mbed-os/platform/Span.h

1027 lines
29 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2018-2019 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBED_PLATFORM_SPAN_H_
#define MBED_PLATFORM_SPAN_H_
#include <algorithm>
#include <stddef.h>
#include <stdint.h>
#include "platform/mbed_assert.h"
namespace mbed {
/** \addtogroup platform-public-api */
/** @{*/
/**
* \defgroup platform_Span Span class
* @{
*/
// Internal details of Span
// It is used construct Span from Span of convertible types (non const -> const)
namespace span_detail {
// If From type is convertible to To type, then the compilation constant value is
// true; otherwise, it is false.
template<typename From, typename To>
class is_convertible {
struct true_type {
char x[512];
};
struct false_type { };
static const From &generator();
static true_type sink(const To &);
static false_type sink(...);
public:
static const bool value = sizeof(true_type) == sizeof(sink(generator()));
};
}
#if defined(DOXYGEN_ONLY)
/**
* Special value for the Extent parameter of Span.
* If the type uses this value, then the size of the array is stored in the object
* at runtime.
*
* @relates Span
*/
const ptrdiff_t SPAN_DYNAMIC_EXTENT = -1;
#else
#define SPAN_DYNAMIC_EXTENT -1
#endif
/**
* Nonowning view to a sequence of contiguous elements.
*
* Spans encapsulate a pointer to a sequence of contiguous elements and its size
* into a single object. Span can replace the traditional pair of pointer and
* size arguments passed as array definitions in function calls.
*
* @par Operations
*
* Span objects can be copied and assigned like regular value types with the help
* of the copy constructor or the copy assignment (=) operator.
*
* You can retrieve elements of the object with the subscript ([]) operator. You can access the
* pointer to the first element of the sequence viewed with data().
* The function size() returns the number of elements in the sequence, and
* empty() informs whether there is any element in the sequence.
*
* You can slice Span from the beginning of the sequence (first()), from the end
* of the sequence (last()) or from an arbitrary point of the sequence (subspan()).
*
* @par Size encoding
*
* The size of the sequence can be encoded in the type itself or in the value of
* the instance with the help of the template parameter Extent:
*
* - Span<uint8_t, 6>: Span over a sequence of 6 elements.
* - Span<uint8_t>: Span over an arbitrary long sequence.
*
* When the size is encoded in the type itself, it is guaranteed that the Span
* view is a valid sequence (not empty() and not NULL) - unless Extent equals 0.
* The type system also prevents automatic conversion from Span of different
* sizes. Finally, the Span object is internally represented as a single pointer.
*
* When the size of the sequence viewed is encoded in the Span value, Span
* instances can view an empty sequence. The function empty() helps client code
* decide whether Span is viewing valid content or not.
*
* @par Example
*
* - Encoding fixed size array: Array values in parameter decays automatically
* to pointer, which leaves room for subtitle bugs:
*
* @code
typedef uint8_t mac_address_t[6];
void process_mac(mac_address_t);
// compile just fine
uint8_t *invalid_value = NULL;
process_mac(invalid_value);
// correct way
typedef Span<uint8_t, 6> mac_address_t;
void process_mac(mac_address_t);
// compilation error
uint8_t *invalid_value = NULL;
process_mac(invalid_value);
// compilation ok
uint8_t valid_value[6];
process_mac(valid_value);
* @endcode
*
* - Arbitrary buffer: When dealing with multiple buffers, it becomes painful to
* keep track of every buffer size and pointer.
