((uint8_t)0x5BU)
#define RCC_FLAG_SFTRST ((uint8_t)0x5CU)
#define RCC_FLAG_IWDGRST ((uint8_t)0x5DU)
#define RCC_FLAG_WWDGRST ((uint8_t)0x5EU)
#define RCC_FLAG_LPWRRST ((uint8_t)0x5FU)
#if !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx)
/* Flags in the CRRCR register */
#define RCC_FLAG_HSI48RDY ((uint8_t)0x61U)
#endif /* !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx) */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup RCC_Exported_Macros RCC Exported Macros
* @{
*/
/** @defgroup RCC_AHB_Peripheral_Clock_Enable_Disable AHB Peripheral Clock Enable Disable
* @brief Enable or disable the AHB peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_DMA1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN);\
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN);\
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_MIF_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_MIFEN);\
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_MIFEN);\
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_CRC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN);\
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN);\
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_DMA1_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN)
#define __HAL_RCC_MIF_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_MIFEN)
#define __HAL_RCC_CRC_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN)
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Enable_Disable IOPORT Peripheral Clock Enable Disable
* @brief Enable or disable the IOPORT peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_GPIOA_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN);\
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN);\
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_GPIOB_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN);\
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN);\
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_GPIOC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN);\
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN);\
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_GPIOH_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOHEN);\
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOHEN);\
UNUSED(tmpreg); \
} while(0)
#define __HAL_RCC_GPIOA_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN)
#define __HAL_RCC_GPIOB_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN)
#define __HAL_RCC_GPIOC_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN)
#define __HAL_RCC_GPIOH_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOHEN)
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Enable_Disable APB1 Peripheral Clock Enable Disable
* @brief Enable or disable the Low Speed APB (APB1) peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_WWDG_CLK_ENABLE() SET_BIT(RCC->APB1ENR, (RCC_APB1ENR_WWDGEN))
#define __HAL_RCC_PWR_CLK_ENABLE() SET_BIT(RCC->APB1ENR, (RCC_APB1ENR_PWREN))
#define __HAL_RCC_WWDG_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR, (RCC_APB1ENR_WWDGEN))
#define __HAL_RCC_PWR_CLK_DISABLE() CLEAR_BIT(RCC->APB1ENR, (RCC_APB1ENR_PWREN))
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Enable_Disable APB2 Peripheral Clock Enable Disable
* @brief Enable or disable the High Speed APB (APB2) peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_SYSCFG_CLK_ENABLE() SET_BIT(RCC->APB2ENR, (RCC_APB2ENR_SYSCFGEN))
#define __HAL_RCC_DBGMCU_CLK_ENABLE() SET_BIT(RCC->APB2ENR, (RCC_APB2ENR_DBGMCUEN))
#define __HAL_RCC_SYSCFG_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, (RCC_APB2ENR_SYSCFGEN))
#define __HAL_RCC_DBGMCU_CLK_DISABLE() CLEAR_BIT(RCC->APB2ENR, (RCC_APB2ENR_DBGMCUEN))
/**
* @}
*/
/** @defgroup RCC_AHB_Peripheral_Clock_Enable_Disable_Status AHB Peripheral Clock Enabled or Disabled Status
* @brief Check whether the AHB peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_DMA1_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN) != RESET)
#define __HAL_RCC_MIF_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_MIFEN) != RESET)
#define __HAL_RCC_CRC_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) != RESET)
/**
* @}
*/
/** @defgroup RCC_IOPORT_Peripheral_Clock_Enable_Disable_Status IOPORT Peripheral Clock Enabled or Disabled Status
* @brief Check whether the IOPORT peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_GPIOA_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) != RESET)
#define __HAL_RCC_GPIOB_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) != RESET)
#define __HAL_RCC_GPIOC_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN) != RESET)
#define __HAL_RCC_GPIOH_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOHEN) != RESET)
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Enable_Disable_Status APB1 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the APB1 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_WWDG_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR, RCC_APB1ENR_WWDGEN) != RESET)
#define __HAL_RCC_PWR_IS_CLK_ENABLED() (READ_BIT(RCC->APB1ENR, RCC_APB1ENR_PWREN) != RESET)
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Enable_Disable_Status APB2 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the APB2 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_SYSCFG_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_SYSCFGEN) != RESET)
#define __HAL_RCC_DBGMCU_IS_CLK_ENABLED() (READ_BIT(RCC->APB2ENR, RCC_APB2ENR_DBGMCUEN) != RESET)
/**
* @}
*/
/** @defgroup RCC_AHB_Force_Release_Reset AHB Peripheral Force Release Reset
* @brief Force or release AHB peripheral reset.
* @{
*/
#define __HAL_RCC_AHB_FORCE_RESET() (RCC->AHBRSTR = 0xFFFFFFFFU)
#define __HAL_RCC_DMA1_FORCE_RESET() SET_BIT(RCC->AHBRSTR, (RCC_AHBRSTR_DMA1RST))
#define __HAL_RCC_MIF_FORCE_RESET() SET_BIT(RCC->AHBRSTR, (RCC_AHBRSTR_MIFRST))
#define __HAL_RCC_CRC_FORCE_RESET() SET_BIT(RCC->AHBRSTR, (RCC_AHBRSTR_CRCRST))
#define __HAL_RCC_AHB_RELEASE_RESET() (RCC->AHBRSTR = 0x00U)
#define __HAL_RCC_CRC_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, (RCC_AHBRSTR_CRCRST))
#define __HAL_RCC_DMA1_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, (RCC_AHBRSTR_DMA1RST))
#define __HAL_RCC_MIF_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, (RCC_AHBRSTR_MIFRST))
/**
* @}
*/
/** @defgroup RCC_IOPORT_Force_Release_Reset IOPORT Peripheral Force Release Reset
* @brief Force or release IOPORT peripheral reset.
