mbed-os/targets/TARGET_NXP/TARGET_LPC11XX_11CXX/pwmout_api.c

194 lines
5.2 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "pwmout_api.h"
#include "cmsis.h"
#include "pinmap.h"
#define TCR_CNT_EN 0x00000001
#define TCR_RESET 0x00000002
/* To have a PWM where we can change both the period and the duty cycle,
* we need an entire timer. With the following conventions:
* * MR3 is used for the PWM period
* * MR0, MR1, MR2 are used for the duty cycle
*/
static const PinMap PinMap_PWM[] = {
/* CT16B0 */
{P0_8 , PWM_1, 0x02}, /* MR0 */
{P0_9 , PWM_2, 0x02}, /* MR1 */
/* CT16B1 */
{P1_9 , PWM_3, 0x01}, /* MR0 */
{P1_10, PWM_4, 0x02}, /* MR1 */
/* CT32B0 */
{P0_1 , PWM_5, 0x02}, /* MR2 */
{NC , NC ,0x00}
};
typedef struct {
uint8_t timer;
uint8_t mr;
} timer_mr;
static timer_mr pwm_timer_map[5] = {
{0, 0}, /* CT16B0, MR0 */
{0, 1}, /* CT16B0, MR1 */
{1, 0}, /* CT16B1, MR0 */
{1, 1}, /* CT16B1, MR1 */
{2, 2}, /* CT32B0, MR2 */
};
static LPC_TMR_TypeDef *Timers[3] = {
LPC_TMR16B0, LPC_TMR16B1,
LPC_TMR32B0
};
void pwmout_init(pwmout_t* obj, PinName pin) {
// determine the channel
PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
MBED_ASSERT(pwm != (PWMName)NC);
obj->pwm = pwm;
// Timer registers
timer_mr tid = pwm_timer_map[pwm];
LPC_TMR_TypeDef *timer = Timers[tid.timer];
// Disable timer
timer->TCR = 0;
// Power the correspondent timer
LPC_SYSCON->SYSAHBCLKCTRL |= 1 << (tid.timer + 7);
/* Enable PWM function */
timer->PWMC = (1 << 3)|(1 << 2)|(1 << 1)|(1 << 0);
/* Reset Functionality on MR3 controlling the PWM period */
timer->MCR = 1 << 10;
if (timer == LPC_TMR16B0 || timer == LPC_TMR16B1) {
/* Set 16-bit timer prescaler to avoid timer expire for default 20ms */
/* This can be also modified by user application, but the prescaler value */
/* might be trade-off to timer accuracy */
timer->PR = 30;
}
// default to 20ms: standard for servos, and fine for e.g. brightness control
pwmout_period_ms(obj, 20);
pwmout_write (obj, 0);
// Wire pinout
pinmap_pinout(pin, PinMap_PWM);
}
void pwmout_free(pwmout_t* obj) {
// [TODO]
}
void pwmout_write(pwmout_t* obj, float value) {
if (value < 0.0f) {
value = 0.0;
} else if (value > 1.0f) {
value = 1.0;
}
timer_mr tid = pwm_timer_map[obj->pwm];
LPC_TMR_TypeDef *timer = Timers[tid.timer];
uint32_t t_off = timer->MR3 - (uint32_t)((float)(timer->MR3) * value);
// to avoid spike pulse when duty is 0%
if (value == 0) {
t_off++;
}
timer->TCR = TCR_RESET;
timer->MR[tid.mr] = t_off;
timer->TCR = TCR_CNT_EN;
}
float pwmout_read(pwmout_t* obj) {
timer_mr tid = pwm_timer_map[obj->pwm];
LPC_TMR_TypeDef *timer = Timers[tid.timer];
float v = (float)(timer->MR3 - timer->MR[tid.mr]) / (float)(timer->MR3);
if (timer->MR[tid.mr] > timer->MR3) {
v = 0.0f;
}
return (v > 1.0f) ? (1.0f) : (v);
}
void pwmout_period(pwmout_t* obj, float seconds) {
pwmout_period_us(obj, seconds * 1000000.0f);
}
void pwmout_period_ms(pwmout_t* obj, int ms) {
pwmout_period_us(obj, ms * 1000);
}
// Set the PWM period, keeping the duty cycle the same.
void pwmout_period_us(pwmout_t* obj, int us) {
int i = 0;
uint32_t period_ticks;
timer_mr tid = pwm_timer_map[obj->pwm];
LPC_TMR_TypeDef *timer = Timers[tid.timer];
uint32_t old_period_ticks = timer->MR3;
period_ticks = (SystemCoreClock / 1000000 * us) / (timer->PR + 1);
timer->TCR = TCR_RESET;
timer->MR3 = period_ticks;
// Scale the pulse width to preserve the duty ratio
if (old_period_ticks > 0) {
for (i=0; i<3; i++) {
uint32_t t_off = period_ticks - (uint32_t)(((uint64_t)timer->MR[i] * (uint64_t)period_ticks) / (uint64_t)old_period_ticks);
timer->MR[i] = t_off;
}
}
timer->TCR = TCR_CNT_EN;
}
void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
pwmout_pulsewidth_us(obj, ms * 1000);
}
void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
timer_mr tid = pwm_timer_map[obj->pwm];
LPC_TMR_TypeDef *timer = Timers[tid.timer];
uint32_t t_on = (uint32_t)((((uint64_t)SystemCoreClock * (uint64_t)us) / (uint64_t)1000000) / (timer->PR + 1));
timer->TCR = TCR_RESET;
if (t_on > timer->MR3) {
pwmout_period_us(obj, us);
}
uint32_t t_off = timer->MR3 - t_on;
timer->MR[tid.mr] = t_off;
timer->TCR = TCR_CNT_EN;
}
const PinMap *pwmout_pinmap()
{
return PinMap_PWM;
}