mbed-os/targets/TARGET_TOSHIBA/TARGET_TMPM3HQ/i2c_api.c

689 lines
19 KiB
C

/* mbed Microcontroller Library
* (C)Copyright TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION 2018 All rights reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "i2c_api.h"
#if DEVICE_I2C
#include "mbed_error.h"
#include "pinmap.h"
#include "gpio_include.h"
#if DEVICE_I2C_ASYNCH
#define I2C_S(obj) (struct i2c_s *) (&((obj)->i2c))
#else
#define I2C_S(obj) (struct i2c_s *) (obj)
#endif
static const PinMap PinMap_I2C_SDA[] = {
{PC1, I2C_0, PIN_DATA(1, 2)},
{PA5, I2C_1, PIN_DATA(1, 2)},
{PL1, I2C_2, PIN_DATA(3, 2)},
{PT0, I2C_3, PIN_DATA(1, 2)},
{NC, NC, 0}
};
static const PinMap PinMap_I2C_SCL[] = {
{PC0, I2C_0, PIN_DATA(1, 2)},
{PA4, I2C_1, PIN_DATA(1, 2)},
{PL0, I2C_2, PIN_DATA(3, 2)},
{PT1, I2C_3, PIN_DATA(1, 2)},
{NC, NC, 0}
};
// Clock setting structure definition
typedef struct {
uint32_t sck;
uint32_t prsck;
} I2C_clock_setting_t;
// SCK Divider value table
static const uint32_t I2C_SCK_DIVIDER_TBL[8] = {
20, 24, 32, 48, 80, 144, 272, 528
};
I2C_clock_setting_t clk;
static uint32_t start_flag = 0;
#if DEVICE_I2C_ASYNCH
enum {
I2C_TRANSFER_STATE_IDLE = 0U,
I2C_TRANSFER_STATE_START,
I2C_TRANSFER_STATE_WRITE,
I2C_TRANSFER_STATE_RESTART,
I2C_TRANSFER_STATE_READ,
I2C_TRANSFER_STATE_MAX
} TransferState;
typedef struct {
IRQn_Type i2c;
} i2c_irq_t;
static const i2c_irq_t I2C_CH0_IRQN_TBL[1] = {
{ INTI2C0_IRQn }
};
static const i2c_irq_t I2C_CH1_IRQN_TBL[1] = {
{ INTI2C1_IRQn }
};
static const i2c_irq_t I2C_CH2_IRQN_TBL[1] = {
{ INTI2C2_IRQn }
};
static const i2c_irq_t I2C_CH3_IRQN_TBL[1] = {
{ INTI2C3_IRQn }
};
#endif
static int32_t wait_status(i2c_t *p_obj);
static void i2c_start_bit(i2c_t *obj);
#if DEVICE_I2C_ASYNCH
static void disable_irq(uint32_t irqn);
static void clear_irq(uint32_t irqn);
static void i2c_irq_handler(i2c_t *obj);
#endif
// Initialize the I2C peripheral. It sets the default parameters for I2C
void i2c_init(i2c_t *obj, PinName sda, PinName scl)
{
struct i2c_s *obj_s = I2C_S(obj);
MBED_ASSERT(obj_s != NULL);
I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
I2CName i2c_name = (I2CName)pinmap_merge(i2c_sda, i2c_scl);
MBED_ASSERT((int)i2c_name != NC);
switch (i2c_name) {
case I2C_0:
TSB_CG_FSYSENB_IPENB11 = ENABLE;
TSB_CG_FSYSENA_IPENA02 = ENABLE;
obj_s->i2c = TSB_I2C0;
#if DEVICE_I2C_ASYNCH
obj_s->irqn = (uint32_t)&I2C_CH0_IRQN_TBL;
#endif
break;
case I2C_1:
TSB_CG_FSYSENB_IPENB12 = ENABLE;
TSB_CG_FSYSENA_IPENA00 = ENABLE;
obj_s->i2c = TSB_I2C1;
#if DEVICE_I2C_ASYNCH
obj_s->irqn = (uint32_t)&I2C_CH1_IRQN_TBL;
#endif
break;
case I2C_2:
TSB_CG_FSYSENB_IPENB13 = ENABLE;
TSB_CG_FSYSENA_IPENA10 = ENABLE;
obj_s->i2c = TSB_I2C2;
#if DEVICE_I2C_ASYNCH
obj_s->irqn = (uint32_t)&I2C_CH2_IRQN_TBL;
#endif
break;
case I2C_3:
TSB_CG_FSYSENB_IPENB14 = ENABLE;
TSB_CG_FSYSENA_IPENA15 = ENABLE;
obj_s->i2c = TSB_I2C3;
#if DEVICE_I2C_ASYNCH
obj_s->irqn = (uint32_t)&I2C_CH3_IRQN_TBL;
#endif
break;
default:
error("I2C is not available");
break;
}
#if DEVICE_I2C_ASYNCH
obj_s->state = I2C_TRANSFER_STATE_IDLE;
#endif
pinmap_pinout(sda, PinMap_I2C_SDA);
pin_mode(sda, OpenDrain);
pin_mode(sda, PullUp);
pinmap_pinout(scl, PinMap_I2C_SCL);