*
* @code
const uint8_t options_tag[OPTIONS_TAG_SIZE];
struct parsed_value_t {
uint8_t *header;
uint8_t *options;
uint8_t *payload;
size_t payload_size;
}
parsed_value_t parse(uint8_t *buffer, size_t buffer_size)
{
parsed_value_t parsed_value { 0 };
if (buffer != NULL && buffer_size <= MINIMAL_BUFFER_SIZE) {
return parsed_value;
}
parsed_value.header = buffer;
parsed_value.header_size = BUFFER_HEADER_SIZE;
if (memcmp(buffer + HEADER_OPTIONS_INDEX, options_tag, sizeof(options_tag)) == 0) {
options = buffer + BUFFER_HEADER_SIZE;
payload = buffer + BUFFER_HEADER_SIZE + OPTIONS_SIZE;
payload_size = buffer_size - BUFFER_HEADER_SIZE + OPTIONS_SIZE;
} else {
payload = buffer + BUFFER_HEADER_SIZE;
payload_size = buffer_size - BUFFER_HEADER_SIZE;
}
return parsed_value;
}
//with Span
struct parsed_value_t {
Span<uint8_t> header;
Span<uint8_t> options;
Span<uint8_t> payload;
}
parsed_value_t parse(const Span<uint8_t> &buffer)
{
parsed_value_t parsed_value;
if (buffer.size() <= MINIMAL_BUFFER_SIZE) {
return parsed_value;
}
parsed_value.header = buffer.first(BUFFER_HEADER_SIZE);
if (buffer.subspan<HEADER_OPTIONS_INDEX, sizeof(options_tag)>() == option_tag) {
options = buffer.supspan(parsed_value.header.size(), OPTIONS_SIZE);
}
payload = buffer.subspan(parsed_value.header.size() + parsed_value.options.size());
return parsed_value;
}
* @endcode
*
* @note You can create Span instances with the help of the function template
* make_Span() and make_const_Span().
*
* @note Span<T, Extent> objects can be implicitly converted to Span<T> objects
* where required.
*
* @tparam ElementType type of objects the Span views.
*
* @tparam Extent The size of the contiguous sequence viewed. The default value
* SPAN_DYNAMIC_SIZE is special because it allows construction of Span objects of
* any size (set at runtime).
*/
template<typename ElementType, ptrdiff_t Extent = SPAN_DYNAMIC_EXTENT>
struct Span {
/**
* Type of the element contained
*/
typedef ElementType element_type;
/**
* Type of the index.
*/
typedef ptrdiff_t index_type;
/**
* Pointer to an ElementType
*/
typedef element_type *pointer;
/**
* Reference to an ElementType
*/
typedef element_type &reference;
/**
* Size of the Extent; -1 if dynamic.
*/
static const index_type extent = Extent;
MBED_STATIC_ASSERT(Extent >= 0, "Invalid extent for a Span");
/**
* Construct an empty Span.
*
* @post a call to size() returns 0, and data() returns NULL.
*
* @note This function is not accessible if Extent != SPAN_DYNAMIC_EXTENT or
* Extent != 0 .
*/
Span() :
_data(NULL)
{
MBED_STATIC_ASSERT(
Extent == 0,
"Cannot default construct a static-extent Span (unless Extent is 0)"
);
}
/**
* Construct a Span from a pointer to a buffer and its size.
*
* @param ptr Pointer to the beginning of the data viewed.
*
* @param count Number of elements viewed.
*
* @pre [ptr, ptr + count) must be be a valid range.
* @pre count must be equal to Extent.
*
* @post a call to size() returns Extent, and data() returns @p ptr.
*/
Span(pointer ptr, index_type count) :
_data(ptr)
{
MBED_ASSERT(count == Extent);
MBED_ASSERT(Extent == 0 || ptr != NULL);
}
/**
* Construct a Span from the range [first, last).
*
* @param first Pointer to the beginning of the data viewed.
* @param last End of the range (element after the last element).
*
* @pre [first, last) must be be a valid range.
* @pre first <= last.
* @pre last - first must be equal to Extent.
*
* @post a call to size() returns Extent, and data() returns @p first.
*/
Span(pointer first, pointer last) :
_data(first)
{
MBED_ASSERT(first <= last);
MBED_ASSERT((last - first) == Extent);
MBED_ASSERT(Extent == 0 || first != NULL);
}
// AStyle ignore, not handling correctly below
// *INDENT-OFF*
/**
* Construct a Span from the reference to an array.
