mbed-os/targets/TARGET_NUVOTON/TARGET_NANO100/pwmout_api.c

192 lines
6.0 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2015-2017 Nuvoton
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pwmout_api.h"
#if DEVICE_PWMOUT
#include "cmsis.h"
#include "pinmap.h"
#include "PeripheralPins.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "nu_bitutil.h"
struct nu_pwm_var {
uint32_t en_msk;
};
static struct nu_pwm_var pwm0_01_var = {
.en_msk = 0
};
static struct nu_pwm_var pwm0_23_var = {
.en_msk = 0
};
static struct nu_pwm_var pwm1_01_var = {
.en_msk = 0
};
static struct nu_pwm_var pwm1_23_var = {
.en_msk = 0
};
static uint32_t pwm_modinit_mask = 0;
static const struct nu_modinit_s pwm_modinit_tab[] = {
{PWM_0_0, PWM0_CH01_MODULE, CLK_CLKSEL1_PWM0_CH01_S_HCLK, 0, PWM0_RST, PWM0_IRQn, &pwm0_01_var},
{PWM_0_1, PWM0_CH01_MODULE, CLK_CLKSEL1_PWM0_CH01_S_HCLK, 0, PWM0_RST, PWM0_IRQn, &pwm0_01_var},
{PWM_0_2, PWM0_CH23_MODULE, CLK_CLKSEL1_PWM0_CH23_S_HCLK, 0, PWM0_RST, PWM0_IRQn, &pwm0_23_var},
{PWM_0_3, PWM0_CH23_MODULE, CLK_CLKSEL1_PWM0_CH23_S_HCLK, 0, PWM0_RST, PWM0_IRQn, &pwm0_23_var},
{PWM_1_0, PWM1_CH01_MODULE, CLK_CLKSEL2_PWM1_CH01_S_HCLK, 0, PWM1_RST, PWM1_IRQn, &pwm1_01_var},
{PWM_1_1, PWM1_CH01_MODULE, CLK_CLKSEL2_PWM1_CH01_S_HCLK, 0, PWM1_RST, PWM1_IRQn, &pwm1_01_var},
{PWM_1_2, PWM1_CH23_MODULE, CLK_CLKSEL2_PWM1_CH23_S_HCLK, 0, PWM1_RST, PWM1_IRQn, &pwm1_23_var},
{PWM_1_3, PWM1_CH23_MODULE, CLK_CLKSEL2_PWM1_CH23_S_HCLK, 0, PWM1_RST, PWM1_IRQn, &pwm1_23_var},
{NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL}
};
static void pwmout_config(pwmout_t* obj);
void pwmout_init(pwmout_t* obj, PinName pin)
{
obj->pwm = (PWMName) pinmap_peripheral(pin, PinMap_PWM);
MBED_ASSERT((int) obj->pwm != NC);
const struct nu_modinit_s *modinit = get_modinit(obj->pwm, pwm_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT((PWMName) modinit->modname == obj->pwm);
PWM_T *pwm_base = (PWM_T *) NU_MODBASE(obj->pwm);
uint32_t chn = NU_MODSUBINDEX(obj->pwm);
// NOTE: Channels 0/1, 2/3 share a clock source.
if ((((struct nu_pwm_var *) modinit->var)->en_msk & 0xF) == 0) {
// Select clock source of paired channels
CLK_SetModuleClock(modinit->clkidx, modinit->clksrc, modinit->clkdiv);
// Enable clock of paired channels
CLK_EnableModuleClock(modinit->clkidx);
}
// Wire pinout
pinmap_pinout(pin, PinMap_PWM);
// Default: period = 10 ms, pulse width = 0 ms
obj->period_us = 1000 * 10;
obj->pulsewidth_us = 0;
pwmout_config(obj);
// enable inverter to ensure the first PWM cycle is correct
pwm_base->CTL |= (PWM_CTL_CH0INV_Msk << (chn * 8));
// Enable output of the specified PWM channel
PWM_EnableOutput(pwm_base, 1 << chn);
PWM_Start(pwm_base, 1 << chn);
((struct nu_pwm_var *) modinit->var)->en_msk |= 1 << chn;
if (((struct nu_pwm_var *) modinit->var)->en_msk) {
// Mark this module to be inited.
int i = modinit - pwm_modinit_tab;
pwm_modinit_mask |= 1 << i;
}
}
void pwmout_free(pwmout_t* obj)
{
PWM_T *pwm_base = (PWM_T *) NU_MODBASE(obj->pwm);
uint32_t chn = NU_MODSUBINDEX(obj->pwm);
PWM_ForceStop(pwm_base, 1 << chn);
const struct nu_modinit_s *modinit = get_modinit(obj->pwm, pwm_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT((PWMName) modinit->modname == obj->pwm);
((struct nu_pwm_var *) modinit->var)->en_msk &= ~(1 << chn);
if ((((struct nu_pwm_var *) modinit->var)->en_msk & 0xF) == 0) {
CLK_DisableModuleClock(modinit->clkidx);
}
if (((struct nu_pwm_var *) modinit->var)->en_msk == 0) {
// Mark this module to be deinited.
int i = modinit - pwm_modinit_tab;
pwm_modinit_mask &= ~(1 << i);
}
}
void pwmout_write(pwmout_t* obj, float value)
{
obj->pulsewidth_us = NU_CLAMP((uint32_t) (value * obj->period_us), 0, obj->period_us);
pwmout_config(obj);
}
float pwmout_read(pwmout_t* obj)
{
return NU_CLAMP((((float) obj->pulsewidth_us) / obj->period_us), 0.0f, 1.0f);
}
void pwmout_period(pwmout_t* obj, float seconds)
{
pwmout_period_us(obj, seconds * 1000000.0f);
}
void pwmout_period_ms(pwmout_t* obj, int ms)
{
pwmout_period_us(obj, ms * 1000);
}
// Set the PWM period, keeping the duty cycle the same.
void pwmout_period_us(pwmout_t* obj, int us)
{
uint32_t period_us_old = obj->period_us;
uint32_t pulsewidth_us_old = obj->pulsewidth_us;
obj->period_us = us;
obj->pulsewidth_us = NU_CLAMP(obj->period_us * pulsewidth_us_old / period_us_old, 0, obj->period_us);
pwmout_config(obj);
}
void pwmout_pulsewidth(pwmout_t* obj, float seconds)
{
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms)
{
pwmout_pulsewidth_us(obj, ms * 1000);
}
void pwmout_pulsewidth_us(pwmout_t* obj, int us)
{
obj->pulsewidth_us = NU_CLAMP(us, 0, obj->period_us);
pwmout_config(obj);
}
static void pwmout_config(pwmout_t* obj)
{
PWM_T *pwm_base = (PWM_T *) NU_MODBASE(obj->pwm);
uint32_t chn = NU_MODSUBINDEX(obj->pwm);
// NOTE: Support period < 1s
// NOTE: ARM mbed CI test fails due to first PWM pulse error. Workaround by:
// 1. Inverse duty cycle (100 - duty)
// 2. Inverse PWM output polarity
// This trick is here to pass ARM mbed CI test. First PWM pulse error still remains.
PWM_ConfigOutputChannel2(pwm_base, chn, 1000 * 1000, 100 - (obj->pulsewidth_us * 100 / obj->period_us), obj->period_us);
}
#endif