pin_mode(scl, OpenDrain);
pin_mode(scl, PullUp);
i2c_reset(obj);
i2c_frequency(obj, 100000);
obj_s->i2c->CR2 = (I2CxCR2_I2CM_ENABLE | I2CxCR2_TRX | I2CxCR2_PIN_CLEAR |
I2CxCR2_INIT);
obj_s->i2c->OP = I2CxOP_INIT;
obj_s->i2c->IE = I2CxIE_CLEAR;
}
// Configure the I2C frequency
void i2c_frequency(i2c_t *obj, int hz)
{
struct i2c_s *obj_s = I2C_S(obj);
uint64_t sck;
uint64_t tmp_sck;
uint64_t prsck;
uint64_t tmp_prsck;
uint64_t fscl;
uint64_t tmp_fscl;
uint64_t fx;
SystemCoreClockUpdate();
if (hz <= 1000000) {
sck = tmp_sck = 0;
prsck = tmp_prsck = 1;
fscl = tmp_fscl = 0;
for (prsck = 1; prsck <= 32; prsck++) {
fx = ((uint64_t)SystemCoreClock / prsck);
if ((fx < 20000000U) && (fx > 6666666U)) {
for (sck = 0; sck <= 7; sck++) {
fscl = (fx / (uint64_t)I2C_SCK_DIVIDER_TBL[sck]);
if ((fscl <= (uint64_t)hz) && (fscl > tmp_fscl)) {
tmp_fscl = fscl;
tmp_sck = sck;
tmp_prsck = (prsck < 32) ? prsck : 0;
}
}
}
}
clk.sck = (uint32_t)tmp_sck;
clk.prsck = (tmp_prsck < 32) ? (uint32_t)(tmp_prsck - 1) : 0;
}
obj_s->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
obj_s->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
}
int i2c_start(i2c_t *obj)
{
start_flag = 1; // Start Condition
return 0;
}
int i2c_stop(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
uint32_t timeout = I2C_TIMEOUT;
obj_s->i2c->CR2 = I2CxCR2_STOP_CONDITION;
while ((obj_s->i2c->SR & I2CxSR_BB) == I2CxSR_BB) {
if (timeout == 0) {
break;
}
timeout--;
}
return 0;
}
void i2c_reset(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
obj_s->i2c->CR2 = I2CxCR2_SWRES_10;
obj_s->i2c->CR2 = I2CxCR2_SWRES_01;
}
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
{
int32_t result = 0;
int32_t count = 0;
int32_t pdata = 0;
if (length > 0) {
start_flag = 1; // Start Condition
if (i2c_byte_write(obj, (int32_t)((uint32_t)address | 1U)) == I2C_ACK) {
while (count < length) {
pdata = i2c_byte_read(obj, ((count < (length - 1)) ? 0 : 1));
if (pdata < 0) {
break;
}
data[count++] = (uint8_t)pdata;
}
result = count;
} else {
stop = 1;
result = I2C_ERROR_NO_SLAVE;
}
if (stop) { // Stop Condition
i2c_stop(obj);
}
}
return result;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
{
int32_t result = 0;
int32_t count = 0;
start_flag = 1; // Start Condition
if (i2c_byte_write(obj, address) == I2C_ACK) {
while (count < length) {
if (i2c_byte_write(obj, (int32_t)data[count++]) < I2C_ACK) {
break;
}
}
result = count;
} else {
stop = 1;
result = I2C_ERROR_NO_SLAVE;
}
if (stop) { // Stop Condition
i2c_stop(obj);
}
return result;
}
int i2c_byte_read(i2c_t *obj, int last)
{
struct i2c_s *obj_s = I2C_S(obj);
int32_t result = 0;
obj_s->i2c->ST = I2CxST_CLEAR;
if (last) {
obj_s->i2c->OP |= I2CxOP_MFACK;
} else {
obj_s->i2c->OP &= ~I2CxOP_MFACK;
}
obj_s->i2c->DBR = (0 & I2CxDBR_DB_MASK);
if (wait_status(obj) < 0) {
result = -1;
} else {
result = (int32_t)(obj_s->i2c->DBR & I2CxDBR_DB_MASK);
}
return result;
}
int i2c_byte_write(i2c_t *obj, int data)
{
struct i2c_s *obj_s = I2C_S(obj);
int32_t result = 0;
obj_s->i2c->ST = I2CxST_CLEAR;
if (start_flag == 1) {
obj_s->i2c->DBR = (data & I2CxDBR_DB_MASK);
i2c_start_bit(obj);
start_flag = 0;
} else {
obj_s->i2c->DBR = (data & I2CxDBR_DB_MASK);
