mbed-os/targets/TARGET_TOSHIBA/TARGET_TMPM3HQ/spi_api.c

607 lines
18 KiB
C

/* mbed Microcontroller Library
* (C)Copyright TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION 2018 All rights reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdbool.h>
#include "spi_api.h"
#include "mbed_error.h"
#include "pinmap.h"
#include "gpio_include.h"
#include "txz_tspi.h"
#define TIMEOUT 1000
#define INITIAL_SPI_FREQ 1000000
#if DEVICE_I2C_ASYNCH
#define SPI_S(obj) (struct spi_s *) (&((obj)->spi))
#else
#define SPI_S(obj) (struct spi_s *) (obj)
#endif
#if DEVICE_SPI_ASYNCH
static void spi_irq_handler(spi_t *obj);
static void disable_irq(uint32_t irqn);
static void clear_irq(uint32_t irqn);
enum {
SPI_TRANSFER_STATE_IDLE = 0U,
SPI_TRANSFER_STATE_BUSY
} SPI_TransferState;
typedef struct {
IRQn_Type Tx;
IRQn_Type Rx;
IRQn_Type Error;
} spi_irq_t;
static const spi_irq_t SPI_CH0_IRQN_TBL[1] = {
{ INTT0RX_IRQn, INTT0TX_IRQn, INTT0ERR_IRQn }
};
static const spi_irq_t SPI_CH1_IRQN_TBL[1] = {
{ INTT1RX_IRQn, INTT1TX_IRQn, INTT1ERR_IRQn }
};
static const spi_irq_t SPI_CH2_IRQN_TBL[1] = {
{ INTT2RX_IRQn, INTT2TX_IRQn, INTT2ERR_IRQn }
};
static const spi_irq_t SPI_CH3_IRQN_TBL[1] = {
{ INTT3RX_IRQn, INTT3TX_IRQn, INTT3ERR_IRQn }
};
static const spi_irq_t SPI_CH4_IRQN_TBL[1] = {
{ INTT4RX_IRQn, INTT4TX_IRQn, INTT4ERR_IRQn }
};
#endif
static const PinMap PinMap_SPI_SCLK[] = {
{PM0, SPI_0, PIN_DATA(3, 1)},
{PB2, SPI_1, PIN_DATA(3, 1)},
{PT2, SPI_2, PIN_DATA(1, 1)},
{PP5, SPI_3, PIN_DATA(1, 1)},
{PH4, SPI_4, PIN_DATA(1, 1)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_MOSI[] = {
{PM1, SPI_0, PIN_DATA(3, 1)},
{PB3, SPI_1, PIN_DATA(3, 1)},
{PT3, SPI_2, PIN_DATA(1, 1)},
{PP4, SPI_3, PIN_DATA(1, 1)},
{PH5, SPI_4, PIN_DATA(1, 1)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{PM2, SPI_0, PIN_DATA(3, 0)},
{PB4, SPI_1, PIN_DATA(3, 0)},
{PT4, SPI_2, PIN_DATA(1, 0)},
{PP3, SPI_3, PIN_DATA(1, 0)},
{PH6, SPI_4, PIN_DATA(1, 0)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_SSEL[] = {
{PM3, SPI_0, PIN_DATA(3, 1)},
{PB5, SPI_1, PIN_DATA(3, 1)},
{PT1, SPI_2, PIN_DATA(2, 1)},
{PP6, SPI_3, PIN_DATA(1, 1)},
{NC, NC, 0}
};
static const PinMap PinMap_SPISLAVE_SCLK[] = {
{PM0, SPI_0, PIN_DATA(3, 0)},
{PB2, SPI_1, PIN_DATA(3, 0)},
{PT2, SPI_2, PIN_DATA(1, 0)},
{PP5, SPI_3, PIN_DATA(1, 0)},
{PH4, SPI_4, PIN_DATA(1, 0)},
{NC, NC, 0}
};