* @{
*/
#define __HAL_RCC_IOP_FORCE_RESET() (RCC->IOPRSTR = 0xFFFFFFFFU)
#define __HAL_RCC_GPIOA_FORCE_RESET() SET_BIT(RCC->IOPRSTR, (RCC_IOPRSTR_GPIOARST))
#define __HAL_RCC_GPIOB_FORCE_RESET() SET_BIT(RCC->IOPRSTR, (RCC_IOPRSTR_GPIOBRST))
#define __HAL_RCC_GPIOC_FORCE_RESET() SET_BIT(RCC->IOPRSTR, (RCC_IOPRSTR_GPIOCRST))
#define __HAL_RCC_GPIOH_FORCE_RESET() SET_BIT(RCC->IOPRSTR, (RCC_IOPRSTR_GPIOHRST))
#define __HAL_RCC_IOP_RELEASE_RESET() (RCC->IOPRSTR = 0x00U)
#define __HAL_RCC_GPIOA_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, (RCC_IOPRSTR_GPIOARST))
#define __HAL_RCC_GPIOB_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, (RCC_IOPRSTR_GPIOBRST))
#define __HAL_RCC_GPIOC_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, (RCC_IOPRSTR_GPIOCRST))
#define __HAL_RCC_GPIOH_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, (RCC_IOPRSTR_GPIOHRST))
/**
* @}
*/
/** @defgroup RCC_APB1_Force_Release_Reset APB1 Peripheral Force Release Reset
* @brief Force or release APB1 peripheral reset.
* @{
*/
#define __HAL_RCC_APB1_FORCE_RESET() (RCC->APB1RSTR = 0xFFFFFFFFU)
#define __HAL_RCC_WWDG_FORCE_RESET() SET_BIT(RCC->APB1RSTR, (RCC_APB1RSTR_WWDGRST))
#define __HAL_RCC_PWR_FORCE_RESET() SET_BIT(RCC->APB1RSTR, (RCC_APB1RSTR_PWRRST))
#define __HAL_RCC_APB1_RELEASE_RESET() (RCC->APB1RSTR = 0x00U)
#define __HAL_RCC_WWDG_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR, (RCC_APB1RSTR_WWDGRST))
#define __HAL_RCC_PWR_RELEASE_RESET() CLEAR_BIT(RCC->APB1RSTR, (RCC_APB1RSTR_PWRRST))
/**
* @}
*/
/** @defgroup RCC_APB2_Force_Release_Reset APB2 Peripheral Force Release Reset
* @brief Force or release APB2 peripheral reset.
* @{
*/
#define __HAL_RCC_APB2_FORCE_RESET() (RCC->APB2RSTR = 0xFFFFFFFFU)
#define __HAL_RCC_DBGMCU_FORCE_RESET() SET_BIT(RCC->APB2RSTR, (RCC_APB2RSTR_DBGMCURST))
#define __HAL_RCC_SYSCFG_FORCE_RESET() SET_BIT(RCC->APB2RSTR, (RCC_APB2RSTR_SYSCFGRST))
#define __HAL_RCC_APB2_RELEASE_RESET() (RCC->APB2RSTR = 0x00U)
#define __HAL_RCC_DBGMCU_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, (RCC_APB2RSTR_DBGMCURST))
#define __HAL_RCC_SYSCFG_RELEASE_RESET() CLEAR_BIT(RCC->APB2RSTR, (RCC_APB2RSTR_SYSCFGRST))
/**
* @}
*/
/** @defgroup RCC_AHB_Clock_Sleep_Enable_Disable AHB Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the AHB peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral activated clocks remain enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_CRC_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, (RCC_AHBSMENR_CRCSMEN))
#define __HAL_RCC_MIF_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, (RCC_AHBSMENR_MIFSMEN))
#define __HAL_RCC_SRAM_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, (RCC_AHBSMENR_SRAMSMEN))
#define __HAL_RCC_DMA1_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, (RCC_AHBSMENR_DMA1SMEN))
#define __HAL_RCC_CRC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, (RCC_AHBSMENR_CRCSMEN))
#define __HAL_RCC_MIF_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, (RCC_AHBSMENR_MIFSMEN))
#define __HAL_RCC_SRAM_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, (RCC_AHBSMENR_SRAMSMEN))
#define __HAL_RCC_DMA1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, (RCC_AHBSMENR_DMA1SMEN))
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Sleep_Enable_Disable IOPORT Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the IOPORT peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral activated clocks remain enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_GPIOA_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, (RCC_IOPSMENR_GPIOASMEN))
#define __HAL_RCC_GPIOB_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, (RCC_IOPSMENR_GPIOBSMEN))
#define __HAL_RCC_GPIOC_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, (RCC_IOPSMENR_GPIOCSMEN))
#define __HAL_RCC_GPIOH_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, (RCC_IOPSMENR_GPIOHSMEN))
#define __HAL_RCC_GPIOA_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, (RCC_IOPSMENR_GPIOASMEN))
#define __HAL_RCC_GPIOB_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, (RCC_IOPSMENR_GPIOBSMEN))
#define __HAL_RCC_GPIOC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, (RCC_IOPSMENR_GPIOCSMEN))
#define __HAL_RCC_GPIOH_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, (RCC_IOPSMENR_GPIOHSMEN))
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Sleep_Enable_Disable APB1 Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the APB1 peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral activated clocks remain enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_WWDG_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR, (RCC_APB1SMENR_WWDGSMEN))
#define __HAL_RCC_PWR_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB1SMENR, (RCC_APB1SMENR_PWRSMEN))
#define __HAL_RCC_WWDG_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR, (RCC_APB1SMENR_WWDGSMEN))
#define __HAL_RCC_PWR_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB1SMENR, (RCC_APB1SMENR_PWRSMEN))
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Sleep_Enable_Disable APB2 Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the APB2 peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral activated clocks remain enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_SYSCFG_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, (RCC_APB2SMENR_SYSCFGSMEN))
#define __HAL_RCC_DBGMCU_CLK_SLEEP_ENABLE() SET_BIT(RCC->APB2SMENR, (RCC_APB2SMENR_DBGMCUSMEN))
#define __HAL_RCC_SYSCFG_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, (RCC_APB2SMENR_SYSCFGSMEN))
#define __HAL_RCC_DBGMCU_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APB2SMENR, (RCC_APB2SMENR_DBGMCUSMEN))
/**
* @}
*/
/** @defgroup RCC_AHB_Clock_Sleep_Enable_Disable_Status AHB Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the AHB peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_CRC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_CRCSMEN) != RESET)