}
if (wait_status(obj) < 0) {
return -1;
}
if (!((obj_s->i2c->SR & I2CxSR_LRB) == I2CxSR_LRB)) {
result = 1;
} else {
result = 0;
}
return result;
}
static void i2c_start_bit(i2c_t *obj) // Send START command
{
struct i2c_s *obj_s = I2C_S(obj);
uint32_t opreg = 0;
opreg = obj_s->i2c->OP;
opreg &= ~(I2CxOP_RSTA | I2CxOP_SREN);
if ((obj_s->i2c->SR & I2CxSR_BB)) {
opreg |= I2CxOP_SREN;
}
obj_s->i2c->OP = opreg;
obj_s->i2c->CR2 |= I2CxCR2_START_CONDITION;
}
static int32_t wait_status(i2c_t *p_obj)
{
struct i2c_s *obj_s = I2C_S(p_obj);
volatile int32_t timeout;
timeout = I2C_TIMEOUT;
while (!((obj_s->i2c->ST & I2CxST_I2C) == I2CxST_I2C)) {
if ((timeout--) == 0) {
return (-1);
}
}
return 0;
}
void i2c_slave_mode(i2c_t *obj, int enable_slave)
{
struct i2c_s *obj_s = I2C_S(obj);
if (enable_slave) {
i2c_reset(obj);
obj_s->i2c->OP = I2CxOP_SLAVE_INIT;
obj_s->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
obj_s->i2c->CR2 = (I2CxCR2_INIT | I2CxCR2_PIN_CLEAR);
obj_s->i2c->CR2 = I2CxCR2_INIT;
obj_s->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
obj_s->i2c->AR = (obj_s->address & I2CAR_SA_MASK);
obj_s->i2c->IE = I2CxIE_INTI2C;
} else {
i2c_reset(obj);
obj_s->i2c->CR2 = (I2CxCR2_I2CM_ENABLE | I2CxCR2_TRX | I2CxCR2_PIN_CLEAR |
I2CxCR2_INIT);
obj_s->i2c->OP = I2CxOP_INIT;
obj_s->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
obj_s->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
obj_s->i2c->ST = I2CxST_CLEAR;
}
}
int i2c_slave_receive(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
int32_t result = I2C_NO_DATA;
if ((obj_s->i2c->ST & I2CxST_I2C) && (obj_s->i2c->OP & I2CxOP_SAST)) {
// Detect and clear arbitration lost.
if(!(obj_s->i2c->SR & 0x08)) {
obj_s->i2c->DBR = 0x00;
}
if ((obj_s->i2c->SR & I2CxSR_TRX) == I2CxSR_TRX) {
result = I2C_READ_ADDRESSED;
} else {
result = I2C_WRITE_ADDRESSED;
}
}
return (result);
}
int i2c_slave_read(i2c_t *obj, char *data, int length)
{
struct i2c_s *obj_s = I2C_S(obj);
int32_t count = 0;
while (count < length) {
int32_t pdata = i2c_byte_read(obj, 0);
if ((obj_s->i2c->SR & I2CxSR_TRX)) {
return (count);
} else {
if (pdata < 0) {
break;
}
data[count++] = (uint8_t)pdata;
}
}
i2c_slave_mode(obj,1);
return (count);
}
int i2c_slave_write(i2c_t *obj, const char *data, int length)
{
int32_t count = 0;
while (count < length) {
if (i2c_byte_write(obj, (int32_t)data[count++]) < I2C_ACK) {
break;
}
}
i2c_slave_mode(obj,1);
return (count);
}
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask)
{
struct i2c_s *obj_s = I2C_S(obj);
obj_s->address = address & I2CAR_SA_MASK;
i2c_slave_mode(obj,1);
}
const PinMap *i2c_master_sda_pinmap()
{
return PinMap_I2C_SDA;
}
const PinMap *i2c_master_scl_pinmap()
{
return PinMap_I2C_SCL;
}
const PinMap *i2c_slave_sda_pinmap()
{
return PinMap_I2C_SDA;
}
const PinMap *i2c_slave_scl_pinmap()
{
return PinMap_I2C_SCL;
}
#if DEVICE_I2C_ASYNCH
void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t address,
uint32_t stop, uint32_t handler, uint32_t event, DMAUsage hint)
{
struct i2c_s *obj_s = I2C_S(obj);
i2c_irq_t *p_irqn = (i2c_irq_t *)obj_s->irqn;
if(obj_s->state == I2C_TRANSFER_STATE_IDLE) {
// Disable and clear interrupt flag.