void spi_init(spi_t *t_obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
struct spi_s *obj = SPI_S(t_obj);
// Check pin parameters
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
obj->module = (SPIName)pinmap_merge(spi_data, spi_sclk);
obj->module = (SPIName)pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT((int)obj->module!= NC);
// Identify SPI module to use
switch ((int)obj->module) {
case SPI_0:
obj->p_obj.p_instance = TSB_TSPI0;
TSB_CG_FSYSENA_IPENA11 = ENABLE;
TSB_CG_FSYSENB_IPENB00 = ENABLE;
#if DEVICE_SPI_ASYNCH
obj->irqn = (uint32_t)&SPI_CH0_IRQN_TBL;
#endif
break;
case SPI_1:
obj->p_obj.p_instance = TSB_TSPI1;
TSB_CG_FSYSENA_IPENA01 = ENABLE;
TSB_CG_FSYSENB_IPENB01 = ENABLE;
#if DEVICE_SPI_ASYNCH
obj->irqn = (uint32_t)&SPI_CH1_IRQN_TBL;
#endif
break;
case SPI_2:
obj->p_obj.p_instance = TSB_TSPI2;
TSB_CG_FSYSENA_IPENA15 = ENABLE;
TSB_CG_FSYSENB_IPENB02 = ENABLE;
#if DEVICE_SPI_ASYNCH
obj->irqn = (uint32_t)&SPI_CH2_IRQN_TBL;
#endif
break;
case SPI_3:
obj->p_obj.p_instance = TSB_TSPI3;
TSB_CG_FSYSENA_IPENA13 = ENABLE;
TSB_CG_FSYSENB_IPENB03 = ENABLE;
#if DEVICE_SPI_ASYNCH
obj->irqn = (uint32_t)&SPI_CH3_IRQN_TBL;
#endif
break;
case SPI_4:
obj->p_obj.p_instance = TSB_TSPI4;
TSB_CG_FSYSENA_IPENA07 = ENABLE;
TSB_CG_FSYSENB_IPENB04 = ENABLE;
#if DEVICE_SPI_ASYNCH
obj->irqn = (uint32_t)&SPI_CH4_IRQN_TBL;
#endif
break;
default:
error("Cannot found SPI module corresponding with input pins.");
break;
}
// pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
obj->Slave_SCK = sclk;
if (ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL);
}
//Control 1 configurations
obj->p_obj.init.id = (uint32_t)obj->module;
obj->p_obj.init.cnt1.trgen = TSPI_TRGEN_DISABLE; // Trigger disabled
obj->p_obj.init.cnt1.trxe = TSPI_DISABLE; // Enable Communication
obj->p_obj.init.cnt1.tspims = TSPI_SPI_MODE; // SPI mode
obj->p_obj.init.cnt1.mstr = TSPI_MASTER_OPEARTION; // master mode operation
obj->p_obj.init.cnt1.tmmd = TSPI_TWO_WAY; // Full-duplex mode (Transmit/receive)
obj->p_obj.init.cnt1.cssel = TSPI_TSPIxCS0_ENABLE; // Chip select of pin CS0 is valid
obj->p_obj.init.cnt1.fc = TSPI_TRANS_RANGE_SINGLE; // transfer single frame at a time continuously
//Control 2 configurations
obj->p_obj.init.cnt2.tidle = TSPI_TIDLE_HI;
obj->p_obj.init.cnt2.txdemp = TSPI_TXDEMP_HI; // when slave underruns TxD fixed to low
obj->p_obj.init.cnt2.rxdly = TSPI_RXDLY_40MHz_OVER;