#define __HAL_RCC_MIF_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_MIFSMEN) != RESET)
#define __HAL_RCC_SRAM_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_SRAMSMEN) != RESET)
#define __HAL_RCC_DMA1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA1SMEN) != RESET)
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Sleep_Enable_Disable_Status IOPORT Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the IOPORT peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_GPIOA_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOASMEN) != RESET)
#define __HAL_RCC_GPIOB_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOBSMEN) != RESET)
#define __HAL_RCC_GPIOC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOCSMEN) != RESET)
#define __HAL_RCC_GPIOH_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOHSMEN) != RESET)
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Sleep_Enable_Disable_Status APB1 Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the APB1 peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_WWDG_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR, RCC_APB1SMENR_WWDGSMEN) != RESET)
#define __HAL_RCC_PWR_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB1SMENR, RCC_APB1SMENR_PWRSMEN) != RESET)
/**
* @}
*/
/** @defgroup RCC_APB2_Clock_Sleep_Enable_Disable_Status APB2 Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the APB2 peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_SYSCFG_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_SYSCFGSMEN) != RESET)
#define __HAL_RCC_DBGMCU_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APB2SMENR, RCC_APB2SMENR_DBGMCUSMEN) != RESET)
/**
* @}
*/
/** @defgroup RCC_Backup_Domain_Reset RCC Backup Domain Reset
* @{
*/
/** @brief Macros to force or release the Backup domain reset.
* @note This function resets the RTC peripheral (including the backup registers)
* and the RTC clock source selection in RCC_CSR register.
* @note The BKPSRAM is not affected by this reset.
*/
#define __HAL_RCC_BACKUPRESET_FORCE() SET_BIT(RCC->CSR, RCC_CSR_RTCRST)
#define __HAL_RCC_BACKUPRESET_RELEASE() CLEAR_BIT(RCC->CSR, RCC_CSR_RTCRST)
/**
* @}
*/
/** @defgroup RCC_RTC_Clock_Configuration RCC RTC Clock Configuration
* @{
*/
/** @brief Macros to enable or disable the the RTC clock.
* @note These macros must be used only after the RTC clock source was selected.
*/
#define __HAL_RCC_RTC_ENABLE() SET_BIT(RCC->CSR, RCC_CSR_RTCEN)
#define __HAL_RCC_RTC_DISABLE() CLEAR_BIT(RCC->CSR, RCC_CSR_RTCEN)
/**
* @}
*/
/** @brief Macros to enable or disable the Internal High Speed oscillator (HSI).
* @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
* It is used (enabled by hardware) as system clock source after startup
* from Reset, wakeup from STOP and STANDBY mode, or in case of failure
* of the HSE used directly or indirectly as system clock (if the Clock
* Security System CSS is enabled).
* @note HSI can not be stopped if it is used as system clock source. In this case,
* you have to select another source of the system clock then stop the HSI.
* @note After enabling the HSI, the application software should wait on HSIRDY
* flag to be set indicating that HSI clock is stable and can be used as
* system clock source.
* @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
* clock cycles.
*/
#define __HAL_RCC_HSI_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSION)
#define __HAL_RCC_HSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSION)
/** @brief Macro to adjust the Internal High Speed oscillator (HSI) calibration value.
* @note The calibration is used to compensate for the variations in voltage
* and temperature that influence the frequency of the internal HSI RC.
* @param __HSICalibrationValue__: specifies the calibration trimming value.
* This parameter must be a number between 0 and 0x1F.
*/
#define __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(__HSICalibrationValue__) (MODIFY_REG(RCC->ICSCR,\
RCC_ICSCR_HSITRIM, (uint32_t)(__HSICalibrationValue__) << 8U))
/** @brief Macro to enable or disable the Internal High Speed oscillator (HSI).
* @note After enabling the HSI, the application software should wait on
* HSIRDY flag to be set indicating that HSI clock is stable and can
* be used to clock the PLL and/or system clock.
* @note HSI can not be stopped if it is used directly or through the PLL
* as system clock. In this case, you have to select another source
* of the system clock then stop the HSI.
* @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
* @param __STATE__: specifies the new state of the HSI.
* This parameter can be one of the following values:
* @arg RCC_HSI_OFF: turn OFF the HSI oscillator
* @arg RCC_HSI_ON: turn ON the HSI oscillator
* @arg RCC_HSI_DIV4: turn ON the HSI oscillator and divide it by 4
* @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
* clock cycles.
*/
#define __HAL_RCC_HSI_CONFIG(__STATE__) \
MODIFY_REG(RCC->CR, RCC_CR_HSION | RCC_CR_HSIDIVEN , (uint32_t)(__STATE__))
/**
* @brief Macros to enable or disable the Internal Multi Speed oscillator (MSI).
* @note The MSI is stopped by hardware when entering STOP and STANDBY modes.
* It is used (enabled by hardware) as system clock source after
* startup from Reset, wakeup from STOP and STANDBY mode, or in case
* of failure of the HSE used directly or indirectly as system clock
* (if the Clock Security System CSS is enabled).
* @note MSI can not be stopped if it is used as system clock source.
* In this case, you have to select another source of the system
* clock then stop the MSI.
* @note After enabling the MSI, the application software should wait on
* MSIRDY flag to be set indicating that MSI clock is stable and can
* be used as system clock source.
* @note When the MSI is stopped, MSIRDY flag goes low after 6 MSI oscillator
* clock cycles.