*
* @param elements Reference to the array viewed.
*
* @post a call to size() returns Extent, and data() returns a
* pointer to elements.
*/
Span(element_type (&elements)[Extent]):
_data(elements) { }
/**
* Construct a Span object from another Span of the same size.
*
* @param other The Span object used to construct this.
*
* @note For Span with a positive extent, this function is not accessible.
*
* @note OtherElementType(*)[] must be convertible to ElementType(*)[].
*/
template<typename OtherElementType>
Span(const Span<OtherElementType, Extent> &other):
_data(other.data())
{
MBED_STATIC_ASSERT(
(span_detail::is_convertible<OtherElementType (*)[1], ElementType (*)[1]>::value),
"OtherElementType(*)[] should be convertible to ElementType (*)[]"
);
}
// *INDENT-ON*
/**
* Return the size of the sequence viewed.
*
* @return The size of the sequence viewed.
*/
index_type size() const
{
return Extent;
}
/**
* Return if the sequence is empty or not.
*
* @return true if the sequence is empty and false otherwise.
*/
bool empty() const
{
return size() == 0;
}
/**
* Returns a reference to the element at position @p index.
*
* @param index Index of the element to access.
*
* @return A reference to the element at the index specified in input.
*
* @pre 0 <= index < Extent.
*/
reference operator[](index_type index) const
{
#ifdef MBED_DEBUG
MBED_ASSERT(0 <= index && index < Extent);
#endif
return _data[index];
}
/**
* Return a pointer to the first element of the sequence or NULL if the Span
* is empty().
*
* @return The pointer to the first element of the Span.
*/
pointer data() const
{
return _data;
}
/**
* Create a new Span over the first @p Count elements of the existing view.
*
* @tparam Count The number of element viewed by the new Span
*
* @return A new Span over the first @p Count elements.
*
* @pre Count >= 0 && Count <= size().
*/
template<ptrdiff_t Count>
Span<element_type, Count> first() const
{
MBED_STATIC_ASSERT(
(0 <= Count) && (Count <= Extent),
"Invalid subspan extent"
);
return Span<element_type, Count>(_data, Count);
}
/**
* Create a new Span over the last @p Count elements of the existing view.
*
* @tparam Count The number of element viewed by the new Span.
*
* @return A new Span over the last @p Count elements.
*
* @pre Count >= 0 && Count <= size().
*/
template<ptrdiff_t Count>
Span<element_type, Count> last() const
{
MBED_STATIC_ASSERT(
(0 <= Count) && (Count <= Extent),
"Invalid subspan extent"
);
return Span<element_type, Count>(_data + (Extent - Count), Count);
}
// AStyle ignore, not handling correctly below
// *INDENT-OFF*
/**
* Create a subspan that is a view of other Count elements; the view starts at
* element Offset.
*
* @tparam Offset The offset of the first element viewed by the subspan.
*
* @tparam Count The number of elements present in the subspan. If Count
* is equal to SPAN_DYNAMIC_EXTENT, then a Span starting at offset and
* containing the rest of the elements is returned.
*
* @return A subspan of this starting at Offset and Count long.
*/
template<std::ptrdiff_t Offset, std::ptrdiff_t Count>
Span<element_type, Count == SPAN_DYNAMIC_EXTENT ? Extent - Offset : Count>
subspan() const
{
MBED_STATIC_ASSERT(
0 <= Offset && Offset <= Extent,
"Invalid subspan offset"
);
MBED_STATIC_ASSERT(
(Count == SPAN_DYNAMIC_EXTENT) ||
(0 <= Count && (Count + Offset) <= Extent),
"Invalid subspan count"
);
return Span<element_type, Count == SPAN_DYNAMIC_EXTENT ? Extent - Offset : Count>(
_data + Offset,
Count == SPAN_DYNAMIC_EXTENT ? Extent - Offset : Count
);
}
// *INDENT-ON*
/**
* Create a new Span over the first @p count elements of the existing view.
