mbed-os/drivers/source/SPI.cpp

582 lines
16 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2006-2019 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "drivers/SPI.h"
#include "platform/mbed_critical.h"
#include "mbed_error.h"
#if DEVICE_SPI_ASYNCH
#include "platform/mbed_power_mgmt.h"
#endif
#if DEVICE_SPI
namespace mbed {
SPI::spi_peripheral_s SPI::_peripherals[SPI_PERIPHERALS_USED];
int SPI::_peripherals_used;
SPI::SPI(PinName mosi, PinName miso, PinName sclk, PinName ssel) :
#if DEVICE_SPI_ASYNCH
_irq(this),
_transfer_and_wait_flags("SPI::transfer_and_wait() flags"),
#endif
_mosi(mosi),
_miso(miso),
_sclk(sclk),
_hw_ssel(ssel),
_sw_ssel(NC),
_static_pinmap(NULL),
_init_func(_do_init)
{
// Need backwards compatibility with HALs not providing API
#ifdef DEVICE_SPI_COUNT
_peripheral_name = spi_get_peripheral_name(_mosi, _miso, _sclk);
#else
_peripheral_name = GlobalSPI;
#endif
_do_construct();
}
SPI::SPI(PinName mosi, PinName miso, PinName sclk, PinName ssel, use_gpio_ssel_t) :
#if DEVICE_SPI_ASYNCH
_irq(this),
_transfer_and_wait_flags("SPI::transfer_and_wait() flags"),
#endif
_mosi(mosi),
_miso(miso),
_sclk(sclk),
_hw_ssel(NC),
_sw_ssel(ssel, 1),
_static_pinmap(NULL),
_init_func(_do_init)
{
// Need backwards compatibility with HALs not providing API
#ifdef DEVICE_SPI_COUNT
_peripheral_name = spi_get_peripheral_name(_mosi, _miso, _sclk);
#else
_peripheral_name = GlobalSPI;
#endif
_do_construct();
}
SPI::SPI(const spi_pinmap_t &pinmap) :
#if DEVICE_SPI_ASYNCH
_irq(this),
_transfer_and_wait_flags("SPI::transfer_and_wait() flags"),
#endif
_mosi(pinmap.mosi_pin),
_miso(pinmap.miso_pin),
_sclk(pinmap.sclk_pin),
_hw_ssel(pinmap.ssel_pin),
_sw_ssel(NC),
_static_pinmap(&pinmap),
_peripheral_name((SPIName)pinmap.peripheral),
_init_func(_do_init_direct)
{
_do_construct();
}
SPI::SPI(const spi_pinmap_t &pinmap, PinName ssel) :
#if DEVICE_SPI_ASYNCH
_irq(this),
_transfer_and_wait_flags("SPI::transfer_and_wait() flags"),
#endif
_mosi(pinmap.mosi_pin),
_miso(pinmap.miso_pin),
_sclk(pinmap.sclk_pin),
_hw_ssel(NC),
_sw_ssel(ssel, 1),
_static_pinmap(&pinmap),
_peripheral_name((SPIName)pinmap.peripheral),
_init_func(_do_init_direct)
{
_do_construct();
}
void SPI::_do_init(SPI *obj)
{
obj->_peripheral->initialized = true;
spi_init(&obj->_peripheral->spi, obj->_mosi, obj->_miso, obj->_sclk, obj->_hw_ssel);
}
void SPI::_do_init_direct(SPI *obj)
{
obj->_peripheral->initialized = true;
spi_init_direct(&obj->_peripheral->spi, obj->_static_pinmap);
}
rtos::Mutex &SPI::_get_peripherals_mutex()
{
static rtos::Mutex peripherals_mutex;
return peripherals_mutex;
}
void SPI::_do_construct()
{
// No lock needed in the constructor
#if DEVICE_SPI_ASYNCH
_usage = DMA_USAGE_NEVER;
_deep_sleep_locked = false;
#endif
_select_count = 0;
_bits = 8;
_mode = 0;
_hz = 1000000;
_write_fill = SPI_FILL_CHAR;
{
rtos::ScopedMutexLock lock(_get_peripherals_mutex());
// lookup and claim the peripheral with the mutex locked in case another thread is
// also trying to claim it
_peripheral = SPI::_lookup(_peripheral_name);
if (!_peripheral) {
_peripheral = SPI::_alloc();
_peripheral->name = _peripheral_name;
}
if (_peripheral->numUsers == std::numeric_limits<uint8_t>::max()) {
MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER_SPI, MBED_ERROR_CODE_MUTEX_LOCK_FAILED), "Ref count at max!");
}
_peripheral->numUsers++;
}
#if DEVICE_SPI_ASYNCH && MBED_CONF_DRIVERS_SPI_TRANSACTION_QUEUE_LEN
// prime the SingletonPtr, so we don't have a problem trying to
// construct the buffer if asynch operation initiated from IRQ
_peripheral->transaction_buffer.get();
#endif
// we don't need to _acquire at this stage.
// this will be done anyway before any operation.