*/
#define __HAL_RCC_MSI_ENABLE() SET_BIT(RCC->CR, RCC_CR_MSION)
#define __HAL_RCC_MSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_MSION)
/** @brief Macro Adjusts the Internal Multi Speed oscillator (MSI) calibration value.
* @note The calibration is used to compensate for the variations in voltage
* and temperature that influence the frequency of the internal MSI RC.
* Refer to the Application Note AN3300 for more details on how to
* calibrate the MSI.
* @param __MSICalibrationValue__: specifies the calibration trimming value.
* This parameter must be a number between 0 and 0xFF.
*/
#define __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(__MSICalibrationValue__) (MODIFY_REG(RCC->ICSCR,\
RCC_ICSCR_MSITRIM, (uint32_t)(__MSICalibrationValue__) << 24U))
/**
* @brief Macro to configures the Internal Multi Speed oscillator (MSI) clock range.
* @note After restart from Reset or wakeup from STANDBY, the MSI clock is
* around 2.097 MHz. The MSI clock does not change after wake-up from
* STOP mode.
* @note The MSI clock range can be modified on the fly.
* @param __RCC_MSIRange__: specifies the MSI Clock range.
* This parameter must be one of the following values:
* @arg RCC_MSIRANGE_0: MSI clock is around 65.536 KHz
* @arg RCC_MSIRANGE_1: MSI clock is around 131.072 KHz
* @arg RCC_MSIRANGE_2: MSI clock is around 262.144 KHz
* @arg RCC_MSIRANGE_3: MSI clock is around 524.288 KHz
* @arg RCC_MSIRANGE_4: MSI clock is around 1.048 MHz
* @arg RCC_MSIRANGE_5: MSI clock is around 2.097 MHz (default after Reset or wake-up from STANDBY)
* @arg RCC_MSIRANGE_6: MSI clock is around 4.194 MHz
*/
#define __HAL_RCC_MSI_RANGE_CONFIG(__RCC_MSIRange__) (MODIFY_REG(RCC->ICSCR,\
RCC_ICSCR_MSIRANGE, (uint32_t)(__RCC_MSIRange__) ))
/** @brief Macro to get the Internal Multi Speed oscillator (__MSI__) clock range in run mode
* @retval MSI clock range.
* This parameter must be one of the following values:
* @arg RCC_MSIRANGE_0: MSI clock is around 65.536 KHz
* @arg RCC_MSIRANGE_1: MSI clock is around 131.072 KHz
* @arg RCC_MSIRANGE_2: MSI clock is around 262.144 KHz
* @arg RCC_MSIRANGE_3: MSI clock is around 524.288 KHz
* @arg RCC_MSIRANGE_4: MSI clock is around 1.048 MHz
* @arg RCC_MSIRANGE_5: MSI clock is around 2.097 MHz (default after Reset or wake-up from STANDBY)
* @arg RCC_MSIRANGE_6: MSI clock is around 4.194 MHz
*/
#define __HAL_RCC_GET_MSI_RANGE() \
((uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_MSIRANGE) >> 12U))
/** @brief Macros to enable or disable the Internal Low Speed oscillator (LSI).
* @note After enabling the LSI, the application software should wait on
* LSIRDY flag to be set indicating that LSI clock is stable and can
* be used to clock the IWDG and/or the RTC.
* @note LSI can not be disabled if the IWDG is running.
* @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
* clock cycles.
*/
#define __HAL_RCC_LSI_ENABLE() SET_BIT(RCC->CSR, RCC_CSR_LSION)
#define __HAL_RCC_LSI_DISABLE() CLEAR_BIT(RCC->CSR, RCC_CSR_LSION)
/**
* @brief Macro to configure the External High Speed oscillator (HSE).
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
* supported by this macro. User should request a transition to HSE Off
* first and then HSE On or HSE Bypass.
* @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
* software should wait on HSERDY flag to be set indicating that HSE clock
* is stable and can be used to clock the PLL and/or system clock.
* @note HSE state can not be changed if it is used directly or through the
* PLL as system clock. In this case, you have to select another source
* of the system clock then change the HSE state (ex. disable it).
* @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
* @note This function reset the CSSON bit, so if the clock security system(CSS)
* was previously enabled you have to enable it again after calling this
* function.
* @param __STATE__: specifies the new state of the HSE.
* This parameter can be one of the following values:
* @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
* 6 HSE oscillator clock cycles.
* @arg RCC_HSE_ON: turn ON the HSE oscillator.
* @arg RCC_HSE_BYPASS: HSE oscillator bypassed with external clock.
*/
#define __HAL_RCC_HSE_CONFIG(__STATE__) \
do { \
__IO uint32_t tmpreg; \
if((__STATE__) == RCC_HSE_ON) \
{ \
SET_BIT(RCC->CR, RCC_CR_HSEON); \
} \
else if((__STATE__) == RCC_HSE_BYPASS) \
{ \
CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \
SET_BIT(RCC->CR, RCC_CR_HSEBYP); \
SET_BIT(RCC->CR, RCC_CR_HSEON); \
} \
else \
{ \
CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \
/* Delay after an RCC peripheral clock */ \
tmpreg = READ_BIT(RCC->CR, RCC_CR_HSEON); \
UNUSED(tmpreg); \
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); \
} \
} while(0)
/**
* @brief Macro to configure the External Low Speed oscillator (LSE).
* @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
* supported by this macro. User should request a transition to LSE Off
* first and then LSE On or LSE Bypass.
* @note As the LSE is in the Backup domain and write access is denied to
* this domain after reset, you have to enable write access using
* HAL_PWR_EnableBkUpAccess() function before to configure the LSE
* (to be done once after reset).
* @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_BYPASS), the application
* software should wait on LSERDY flag to be set indicating that LSE clock
* is stable and can be used to clock the RTC.
* @param __STATE__: specifies the new state of the LSE.
* This parameter can be one of the following values:
* @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
* 6 LSE oscillator clock cycles.
* @arg RCC_LSE_ON: turn ON the LSE oscillator.