*
* @param count The number of element viewed by the new Span.
*
* @return A new Span over the first @p count elements.
*/
Span<element_type, SPAN_DYNAMIC_EXTENT> first(index_type count) const
{
MBED_ASSERT(0 <= count && count <= Extent);
return Span<element_type, SPAN_DYNAMIC_EXTENT>(_data, count);
}
/**
* Create a new Span over the last @p count elements of the existing view.
*
* @param count The number of elements viewed by the new Span.
*
* @return A new Span over the last @p count elements.
*/
Span<element_type, SPAN_DYNAMIC_EXTENT> last(index_type count) const
{
MBED_ASSERT(0 <= count && count <= Extent);
return Span<element_type, SPAN_DYNAMIC_EXTENT>(
_data + (Extent - count),
count
);
}
/**
* Create a subspan that is a view of other count elements; the view starts at
* element offset.
*
* @param offset The offset of the first element viewed by the subspan.
*
* @param count The number of elements present in the subspan. If Count
* is equal to SPAN_DYNAMIC_EXTENT, then a span starting at offset and
* containing the rest of the elements is returned.
*
* @return
*/
Span<element_type, SPAN_DYNAMIC_EXTENT> subspan(
index_type offset, index_type count = SPAN_DYNAMIC_EXTENT
) const
{
MBED_ASSERT(0 <= offset && offset <= Extent);
MBED_ASSERT(
(count == SPAN_DYNAMIC_EXTENT) ||
(0 <= count && (count + offset) <= Extent)
);
return Span<element_type, SPAN_DYNAMIC_EXTENT>(
_data + offset,
count == SPAN_DYNAMIC_EXTENT ? Extent - offset : count
);
}
private:
pointer _data;
};
/**
* Span specialization that handle dynamic size.
*/
template<typename ElementType>
struct Span<ElementType, SPAN_DYNAMIC_EXTENT> {
/**
* Type of the element contained.
*/
typedef ElementType element_type;
/**
* Type of the index.
*/
typedef ptrdiff_t index_type;
/**
* Pointer to an ElementType.
*/
typedef element_type *pointer;
/**
* Reference to an ElementType.
*/
typedef element_type &reference;
/**
* Size of the Extent; -1 if dynamic.
*/
static const index_type extent = SPAN_DYNAMIC_EXTENT;
/**
* Construct an empty Span.
*
* @post a call to size() returns 0, and data() returns NULL.
*
* @note This function is not accessible if Extent != SPAN_DYNAMIC_EXTENT or
* Extent != 0 .
*/
Span() :
_data(NULL), _size(0) { }
/**
* Construct a Span from a pointer to a buffer and its size.
*
* @param ptr Pointer to the beginning of the data viewed.
*
* @param count Number of elements viewed.
*
* @pre [ptr, ptr + count) must be be a valid range.
* @pre count must be equal to extent.
*
* @post a call to size() returns count, and data() returns @p ptr.
*/
Span(pointer ptr, index_type count) :
_data(ptr), _size(count)
{
MBED_ASSERT(count >= 0);
MBED_ASSERT(ptr != NULL || count == 0);
}
/**
* Construct a Span from the range [first, last).
*
* @param first Pointer to the beginning of the data viewed.
* @param last End of the range (element after the last element).
*
* @pre [first, last) must be be a valid range.
* @pre first <= last.
*
* @post a call to size() returns the result of (last - first), and
* data() returns @p first.
*/
Span(pointer first, pointer last) :
_data(first), _size(last - first)
{
MBED_ASSERT(first <= last);
MBED_ASSERT(first != NULL || (last - first) == 0);
}
// AStyle ignore, not handling correctly below
// *INDENT-OFF*
/**
* Construct a Span from the reference to an array.