obj->p_obj.init.cnt2.til = TSPI_TX_FILL_LEVEL_0; // transmit FIFO Level
obj->p_obj.init.cnt2.ril = TSPI_RX_FILL_LEVEL_1; // receive FIFO Level
obj->p_obj.init.cnt2.inttxwe = TSPI_TX_INT_DISABLE;
obj->p_obj.init.cnt2.intrxwe = TSPI_RX_INT_DISABLE;
obj->p_obj.init.cnt2.inttxfe = TSPI_TX_FIFO_INT_DISABLE;
obj->p_obj.init.cnt2.intrxfe = TSPI_RX_FIFO_INT_DISABLE;
obj->p_obj.init.cnt2.interr = TSPI_ERR_INT_DISABLE;
obj->p_obj.init.cnt2.dmate = TSPI_TX_DMA_INT_DISABLE;
obj->p_obj.init.cnt2.dmare = TSPI_RX_DMA_INT_DISABLE;
//Control 3 configurations
obj->p_obj.init.cnt3.tfempclr = TSPI_TX_BUFF_CLR_DONE; // transmit buffer clear
obj->p_obj.init.cnt3.rffllclr = TSPI_RX_BUFF_CLR_DONE; // receive buffer clear
//baudrate settings
spi_frequency(t_obj, (int)INITIAL_SPI_FREQ);
//Format Control 0 settings
obj->p_obj.init.fmr0.dir = TSPI_DATA_DIRECTION_MSB; // MSB bit first
obj->p_obj.init.fmr0.fl = TSPI_DATA_LENGTH_8;
obj->p_obj.init.fmr0.fint = TSPI_INTERVAL_TIME_0;
//Special control on polarity of signal and generation timing
obj->p_obj.init.fmr0.cs3pol = TSPI_TSPIxCS3_NEGATIVE;
obj->p_obj.init.fmr0.cs2pol = TSPI_TSPIxCS2_NEGATIVE;
obj->p_obj.init.fmr0.cs1pol = TSPI_TSPIxCS1_NEGATIVE;
obj->p_obj.init.fmr0.cs0pol = TSPI_TSPIxCS0_NEGATIVE;
obj->p_obj.init.fmr0.ckpha = TSPI_SERIAL_CK_1ST_EDGE;
obj->p_obj.init.fmr0.ckpol = TSPI_SERIAL_CK_IDLE_LOW;
obj->p_obj.init.fmr0.csint = TSPI_MIN_IDLE_TIME_1;
obj->p_obj.init.fmr0.cssckdl = TSPI_SERIAL_CK_DELAY_1;
obj->p_obj.init.fmr0.sckcsdl = TSPI_NEGATE_1;
//Format Control 1 settings tspi_fmtr1_t
obj->p_obj.init.fmr1.vpe = TSPI_PARITY_DISABLE;
obj->p_obj.init.fmr1.vpm = TSPI_PARITY_BIT_ODD;
obj->bits = (uint8_t)TSPI_DATA_LENGTH_8;
//initialize SPI
tspi_init(&obj->p_obj);
}
void spi_free(spi_t *t_obj)
{
struct spi_s *obj = SPI_S(t_obj);
tspi_deinit(&obj->p_obj);
obj->module = (SPIName)NC;
}
void spi_format(spi_t *t_obj, int bits, int mode, int slave)
{
struct spi_s *obj = SPI_S(t_obj);
MBED_ASSERT((slave == 0U) || (slave == 1U)); // 0: master mode, 1: slave mode
MBED_ASSERT((bits >= 8) && (bits <= 32));
obj->bits = bits;
obj->p_obj.init.fmr0.fl = (bits << 24);
if ((mode >> 1) & 0x1) {
obj->p_obj.init.fmr0.ckpol = TSPI_SERIAL_CK_IDLE_HI;
} else {
obj->p_obj.init.fmr0.ckpol = TSPI_SERIAL_CK_IDLE_LOW;
}
if (mode & 0x1) {
obj->p_obj.init.fmr0.ckpha = TSPI_SERIAL_CK_2ND_EDGE;
} else {
obj->p_obj.init.fmr0.ckpha = TSPI_SERIAL_CK_1ST_EDGE;
}
if(slave) {