* @arg RCC_LSE_BYPASS: LSE oscillator bypassed with external clock.
*/
#define __HAL_RCC_LSE_CONFIG(__STATE__) \
do { \
if((__STATE__) == RCC_LSE_ON) \
{ \
SET_BIT(RCC->CSR, RCC_CSR_LSEON); \
} \
else if((__STATE__) == RCC_LSE_OFF) \
{ \
CLEAR_BIT(RCC->CSR, RCC_CSR_LSEON); \
CLEAR_BIT(RCC->CSR, RCC_CSR_LSEBYP); \
} \
else if((__STATE__) == RCC_LSE_BYPASS) \
{ \
CLEAR_BIT(RCC->CSR, RCC_CSR_LSEON); \
SET_BIT(RCC->CSR, RCC_CSR_LSEBYP); \
SET_BIT(RCC->CSR, RCC_CSR_LSEON); \
} \
else \
{ \
CLEAR_BIT(RCC->CSR, RCC_CSR_LSEON); \
CLEAR_BIT(RCC->CSR, RCC_CSR_LSEBYP); \
} \
} while(0)
/**
* @brief Configures or Get the RTC and LCD clock (RTCCLK / LCDCLK).
* @note As the RTC clock configuration bits are in the RTC domain and write
* access is denied to this domain after reset, you have to enable write
* access using PWR_RTCAccessCmd(ENABLE) function before to configure
* the RTC clock source (to be done once after reset).
* @note Once the RTC clock is configured it cannot be changed unless the RTC
* is reset using RCC_RTCResetCmd function, or by a Power On Reset (POR)
* @note The RTC clock (RTCCLK) is used also to clock the LCD (LCDCLK).
*
* @param __RTCCLKSOURCE__: specifies the RTC clock source.
* This parameter can be one of the following values:
* @arg RCC_RTCCLKSOURCE_LSE: LSE selected as RTC clock
* @arg RCC_RTCCLKSOURCE_LSI: LSI selected as RTC clock
* @arg RCC_RTCCLKSOURCE_HSE_DIV2: HSE divided by 2 selected as RTC clock
* @arg RCC_RTCCLKSOURCE_HSE_DIV4: HSE divided by 4 selected as RTC clock
* @arg RCC_RTCCLKSOURCE_HSE_DIV8: HSE divided by 8 selected as RTC clock
* @arg RCC_RTCCLKSOURCE_HSE_DIV16: HSE divided by 16 selected as RTC clock
*
* @note If the LSE or LSI is used as RTC clock source, the RTC continues to
* work in STOP and STANDBY modes, and can be used as wakeup source.
* However, when the HSE clock is used as RTC clock source, the RTC
* cannot be used in STOP and STANDBY modes.
* @note The maximum input clock frequency for RTC is 1MHz (when using HSE as
* RTC clock source).
*/
#define __HAL_RCC_RTC_CLKPRESCALER(__RTCCLKSOURCE__) (((__RTCCLKSOURCE__) & RCC_CSR_RTCSEL) == RCC_CSR_RTCSEL) ? \
MODIFY_REG(RCC->CR, RCC_CR_RTCPRE, (uint32_t)((__RTCCLKSOURCE__) & RCC_CR_RTCPRE)) : \
CLEAR_BIT(RCC->CR, RCC_CR_RTCPRE)
#define __HAL_RCC_RTC_CONFIG(__RTCCLKSOURCE__) do { __HAL_RCC_RTC_CLKPRESCALER(__RTCCLKSOURCE__); \
MODIFY_REG( RCC->CSR, RCC_CSR_RTCSEL, (uint32_t)((__RTCCLKSOURCE__) & RCC_CSR_RTCSEL)); \
} while (0)
/**
* @brief Get the RTC and LCD clock (RTCCLK / LCDCLK).
*
* @retval The clock source can be one of the following values:
* @arg RCC_RTCCLKSOURCE_NO_CLK: No clock selected as RTC clock
* @arg RCC_RTCCLKSOURCE_LSE: LSE selected as RTC clock
* @arg RCC_RTCCLKSOURCE_LSI: LSI selected as RTC clock
* @arg RCC_RTCCLKSOURCE_HSE_DIVX: HSE divided by X selected as RTC clock (X can be retrieved thanks to @ref __HAL_RCC_GET_RTC_HSE_PRESCALER()
*
*/
#define __HAL_RCC_GET_RTC_SOURCE() ((uint32_t)(READ_BIT(RCC->CSR, RCC_CSR_RTCSEL)))
/**
* @brief Get the RTC and LCD HSE clock divider (RTCCLK / LCDCLK).
*
* @retval Returned value can be one of the following values:
* @arg RCC_RTC_HSE_DIV_2: HSE divided by 2 selected as RTC clock
* @arg RCC_RTC_HSE_DIV_4: HSE divided by 4 selected as RTC clock
* @arg RCC_RTC_HSE_DIV_8: HSE divided by 8 selected as RTC clock
* @arg RCC_RTC_HSE_DIV_16: HSE divided by 16 selected as RTC clock
*
*/
#define __HAL_RCC_GET_RTC_HSE_PRESCALER() ((uint32_t)(READ_BIT(RCC->CR, RCC_CR_RTCPRE)))
/** @brief Macros to enable or disable the main PLL.
* @note After enabling the main PLL, the application software should wait on
* PLLRDY flag to be set indicating that PLL clock is stable and can
* be used as system clock source.
* @note The main PLL can not be disabled if it is used as system clock source
* @note The main PLL is disabled by hardware when entering STOP and STANDBY modes.
*/
#define __HAL_RCC_PLL_ENABLE() SET_BIT(RCC->CR, RCC_CR_PLLON)
#define __HAL_RCC_PLL_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_PLLON)
/** @brief Macro to configure the main PLL clock source, multiplication and division factors.
* @note This function must be used only when the main PLL is disabled.
* @param __RCC_PLLSOURCE__: specifies the PLL entry clock source.