*
* @param elements Reference to the array viewed.
*
* @tparam Count Number of elements of T presents in the array.
*
* @post a call to size() returns Count, and data() returns a
* pointer to elements.
*/
template<size_t Count>
Span(element_type (&elements)[Count]):
_data(elements), _size(Count) { }
/**
* Construct a Span object from another Span.
*
* @param other The Span object used to construct this.
*
* @note For Span with a positive extent, this function is not accessible.
*
* @note OtherElementType(*)[] must be convertible to ElementType(*)[].
*/
template<typename OtherElementType, ptrdiff_t OtherExtent>
Span(const Span<OtherElementType, OtherExtent> &other):
_data(other.data()), _size(other.size())
{
MBED_STATIC_ASSERT(
(span_detail::is_convertible<OtherElementType (*)[1], ElementType (*)[1]>::value),
"OtherElementType(*)[] should be convertible to ElementType (*)[]"
);
}
// *INDENT-ON*
/**
* Return the size of the array viewed.
*
* @return The number of elements present in the array viewed.
*/
index_type size() const
{
return _size;
}
/**
* Return if the sequence viewed is empty or not.
*
* @return true if the sequence is empty and false otherwise.
*/
bool empty() const
{
return size() == 0;
}
/**
* Access to an element of the sequence.
*
* @param index Element index to access.
*
* @return A reference to the element at the index specified in input.
*
* @pre index is less than size().
*/
reference operator[](index_type index) const
{
#ifdef MBED_DEBUG
MBED_ASSERT(0 <= index && index < _size);
#endif
return _data[index];
}
/**
* Get the raw pointer to the sequence viewed.
*
* @return The raw pointer to the first element viewed.
*/
pointer data() const
{
return _data;
}
/**
* Create a new Span over the first @p Count elements of the existing view.
*
* @tparam Count The number of elements viewed by the new Span.
*
* @return A new Span over the first @p Count elements.
*
* @pre Count >= 0 && Count <= size().
*/
template<ptrdiff_t Count>
Span<element_type, Count> first() const
{
MBED_ASSERT((Count >= 0) && (Count <= _size));
return Span<element_type, Count>(_data, Count);
}
/**
* Create a new Span over the last @p Count elements of the existing view.
*
* @tparam Count The number of elements viewed by the new Span.
*
* @return A new Span over the last @p Count elements.
*
* @pre Count >= 0 && Count <= size().
*/
template<ptrdiff_t Count>
Span<element_type, Count> last() const
{
MBED_ASSERT((0 <= Count) && (Count <= _size));
return Span<element_type, Count>(_data + (_size - Count), Count);
}
/**
* Create a subspan that is a view other Count elements; the view starts at
* element Offset.
*
* @tparam Offset The offset of the first element viewed by the subspan.
*
* @tparam Count The number of elements present in the subspan. If Count
* is equal to SPAN_DYNAMIC_EXTENT, then a Span starting at offset and
* containing the rest of the elements is returned.
*
* @return A subspan of this starting at Offset and Count long.
*/
template<std::ptrdiff_t Offset, std::ptrdiff_t Count>
Span<element_type, Count>
subspan() const
{
MBED_ASSERT(0 <= Offset && Offset <= _size);
MBED_ASSERT(
(Count == SPAN_DYNAMIC_EXTENT) ||
(0 <= Count && (Count + Offset) <= _size)
);
return Span<element_type, Count>(
_data + Offset,
Count == SPAN_DYNAMIC_EXTENT ? _size - Offset : Count
);
}
/**
* Create a new Span over the first @p count elements of the existing view.
*
* @param count The number of elements viewed by the new Span.
*
* @return A new Span over the first @p count elements.
*/
Span<element_type, SPAN_DYNAMIC_EXTENT> first(index_type count) const
{
MBED_ASSERT(0 <= count && count <= _size);
return Span<element_type, SPAN_DYNAMIC_EXTENT>(_data, count);
}
/**
* Create a new Span over the last @p count elements of the existing view.