pinmap_pinout(obj->Slave_SCK, PinMap_SPISLAVE_SCLK);
obj->p_obj.init.cnt1.mstr = TSPI_SLAVE_OPERATION; // Slave mode operation
}
tspi_init(&obj->p_obj);
}
void spi_frequency(spi_t *t_obj, int hz)
{
struct spi_s *obj = SPI_S(t_obj);
uint8_t brs = 0;
uint8_t brck = 0;
uint16_t prsck = 1;
uint64_t fscl = 0;
uint64_t tmp_fscl = 0;
uint64_t fx = 0;
uint64_t tmpvar = SystemCoreClock;
SystemCoreClockUpdate();
tmpvar = tmpvar / 2;
for (prsck = 1; prsck <= 512; prsck *= 2) {
fx = ((uint64_t)tmpvar / prsck);
for (brs = 1; brs <= 16; brs++) {
fscl = fx /brs;
if ((fscl <= (uint64_t)hz) && (fscl > tmp_fscl)) {
tmp_fscl = fscl;
obj->p_obj.init.brd.brck = (brck << 4);
if (brs == 16) {
obj->p_obj.init.brd.brs = 0;
} else {
obj->p_obj.init.brd.brs = brs;
}
}
}
brck ++;
}
tspi_init(&obj->p_obj);
}
int spi_master_write(spi_t *t_obj, int value)
{
struct spi_s *obj = SPI_S(t_obj);
uint8_t ret_value = 0;
tspi_transmit_t send_obj;
tspi_receive_t rec_obj;
// Transmit data
send_obj.tx8.p_data = (uint8_t *)&value;
send_obj.tx8.num = 1;
tspi_master_write(&obj->p_obj, &send_obj, TIMEOUT);
// Read received data
rec_obj.rx8.p_data = &ret_value;
rec_obj.rx8.num = 1;
tspi_master_read(&obj->p_obj, &rec_obj, TIMEOUT);
return ret_value;
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill)
{
int total = (tx_length > rx_length) ? tx_length : rx_length;
for (int i = 0; i < total; i++) {
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
char in = spi_master_write(obj, out);
if (i < rx_length) {
rx_buffer[i] = in;
}
}
return total;
}
int spi_busy(spi_t *t_obj)
{
struct spi_s *obj = SPI_S(t_obj);
int ret = 1;
uint32_t status = 0;
tspi_get_status(&obj->p_obj, &status);
if ((status & (TSPI_TX_FLAG_ACTIVE | TSPI_RX_FLAG_ACTIVE)) == 0) {
ret = 0;
}
return ret;
}
int spi_slave_receive(spi_t *t_obj)
{
struct spi_s *obj = SPI_S(t_obj);
int ret = 1;
uint32_t status;
tspi_get_status(&obj->p_obj, &status);
if((status & (TSPI_RX_REACH_FILL_LEVEL_MASK)) == 0) {
ret = 0;
}
return ret;
}
int spi_slave_read(spi_t *t_obj)
{
struct spi_s *obj = SPI_S(t_obj);
uint8_t ret_value = 0;
ret_value = obj->p_obj.p_instance->DR & 0xFF;
// Receive Complete Flag is clear.
obj->p_obj.p_instance->SR |= TSPI_RX_DONE_CLR;
obj->p_obj.p_instance->CR1 &= TSPI_TRXE_DISABLE_MASK;
return ret_value;
}
void spi_slave_write(spi_t *t_obj, int value)
{
struct spi_s *obj = SPI_S(t_obj);
// Enable TSPI Transmission Control.