* This parameter can be one of the following values:
* @arg RCC_PLLSOURCE_HSI: HSI oscillator clock selected as PLL clock entry
* @arg RCC_PLLSOURCE_HSE: HSE oscillator clock selected as PLL clock entry
* @param __PLLMUL__: specifies the multiplication factor to generate the PLL VCO clock
* This parameter must be one of the following values:
* @arg RCC_CFGR_PLLMUL3: PLLVCO = PLL clock entry x 3
* @arg RCC_CFGR_PLLMUL4: PLLVCO = PLL clock entry x 4
* @arg RCC_CFGR_PLLMUL6: PLLVCO = PLL clock entry x 6
* @arg RCC_CFGR_PLLMUL8: PLLVCO = PLL clock entry x 8
* @arg RCC_CFGR_PLLMUL12: PLLVCO = PLL clock entry x 12
* @arg RCC_CFGR_PLLMUL16: PLLVCO = PLL clock entry x 16
* @arg RCC_CFGR_PLLMUL24: PLLVCO = PLL clock entry x 24
* @arg RCC_CFGR_PLLMUL32: PLLVCO = PLL clock entry x 32
* @arg RCC_CFGR_PLLMUL48: PLLVCO = PLL clock entry x 48
* @note The PLL VCO clock frequency must not exceed 96 MHz when the product is in
* Range 1, 48 MHz when the product is in Range 2 and 24 MHz when the product is
* in Range 3.
* @param __PLLDIV__: specifies the PLL output clock division from PLL VCO clock
* This parameter must be one of the following values:
* @arg RCC_PLLDIV_2: PLL clock output = PLLVCO / 2
* @arg RCC_PLLDIV_3: PLL clock output = PLLVCO / 3
* @arg RCC_PLLDIV_4: PLL clock output = PLLVCO / 4
*/
#define __HAL_RCC_PLL_CONFIG(__RCC_PLLSOURCE__ , __PLLMUL__ ,__PLLDIV__ ) \
MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLMUL | RCC_CFGR_PLLDIV | RCC_CFGR_PLLSRC, (uint32_t)((__PLLMUL__)| (__PLLDIV__)| (__RCC_PLLSOURCE__)))
/** @brief Macro to get the oscillator used as PLL clock source.
* @retval The oscillator used as PLL clock source. The returned value can be one
* of the following:
* - RCC_PLLSOURCE_HSI: HSI oscillator is used as PLL clock source.
* - RCC_PLLSOURCE_HSE: HSE oscillator is used as PLL clock source.
*/
#define __HAL_RCC_GET_PLL_OSCSOURCE() ((uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC))
/**
* @brief Macro to configure the system clock source.
* @param __SYSCLKSOURCE__: specifies the system clock source.
* This parameter can be one of the following values:
* - RCC_SYSCLKSOURCE_MSI: MSI oscillator is used as system clock source.
* - RCC_SYSCLKSOURCE_HSI: HSI oscillator is used as system clock source.
* - RCC_SYSCLKSOURCE_HSE: HSE oscillator is used as system clock source.
* - RCC_SYSCLKSOURCE_PLLCLK: PLL output is used as system clock source.
* @retval None
*/
#define __HAL_RCC_SYSCLK_CONFIG(__SYSCLKSOURCE__) \
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, (__SYSCLKSOURCE__))
/** @brief Macro to get the clock source used as system clock.
* @retval The clock source used as system clock. The returned value can be one
* of the following:
* - RCC_SYSCLKSOURCE_STATUS_MSI: MSI used as system clock.
* - RCC_SYSCLKSOURCE_STATUS_HSI: HSI used as system clock.
* - RCC_SYSCLKSOURCE_STATUS_HSE: HSE used as system clock.
* - RCC_SYSCLKSOURCE_STATUS_PLLCLK: PLL used as system clock.
*/
#define __HAL_RCC_GET_SYSCLK_SOURCE() ((uint32_t)(RCC->CFGR & RCC_CFGR_SWS))
/** @brief Macro to configure the MCO clock.
* @param __MCOCLKSOURCE__ specifies the MCO clock source.
* This parameter can be one of the following values:
* @arg RCC_CFGR_MCO_HSI: HSI clock selected as MCO source
* @arg RCC_CFGR_MCO_MSI: MSI clock selected as MCO source
* @arg RCC_CFGR_MCO_HSE: HSE clock selected as MCO source
* @arg RCC_CFGR_MCO_PLL: PLL clock selected as MCO source
* @arg RCC_CFGR_MCO_LSI: LSI clock selected as MCO source
* @arg RCC_CFGR_MCO_LSE: LSE clock selected as MCO source
* @param __MCODIV__ specifies the MCO clock prescaler.
* This parameter can be one of the following values:
* @arg RCC_CFGR_MCO_PRE_1: no division applied to MCO clock
* @arg RCC_CFGR_MCO_PRE_2: division by 2 applied to MCO clock
* @arg RCC_CFGR_MCO_PRE_4: division by 4 applied to MCO clock
* @arg RCC_CFGR_MCO_PRE_8: division by 8 applied to MCO clock
* @arg RCC_CFGR_MCO_PRE_16: division by 16 applied to MCO clock
*/
#define __HAL_RCC_MCO1_CONFIG(__MCOCLKSOURCE__, __MCODIV__) \
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCO_PRE), ((__MCOCLKSOURCE__) | (__MCODIV__)))
/** @defgroup RCC_Flags_Interrupts_Management RCC Flags Interrupts Management
* @brief macros to manage the specified RCC Flags and interrupts.
* @{
*/
/** @brief Enable RCC interrupt (Perform Byte access to RCC_CIER[0:7] bits to enable
* the selected interrupts).
* @note The CSS interrupt doesn't have an enable bit; once the CSS is enabled
* and if the HSE clock fails, the CSS interrupt occurs and an NMI is
* automatically generated. The NMI will be executed indefinitely, and
* since NMI has higher priority than any other IRQ (and main program)
* the application will be stacked in the NMI ISR unless the CSS interrupt
* pending bit is cleared.