*
* @param count The number of elements viewed by the new Span.
*
* @return A new Span over the last @p count elements.
*/
Span<element_type, SPAN_DYNAMIC_EXTENT> last(index_type count) const
{
MBED_ASSERT(0 <= count && count <= _size);
return Span<element_type, SPAN_DYNAMIC_EXTENT>(
_data + (_size - count),
count
);
}
/**
* Create a subspan that is a view of other count elements; the view starts at
* element offset.
*
* @param offset The offset of the first element viewed by the subspan.
*
* @param count The number of elements present in the subspan. If Count
* is equal to SPAN_DYNAMIC_EXTENT, then a Span starting at offset and
* containing the rest of the elements is returned.
*
* @return A subspan of this starting at offset and count long.
*/
Span<element_type, SPAN_DYNAMIC_EXTENT> subspan(
index_type offset, index_type count = SPAN_DYNAMIC_EXTENT
) const
{
MBED_ASSERT(0 <= offset && offset <= _size);
MBED_ASSERT(
(count == SPAN_DYNAMIC_EXTENT) ||
(0 <= count && (count + offset) <= _size)
);
return Span<element_type, SPAN_DYNAMIC_EXTENT>(
_data + offset,
count == SPAN_DYNAMIC_EXTENT ? _size - offset : count
);
}
private:
pointer _data;
index_type _size;
};
/**
* Equality operator between two Span objects.
*
* @param lhs Left side of the binary operation.
* @param rhs Right side of the binary operation.
*
* @return True if Spans in input have the same size and the same content and
* false otherwise.
*
* @relates Span
*/
template<typename T, typename U, ptrdiff_t LhsExtent, ptrdiff_t RhsExtent>
bool operator==(const Span<T, LhsExtent> &lhs, const Span<U, RhsExtent> &rhs)
{
if (lhs.size() != rhs.size()) {
return false;
}
if (lhs.data() == rhs.data()) {
return true;
}
return std::equal(lhs.data(), lhs.data() + lhs.size(), rhs.data());
}
// AStyle ignore, not handling correctly below
// *INDENT-OFF*
/**
* Equality operation between a Span and a reference to a C++ array.
*
* @param lhs Left side of the binary operation.
* @param rhs Right side of the binary operation.
*
* @return True if elements in input have the same size and the same content and
* false otherwise.
*/
template<typename T, ptrdiff_t LhsExtent, ptrdiff_t RhsExtent>
bool operator==(const Span<T, LhsExtent> &lhs, T (&rhs)[RhsExtent])
{
return lhs == Span<T>(rhs);
}
/**
* Equality operation between a Span and a reference to a C++ array.
*
* @param lhs Left side of the binary operation.
* @param rhs Right side of the binary operation.
*
* @return True if elements in input have the same size and the same content
* and false otherwise.
*/
template<typename T, ptrdiff_t LhsExtent, ptrdiff_t RhsExtent>
bool operator==(T (&lhs)[LhsExtent], const Span<T, RhsExtent> &rhs)
{
return Span<T>(lhs) == rhs;
}
/**
* Not equal operator
*
* @param lhs Left side of the binary operation.
* @param rhs Right side of the binary operation.
*
* @return True if arrays in input do not have the same size or the same content
* and false otherwise.
*
* @relates Span
*/
template<typename T, typename U, ptrdiff_t LhsExtent, ptrdiff_t RhsExtent>
bool operator!=(const Span<T, LhsExtent> &lhs, const Span<U, RhsExtent> &rhs)
{
return !(lhs == rhs);
}
/**
* Not Equal operation between a Span and a reference to a C++ array.
*
* @param lhs Left side of the binary operation.
* @param rhs Right side of the binary operation.
*
* @return True if elements in input have the same size and the same content
* and false otherwise.