obj->p_obj.p_instance->CR1 |= TSPI_TRXE_ENABLE;
obj->p_obj.p_instance->DR = value & 0xFF;
}
uint8_t spi_get_module(spi_t *t_obj)
{
struct spi_s *obj = SPI_S(t_obj);
return (uint8_t)(obj->module);
}
const PinMap *spi_master_mosi_pinmap()
{
return PinMap_SPI_MOSI;
}
const PinMap *spi_master_miso_pinmap()
{
return PinMap_SPI_MISO;
}
const PinMap *spi_master_clk_pinmap()
{
return PinMap_SPI_SCLK;
}
const PinMap *spi_master_cs_pinmap()
{
return PinMap_SPI_SSEL;
}
const PinMap *spi_slave_mosi_pinmap()
{
return PinMap_SPI_MOSI;
}
const PinMap *spi_slave_miso_pinmap()
{
return PinMap_SPI_MISO;
}
const PinMap *spi_slave_clk_pinmap()
{
return PinMap_SPI_SCLK;
}
const PinMap *spi_slave_cs_pinmap()
{
return PinMap_SPI_SSEL;
}
#if DEVICE_SPI_ASYNCH
void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width,
uint32_t handler, uint32_t event, DMAUsage hint)
{
struct spi_s *spiobj = SPI_S(obj);
spi_irq_t *p_irqn = (spi_irq_t *)spiobj->irqn;
bool use_tx = (tx != NULL && tx_length > 0);
bool use_rx = (rx != NULL && rx_length > 0);
// don't do anything, if the buffers aren't valid
if (!use_tx && !use_rx) {
return;
}
disable_irq(spiobj->irqn);
spiobj->p_obj.p_instance->CR1 &= TSPI_TRXE_DISABLE_MASK;
spiobj->p_obj.p_instance->SR |= (TSPI_TX_DONE_CLR | TSPI_RX_DONE_CLR);
spiobj->p_obj.p_instance->CR3 |= (TSPI_TX_BUFF_CLR_DONE | TSPI_RX_BUFF_CLR_DONE);
clear_irq(spiobj->irqn);
obj->tx_buff.buffer = (void *)tx;
obj->tx_buff.length = tx_length;
obj->tx_buff.pos = 0;
obj->rx_buff.buffer = (void *)rx;
obj->rx_buff.length = rx_length;
obj->rx_buff.pos = 0;
spiobj->event = 0;
spiobj->state = SPI_TRANSFER_STATE_IDLE;
NVIC_SetVector(p_irqn->Error, (uint32_t)handler);
NVIC_SetVector(p_irqn->Tx, (uint32_t)handler);
NVIC_SetVector(p_irqn->Rx, (uint32_t)handler);
// Enable Error Interrupt, Receive complete interrupt and Transmit complete interrupt
spiobj->p_obj.p_instance->CR2 |= (TSPI_TX_INT_ENABLE | TSPI_RX_INT_ENABLE | TSPI_ERR_INT_ENABLE);
if (use_tx && use_rx) {
spiobj->max_size = tx_length < rx_length ? rx_length:tx_length;
spiobj->p_obj.p_instance->CR1 |= TSPI_TRXE_ENABLE;
spiobj->p_obj.p_instance->DR = ((uint8_t *)obj->tx_buff.buffer)[obj->tx_buff.pos] & 0xFF;
} else if(use_tx) {
spiobj->max_size = tx_length;
spiobj->p_obj.p_instance->CR1 |= TSPI_TRXE_ENABLE;
spiobj->p_obj.p_instance->DR = ((uint8_t *)obj->tx_buff.buffer)[obj->tx_buff.pos] & 0xFF;
} else if(use_rx) {
spiobj->max_size = rx_length;
spiobj->p_obj.p_instance->CR1 |= TSPI_TRXE_ENABLE;
spiobj->p_obj.p_instance->DR = 0xFF;
}
spiobj->state = SPI_TRANSFER_STATE_BUSY;
NVIC_EnableIRQ(p_irqn->Error);
NVIC_EnableIRQ(p_irqn->Tx);
NVIC_EnableIRQ(p_irqn->Rx);
}
uint32_t spi_irq_handler_asynch(spi_t *obj)
{
struct spi_s *spiobj = SPI_S(obj);
spi_irq_handler(obj);
return ((spiobj->event & SPI_EVENT_ALL)| SPI_EVENT_INTERNAL_TRANSFER_COMPLETE) ;
}
uint8_t spi_active(spi_t *obj)
{
struct spi_s *spiobj = SPI_S(obj);
uint8_t ret_val = 0;
if (spiobj->state != SPI_TRANSFER_STATE_IDLE) {
ret_val = 1;
}
return ret_val;
}
void spi_abort_asynch(spi_t *obj)
{
struct spi_s *spiobj = SPI_S(obj);
disable_irq(spiobj->irqn);
clear_irq(spiobj->irqn);
tspi_init(&spiobj->p_obj);
}
static void spi_irq_handler(spi_t *obj)
{
struct spi_s *spiobj = SPI_S(obj);
// Check for revceive complete flag.