disable_irq(obj_s->irqn);
obj_s->i2c->IE = I2CxIE_CLEAR;
obj_s->i2c->ST = I2CxST_CLEAR;
clear_irq(obj_s->irqn);
// Store given buffer data and lenght into I2C object and set state as I2C_TRANSFER_STATE_START.
obj_s->address = address;
obj_s->event = 0;
obj_s->stop = stop;
obj->tx_buff.buffer = (void *)tx;
obj->tx_buff.length = tx_length;
obj->tx_buff.pos = 0;
obj->rx_buff.buffer = rx;
obj->rx_buff.length = rx_length;
obj->rx_buff.pos = 0;
obj_s->state = I2C_TRANSFER_STATE_START;
// Enable I2C interrupt.
obj_s->i2c->IE = I2CxIE_INTI2C;
if ((tx_length == 0) && (rx_length != 0)) {
i2c_start_bit(obj);
obj_s->i2c->DBR = ((address | 1U) & I2CxDBR_DB_MASK);
} else {
i2c_start_bit(obj);
obj_s->i2c->DBR = (address & I2CxDBR_DB_MASK);
}
// Enable I2C interrupr in NVIC.
NVIC_EnableIRQ(p_irqn->i2c);
NVIC_SetVector(p_irqn->i2c, handler);
}
}
uint32_t i2c_irq_handler_asynch(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
i2c_irq_handler(obj);
return (obj_s->event & I2C_EVENT_ALL);
}
uint8_t i2c_active(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
uint8_t ret_val = 0;
if ((obj_s->i2c->CR2 & 0x08)) {
ret_val = 1;
}
return ret_val;
}
void i2c_abort_asynch(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
// Generate Stop condition on I2C bus
i2c_stop(obj);
// Set state as idle and disable I2C interrupt.
obj_s->state = I2C_TRANSFER_STATE_IDLE;
disable_irq(obj_s->irqn);
clear_irq(obj_s->irqn);
obj_s->i2c->IE = I2CxIE_CLEAR;
// Given I2C Software Reset
i2c_reset(obj);
// Re-Store the I2C configuration
obj_s->i2c->CR2 = (I2CxCR2_I2CM_ENABLE | I2CxCR2_TRX | I2CxCR2_PIN_CLEAR | I2CxCR2_INIT);
obj_s->i2c->OP = I2CxOP_INIT;
obj_s->i2c->CR1 = (I2CxCR1_ACK | clk.sck);
obj_s->i2c->PRS = (I2CxPRS_PRCK & clk.prsck);
obj_s->i2c->ST = I2CxST_CLEAR;
}
static void disable_irq(uint32_t irqn)
{
i2c_irq_t *p_irqn = (i2c_irq_t *)irqn;
NVIC_DisableIRQ(p_irqn->i2c);
}
static void clear_irq(uint32_t irqn)
{
i2c_irq_t *p_irqn = (i2c_irq_t *)irqn;
NVIC_ClearPendingIRQ(p_irqn->i2c);
}
static void i2c_irq_handler(i2c_t *obj)
{
struct i2c_s *obj_s = I2C_S(obj);
obj_s->i2c->ST = I2CxST_CLEAR;
switch(obj_s->state) {
case I2C_TRANSFER_STATE_START:
// Check ACK for sent slave address.
if (!((obj_s->i2c->SR & I2CxSR_LRB) == I2CxSR_LRB)) {
if(obj->tx_buff.length != (unsigned long)0) { // Check Tx buff length.
obj_s->i2c->DBR = *((uint8_t *)obj->tx_buff.buffer)& I2CxDBR_DB_MASK;
obj->tx_buff.buffer = (uint8_t *)obj->tx_buff.buffer + sizeof(uint8_t);
obj->tx_buff.pos++;
obj_s->state = I2C_TRANSFER_STATE_WRITE;
} else if(obj->rx_buff.length != 0) { // Check Rx buff length.