*/
template<typename T, ptrdiff_t LhsExtent, ptrdiff_t RhsExtent>
bool operator!=(const Span<T, LhsExtent> &lhs, T (&rhs)[RhsExtent])
{
return !(lhs == Span<T, RhsExtent>(rhs));
}
/**
* Not Equal operation between a Span and a reference to a C++ array.
*
* @param lhs Left side of the binary operation.
* @param rhs Right side of the binary operation.
*
* @return True if elements in input have the same size and the same content
* and false otherwise.
*/
template<typename T, ptrdiff_t LhsExtent, ptrdiff_t RhsExtent>
bool operator!=(T (&lhs)[LhsExtent], const Span<T, RhsExtent> &rhs)
{
return !(Span<T, LhsExtent>(lhs) == rhs);
}
/**
* Generate a Span from a reference to a C/C++ array.
*
* @tparam T Type of elements held in elements.
* @tparam Extent Number of items held in elements.
*
* @param elements The reference to the array viewed.
*
* @return The Span to elements.
*
* @note This helper avoids the typing of template parameter when Span is
* created 'inline'.
*
* @relates Span
*/
template<typename T, size_t Size>
Span<T, Size> make_Span(T (&elements)[Size])
{
return Span<T, Size>(elements);
}
/**
* Generate a Span from a pointer to a C/C++ array.
*
* @tparam Extent Number of items held in elements.
* @tparam T Type of elements held in elements.
*
* @param elements The reference to the array viewed.
*
* @return The Span to elements.
*
* @note This helper avoids the typing of template parameter when Span is
* created 'inline'.
*/
template<ptrdiff_t Extent, typename T>
Span<T, Extent> make_Span(T *elements)
{
return Span<T, Extent>(elements, Extent);
}
/**
* Generate a Span from a C/C++ pointer and the size of the array.
*
* @tparam T Type of elements held in array_ptr.
*
* @param array_ptr The pointer to the array viewed.
* @param array_size The number of T elements in the array.
*
* @return The Span to array_ptr with a size of array_size.
*
* @note This helper avoids the typing of template parameter when Span is
* created 'inline'.
*
* @relates Span
*/
template<typename T>
Span<T> make_Span(T *array_ptr, ptrdiff_t array_size)
{
return Span<T>(array_ptr, array_size);
}
/**
* Generate a Span to a const content from a reference to a C/C++ array.
*
* @tparam T Type of elements held in elements.
* @tparam Extent Number of items held in elements.
*
* @param elements The array viewed.
* @return The Span to elements.
*
* @note This helper avoids the typing of template parameter when Span is
* created 'inline'.
*/
template<typename T, size_t Extent>
Span<const T, Extent> make_const_Span(const T (&elements)[Extent])
{
return Span<const T, Extent>(elements);
}
// *INDENT-ON*
/**
* Generate a Span to a const content from a pointer to a C/C++ array.
*
* @tparam Extent Number of items held in elements.
* @tparam T Type of elements held in elements.
*
* @param elements The reference to the array viewed.
*
* @return The Span to elements.
*
* @note This helper avoids the typing of template parameter when Span is
* created 'inline'.
*
* @relates Span
*/
template<size_t Extent, typename T>
Span<const T, Extent> make_const_Span(const T *elements)
{
return Span<const T, Extent>(elements, Extent);
}
/**
* Generate a Span to a const content from a C/C++ pointer and the size of the
* array.
*
* @tparam T Type of elements held in array_ptr.
*
* @param array_ptr The pointer to the array to viewed.
* @param array_size The number of T elements in the array.
*
* @return The Span to array_ptr with a size of array_size.
*
* @note This helper avoids the typing of template parameter when Span is
* created 'inline'.
*
* @relates Span
*/
template<typename T>
Span<const T> make_const_Span(T *array_ptr, size_t array_size)
{
return Span<const T>(array_ptr, array_size);
}
/**@}*/
/**@}*/
} // namespace mbed
#endif /* MBED_PLATFORM_SPAN_H_ */