if((spiobj->p_obj.p_instance->SR & TSPI_RX_DONE) &&
(spiobj->p_obj.p_instance->SR & TSPI_RX_REACH_FILL_LEVEL_MASK)) {
// Check receiver FIFO level
uint8_t rlvl = spiobj->p_obj.p_instance->SR & 0xF;
while((rlvl != 0) && (obj->rx_buff.pos < obj->rx_buff.length)) {
((uint8_t *)obj->rx_buff.buffer)[obj->rx_buff.pos++] = spiobj->p_obj.p_instance->DR & 0xFF;
rlvl--;
}
if(obj->rx_buff.pos == spiobj->max_size) {
spiobj->state = SPI_TRANSFER_STATE_IDLE;
}
// Clear rx buffer
spiobj->p_obj.p_instance->CR3 |= TSPI_RX_BUFF_CLR_DONE;
}
// Check for transmit completion flag
if(spiobj->p_obj.p_instance->SR & TSPI_TX_DONE) {
obj->tx_buff.pos++;
spiobj->p_obj.p_instance->SR |= TSPI_RX_DONE_CLR;
if(obj->tx_buff.pos == (spiobj->max_size)) {
spiobj->state = SPI_TRANSFER_STATE_IDLE;
}
if((obj->tx_buff.pos < obj->tx_buff.length) && (obj->tx_buff.pos < spiobj->max_size)) {
spiobj->p_obj.p_instance->DR = (((uint8_t *)obj->tx_buff.buffer)[obj->tx_buff.pos] & 0xFF);
} else if (obj->tx_buff.pos < spiobj->max_size) {
spiobj->p_obj.p_instance->DR = 0xFF;
}
}
// Check for error flag
if(spiobj->p_obj.p_instance->ERR) {
spiobj->event = SPI_EVENT_ERROR;
spiobj->state = SPI_TRANSFER_STATE_IDLE;
disable_irq(spiobj->irqn);
spiobj->p_obj.p_instance->SR |= (TSPI_TX_DONE_CLR | TSPI_RX_DONE_CLR);
spiobj->p_obj.p_instance->CR3 |= (TSPI_TX_BUFF_CLR_DONE | TSPI_RX_BUFF_CLR_DONE);
clear_irq(spiobj->irqn);
return;
}
if(spiobj->state == SPI_TRANSFER_STATE_IDLE) {
spiobj->event = SPI_EVENT_COMPLETE;
disable_irq(spiobj->irqn);
spiobj->p_obj.p_instance->SR |= (TSPI_TX_DONE_CLR | TSPI_RX_DONE_CLR);
spiobj->p_obj.p_instance->CR3 |= (TSPI_TX_BUFF_CLR_DONE | TSPI_RX_BUFF_CLR_DONE);
clear_irq(spiobj->irqn);
}
}
static void disable_irq(uint32_t irqn)
{
spi_irq_t *p_irqn = (spi_irq_t *)irqn;
NVIC_DisableIRQ(p_irqn->Tx);
NVIC_DisableIRQ(p_irqn->Rx);
NVIC_DisableIRQ(p_irqn->Error);
}
static void clear_irq(uint32_t irqn)
{
spi_irq_t *p_irqn = (spi_irq_t *)irqn;
NVIC_ClearPendingIRQ(p_irqn->Tx);
NVIC_ClearPendingIRQ(p_irqn->Rx);
NVIC_ClearPendingIRQ(p_irqn->Error);
}
#endif