if ((obj->rx_buff.pos < (obj->rx_buff.length - 1))) {
obj_s->i2c->OP &= ~I2CxOP_MFACK;
} else {
obj_s->i2c->OP |= I2CxOP_MFACK;
}
obj_s->i2c->DBR = 0x00;
obj_s->state = I2C_TRANSFER_STATE_READ;
} else { // Return transfer complete because of not given any Tx/Rx data.
obj_s->event = I2C_EVENT_TRANSFER_COMPLETE;
obj_s->state = I2C_TRANSFER_STATE_IDLE;
}
} else { // Return "No Slave", Because of Did not get any ACK for sent slave address.
obj_s->event = (I2C_EVENT_ERROR | I2C_EVENT_ERROR_NO_SLAVE);
obj_s->state = I2C_TRANSFER_STATE_IDLE;
}
break;
case I2C_TRANSFER_STATE_WRITE:
if(obj->tx_buff.pos < obj->tx_buff.length) {
if (!((obj_s->i2c->SR & I2CxSR_LRB) == I2CxSR_LRB)) {
obj_s->i2c->DBR = *((uint8_t *)obj->tx_buff.buffer)& I2CxDBR_DB_MASK;
obj->tx_buff.buffer = (uint8_t *)obj->tx_buff.buffer + sizeof(uint8_t);
obj->tx_buff.pos++;
} else {
obj_s->event = (I2C_EVENT_ERROR | I2C_EVENT_TRANSFER_EARLY_NACK);
obj_s->state = I2C_TRANSFER_STATE_IDLE;
}
} else if(obj->rx_buff.length != 0) {
if (!((obj_s->i2c->SR & I2CxSR_LRB) == I2CxSR_LRB)) {
i2c_start_bit(obj);
obj_s->i2c->DBR = ((obj_s->address | 1U) & I2CxDBR_DB_MASK);
obj_s->state = I2C_TRANSFER_STATE_RESTART;
} else {
obj_s->event = (I2C_EVENT_ERROR | I2C_EVENT_TRANSFER_EARLY_NACK);
obj_s->state = I2C_TRANSFER_STATE_IDLE;
}
} else {
if(obj_s->stop) {
obj_s->i2c->CR2 = I2CxCR2_STOP_CONDITION;
}
obj_s->event = I2C_EVENT_TRANSFER_COMPLETE;
obj_s->state = I2C_TRANSFER_STATE_IDLE;
}
break;
case I2C_TRANSFER_STATE_RESTART:
if(!((obj_s->i2c->SR & I2CxSR_LRB) == I2CxSR_LRB)) {
// Set ACK/NACK
if ((obj->rx_buff.pos < (obj->rx_buff.length - 1))) {
obj_s->i2c->OP &= ~I2CxOP_MFACK;
} else {
obj_s->i2c->OP |= I2CxOP_MFACK;
}
obj_s->i2c->DBR = 0x00;
obj_s->state = I2C_TRANSFER_STATE_READ;
} else {
obj_s->event = (I2C_EVENT_ERROR | I2C_EVENT_TRANSFER_EARLY_NACK);
obj_s->state = I2C_TRANSFER_STATE_IDLE;
}
break;
case I2C_TRANSFER_STATE_READ:
if(obj->rx_buff.pos < obj->rx_buff.length) {
*((uint8_t *)obj->rx_buff.buffer) = (uint8_t)obj_s->i2c->DBR & I2CxDBR_DB_MASK;
obj->rx_buff.buffer = (uint8_t *)obj->rx_buff.buffer + sizeof(uint8_t);
obj->rx_buff.pos++;
}
if(obj->rx_buff.pos < obj->rx_buff.length) {
// Set ACK/NACK
if ((obj->rx_buff.pos < (obj->rx_buff.length - 1))) {
obj_s->i2c->OP &= ~I2CxOP_MFACK;
} else {
obj_s->i2c->OP |= I2CxOP_MFACK;
}
obj_s->i2c->DBR = 0x00;
} else {
if(obj_s->stop) {
obj_s->i2c->CR2 = I2CxCR2_STOP_CONDITION;
}
obj_s->event = I2C_EVENT_TRANSFER_COMPLETE;
obj_s->state = I2C_TRANSFER_STATE_IDLE;
}
break;
default:
break;
}
if(obj_s->state == I2C_TRANSFER_STATE_IDLE) {
disable_irq(obj_s->irqn);
obj_s->i2c->IE = I2CxIE_CLEAR;
}
}
#endif // #if DEVICE_I2C_ASYNCH
#endif // #if DEVICE_I2C