* @param __INTERRUPT__: specifies the RCC interrupt sources to be enabled.
* This parameter can be any combination of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_MSIRDY: MSI ready interrupt
* @arg RCC_IT_CSSLSE: LSE CSS interrupt
* @arg RCC_IT_HSI48RDY: HSI48 ready interrupt
*/
#define __HAL_RCC_ENABLE_IT(__INTERRUPT__) SET_BIT(RCC->CIER, (__INTERRUPT__))
/** @brief Disable RCC interrupt (Perform Byte access to RCC_CIER[0:7] bits to disable
* the selected interrupts).
* @note The CSS interrupt doesn't have an enable bit; once the CSS is enabled
* and if the HSE clock fails, the CSS interrupt occurs and an NMI is
* automatically generated. The NMI will be executed indefinitely, and
* since NMI has higher priority than any other IRQ (and main program)
* the application will be stacked in the NMI ISR unless the CSS interrupt
* pending bit is cleared.
* @param __INTERRUPT__: specifies the RCC interrupt sources to be disabled.
* This parameter can be any combination of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_MSIRDY: MSI ready interrupt
* @arg RCC_IT_HSI48RDY: HSI48 ready interrupt
* @arg RCC_IT_CSSLSE: LSE CSS interrupt
*/
#define __HAL_RCC_DISABLE_IT(__INTERRUPT__) CLEAR_BIT(RCC->CIER, (__INTERRUPT__))
/** @brief Clear the RCC's interrupt pending bits (Perform Byte access to RCC_CIR[23:16]
* bits to clear the selected interrupt pending bits.
* @param __INTERRUPT__: specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_MSIRDY: MSI ready interrupt
* @arg RCC_IT_HSI48RDY: HSI48 ready interrupt
* @arg RCC_IT_CSSLSE: LSE CSS interrupt
* @arg RCC_IT_CSSHSE: Clock Security System interrupt
*/
#define __HAL_RCC_CLEAR_IT(__INTERRUPT__) (RCC->CICR = (__INTERRUPT__))
/** @brief Check the RCC's interrupt has occurred or not.
* @param __INTERRUPT__: specifies the RCC interrupt source to check.
* This parameter can be one of the following values:
* @arg RCC_IT_LSIRDY: LSI ready interrupt
* @arg RCC_IT_LSERDY: LSE ready interrupt
* @arg RCC_IT_HSIRDY: HSI ready interrupt
* @arg RCC_IT_HSERDY: HSE ready interrupt
* @arg RCC_IT_PLLRDY: PLL ready interrupt
* @arg RCC_IT_MSIRDY: MSI ready interrupt
* @arg RCC_IT_CSSLSE: LSE CSS interrupt
* @arg RCC_IT_CSSHSE: Clock Security System interrupt
* @retval The new state of __INTERRUPT__ (TRUE or FALSE).
*/
#define __HAL_RCC_GET_IT(__INTERRUPT__) ((RCC->CIFR & (__INTERRUPT__)) == (__INTERRUPT__))
/** @brief Set RMVF bit to clear the reset flags.
* The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PORRST,
* RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST.
*/
#define __HAL_RCC_CLEAR_RESET_FLAGS() (RCC->CSR |= RCC_CSR_RMVF)
/** @brief Check RCC flag is set or not.
* @param __FLAG__: specifies the flag to check.
* This parameter can be one of the following values:
* @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
* @arg RCC_FLAG_HSIDIV: HSI clock divider flag
* @arg RCC_FLAG_MSIRDY: MSI oscillator clock ready
* @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
* @arg RCC_FLAG_PLLRDY: PLL clock ready
* @arg RCC_FLAG_LSECSS: LSE oscillator clock CSS detected
* @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
* @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
* @arg RCC_FLAG_FWRST: Firewall reset
* @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset
* @arg RCC_FLAG_PINRST: Pin reset
* @arg RCC_FLAG_PORRST: POR/PDR reset
* @arg RCC_FLAG_SFTRST: Software reset
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset
* @arg RCC_FLAG_LPWRRST: Low Power reset
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_RCC_GET_FLAG(__FLAG__) (((((((__FLAG__) >> 5U) == 1U)? RCC->CR :((((__FLAG__) >> 5U) == 2U) ? RCC->CSR :((((__FLAG__) >> 5U) == 3U)? \
RCC->CRRCR :RCC->CIFR))) & ((uint32_t)1U << ((__FLAG__) & RCC_FLAG_MASK))) != 0U ) ? 1U : 0U )
/**
* @}
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup RCC_Private_Constants RCC Private Constants
* @{
*/
/* Defines used for Flags */
#define RCC_FLAG_MASK ((uint8_t)0x1FU)
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup RCC_Private_Macros
* @{
*/
#if !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx)
#define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) ((__OSCILLATOR__) <= 0x3FU)
#else
#define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) ((__OSCILLATOR__) <= 0x1FU)
#endif /* !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx) */
#define IS_RCC_HSE(__HSE__) (((__HSE__) == RCC_HSE_OFF) || ((__HSE__) == RCC_HSE_ON) || \
((__HSE__) == RCC_HSE_BYPASS))
#define IS_RCC_LSE(__LSE__) (((__LSE__) == RCC_LSE_OFF) || ((__LSE__) == RCC_LSE_ON) || \
((__LSE__) == RCC_LSE_BYPASS))
#define IS_RCC_MSI_CLOCK_RANGE(__RANGE__) (((__RANGE__) == RCC_MSIRANGE_0) || \
((__RANGE__) == RCC_MSIRANGE_1) || \
((__RANGE__) == RCC_MSIRANGE_2) || \
((__RANGE__) == RCC_MSIRANGE_3) || \
((__RANGE__) == RCC_MSIRANGE_4) || \
((__RANGE__) == RCC_MSIRANGE_5) || \
((__RANGE__) == RCC_MSIRANGE_6))
#define IS_RCC_LSI(__LSI__) (((__LSI__) == RCC_LSI_OFF) || ((__LSI__) == RCC_LSI_ON))
#define IS_RCC_MSI(__MSI__) (((__MSI__) == RCC_MSI_OFF) || ((__MSI__) == RCC_MSI_ON))
#define IS_RCC_HSI48(__HSI48__) (((__HSI48__) == RCC_HSI48_OFF) || ((__HSI48__) == RCC_HSI48_ON))
#define IS_RCC_PLL(__PLL__) (((__PLL__) == RCC_PLL_NONE) ||((__PLL__) == RCC_PLL_OFF) || ((__PLL__) == RCC_PLL_ON))
#define IS_RCC_PLLSOURCE(__SOURCE__) (((__SOURCE__) == RCC_PLLSOURCE_HSI) || \
((__SOURCE__) == RCC_PLLSOURCE_HSE))
#define IS_RCC_PLL_MUL(__MUL__) (((__MUL__) == RCC_PLLMUL_3) || ((__MUL__) == RCC_PLLMUL_4) || \
((__MUL__) == RCC_PLLMUL_6) || ((__MUL__) == RCC_PLLMUL_8) || \
((__MUL__) == RCC_PLLMUL_12) || ((__MUL__) == RCC_PLLMUL_16) || \
((__MUL__) == RCC_PLLMUL_24) || ((__MUL__) == RCC_PLLMUL_32) || \
((__MUL__) == RCC_PLLMUL_48))
#define IS_RCC_PLL_DIV(__DIV__) (((__DIV__) == RCC_PLLDIV_2) || ((__DIV__) == RCC_PLLDIV_3) || \
((__DIV__) == RCC_PLLDIV_4))
#define IS_RCC_CLOCKTYPE(__CLK__) ((1U <= (__CLK__)) && ((__CLK__) <= 15U))
#define IS_RCC_SYSCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_SYSCLKSOURCE_HSI) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_HSE) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_MSI) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_PLLCLK))
#define IS_RCC_HCLK(__HCLK__) (((__HCLK__) == RCC_SYSCLK_DIV1) || ((__HCLK__) == RCC_SYSCLK_DIV2) || \
((__HCLK__) == RCC_SYSCLK_DIV4) || ((__HCLK__) == RCC_SYSCLK_DIV8) || \
((__HCLK__) == RCC_SYSCLK_DIV16) || ((__HCLK__) == RCC_SYSCLK_DIV64) || \
((__HCLK__) == RCC_SYSCLK_DIV128) || ((__HCLK__) == RCC_SYSCLK_DIV256) || \
((__HCLK__) == RCC_SYSCLK_DIV512))
#define IS_RCC_PCLK(__PCLK__) (((__PCLK__) == RCC_HCLK_DIV1) || ((__PCLK__) == RCC_HCLK_DIV2) || \
((__PCLK__) == RCC_HCLK_DIV4) || ((__PCLK__) == RCC_HCLK_DIV8) || \
((__PCLK__) == RCC_HCLK_DIV16))
#define IS_RCC_RTCCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_RTCCLKSOURCE_LSE) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_LSI) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV2) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV4) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV8) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV16))
#if !defined (STM32L031xx) && !defined (STM32L041xx) && !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx) \
&& !defined (STM32L011xx) && !defined (STM32L021xx)
#define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || ((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI) || ((__SOURCE__) == RCC_MCO1SOURCE_MSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSE) || ((__SOURCE__) == RCC_MCO1SOURCE_PLLCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSI) || ((__SOURCE__) == RCC_MCO1SOURCE_LSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI48))
#else
#define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || ((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI) || ((__SOURCE__) == RCC_MCO1SOURCE_MSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSE) || ((__SOURCE__) == RCC_MCO1SOURCE_PLLCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSI) || ((__SOURCE__) == RCC_MCO1SOURCE_LSE))
#endif
#define IS_RCC_MCODIV(__DIV__) (((__DIV__) == RCC_MCODIV_1) || \
((__DIV__) == RCC_MCODIV_2) || \
((__DIV__) == RCC_MCODIV_4) || \
((__DIV__) == RCC_MCODIV_8) || \
((__DIV__) == RCC_MCODIV_16))
#if defined(STM32L031xx) || defined(STM32L041xx) || defined(STM32L073xx) || defined(STM32L083xx) || \
defined(STM32L072xx) || defined(STM32L082xx) || defined(STM32L071xx) || defined(STM32L081xx)
#define IS_RCC_MCO(__MCOx__) (((__MCOx__) == RCC_MCO1) || ((__MCOx__) == RCC_MCO2) || ((__MCOx__) == RCC_MCO3))
#else
#define IS_RCC_MCO(__MCOx__) (((__MCOx__) == RCC_MCO1) || ((__MCOx__) == RCC_MCO2))
#endif
#define IS_RCC_CALIBRATION_VALUE(__VALUE__) ((__VALUE__) <= 0x1F)
#define IS_RCC_MSICALIBRATION_VALUE(__VALUE__) ((__VALUE__) <= 0xFF)
/**
* @}
*/
/* Include RCC HAL Extension module */
#include "stm32l0xx_hal_rcc_ex.h"
/** @defgroup RCC_Exported_Functions RCC Exported Functions
* @{
*/
/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
* @{
*/
void HAL_RCC_DeInit(void);
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency);
/**
* @}
*/
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
* @{
*/
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv);
#if !defined (STM32L011xx) && !defined (STM32L021xx)
void HAL_RCC_EnableCSS(void);
#endif
uint32_t HAL_RCC_GetSysClockFreq(void);
uint32_t HAL_RCC_GetHCLKFreq(void);
uint32_t HAL_RCC_GetPCLK1Freq(void);
uint32_t HAL_RCC_GetPCLK2Freq(void);
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency);
/* CSS NMI IRQ handler */
void HAL_RCC_NMI_IRQHandler(void);
/* User Callbacks in non blocking mode (IT mode) */
void HAL_RCC_CSSCallback(void);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32l0xx_HAL_RCC_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/