}
SPI::~SPI()
{
if (_peripheral->numUsers == 0) {
MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER_SPI, MBED_ERROR_CODE_MUTEX_UNLOCK_FAILED), "Ref count at 0?");
}
{
rtos::ScopedMutexLock lock(_get_peripherals_mutex());
/* Make sure a stale pointer isn't left in peripheral's owner field */
if (_peripheral->owner == this) {
_peripheral->owner = nullptr;
}
if (--_peripheral->numUsers == 0) {
_dealloc(_peripheral);
}
}
}
SPI::spi_peripheral_s *SPI::_lookup(SPI::SPIName name)
{
SPI::spi_peripheral_s *result = nullptr;
for (int idx = 0; idx < _peripherals_used; idx++) {
if (_peripherals[idx].numUsers > 0 && _peripherals[idx].name == name) {
result = &_peripherals[idx];
break;
}
}
return result;
}
SPI::spi_peripheral_s *SPI::_alloc()
{
MBED_ASSERT(_peripherals_used < SPI_PERIPHERALS_USED);
// Find an unused peripheral to return
for (spi_peripheral_s &peripheral : _peripherals) {
if (peripheral.numUsers == 0) {
_peripherals_used++;
return &peripheral;
}
}
MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER_SPI, MBED_ERROR_CODE_INVALID_DATA_DETECTED), "Can't find new peripheral!");
}
void SPI::_dealloc(SPI::spi_peripheral_s *peripheral)
{
if (peripheral->initialized) {
spi_free(&peripheral->spi);
peripheral->initialized = false;
}
--_peripherals_used;
}
void SPI::format(int bits, int mode)
{
lock();
_bits = bits;
_mode = mode;
// If changing format while you are the owner then just
// update format, but if owner is changed then even frequency should be
// updated which is done by acquire.
if (_peripheral->owner == this) {
spi_format(&_peripheral->spi, _bits, _mode, 0);
} else {
_acquire();
}
unlock();
}
void SPI::frequency(int hz)
{
lock();
_hz = hz;
// If changing format while you are the owner then just
// update frequency, but if owner is changed then even frequency should be
// updated which is done by acquire.
if (_peripheral->owner == this) {
spi_frequency(&_peripheral->spi, _hz);
} else {
_acquire();
}
unlock();
}
// Note: Private function with no locking
void SPI::_acquire()
{
if (_peripheral->owner != this) {
_init_func(this);
spi_format(&_peripheral->spi, _bits, _mode, 0);
spi_frequency(&_peripheral->spi, _hz);
_peripheral->owner = this;
}
}
int SPI::write(int value)
{
select();
int ret = spi_master_write(&_peripheral->spi, value);
deselect();
return ret;
}
int SPI::write_internal(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length)
{
select();
int ret = spi_master_block_write(&_peripheral->spi,
reinterpret_cast<char const *>(tx_buffer), tx_length,
reinterpret_cast<char *>(rx_buffer), rx_length,
_write_fill);
deselect();
return ret;
}
void SPI::_set_ssel(int val)
{
if (_sw_ssel.is_connected()) {
_sw_ssel = val;
}
}
void SPI::lock()
{
_peripheral->mutex->lock();
}
void SPI::select()
{
lock();
if (_select_count++ == 0) {
_acquire();
_set_ssel(0);
}
}
void SPI::unlock()
{
_peripheral->mutex->unlock();
}
void SPI::deselect()
{
if (--_select_count == 0) {
_set_ssel(1);
}
unlock();
}
void SPI::set_default_write_value(char data)
{
// this does not actually need to lock the peripheral.
lock();
_write_fill = data;
unlock();
}
#if DEVICE_SPI_ASYNCH
int SPI::transfer_internal(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, const event_callback_t &callback, int event)
{
if (spi_active(&_peripheral->spi)) {
return queue_transfer(tx_buffer, tx_length, rx_buffer, rx_length, _bits, callback, event);
}
start_transfer(tx_buffer, tx_length, rx_buffer, rx_length, _bits, callback, event);
return 0;
}
int SPI::transfer_and_wait_internal(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, rtos::Kernel::Clock::duration_u32 timeout)
{
// Simple callback from the transfer that sets the EventFlags using the I2C result event
event_callback_t transferCallback([&](int event) {
_transfer_and_wait_flags.set(event);
});
int txRet = transfer_internal(tx_buffer, tx_length, rx_buffer, rx_length, transferCallback, SPI_EVENT_ALL);
if (txRet != 0) {
return txRet;
}
// Wait until transfer complete, error, or timeout
uint32_t result = _transfer_and_wait_flags.wait_any_for(SPI_EVENT_ALL, timeout);
if (result & osFlagsError) {
if (result == osFlagsErrorTimeout) {
// Timeout expired, cancel transfer.
abort_transfer();
return 1;
} else {
// Other event flags error. Transfer might be still running so cancel it.
abort_transfer();
return 2;
}
} else {
// Note: Cannot use a switch here because multiple flags might be set at the same time (possible
// in the STM32 HAL code at least).
if (result == SPI_EVENT_COMPLETE) {
return 0;
} else {
// SPI peripheral level error
return 2;
}
}
}
void SPI::abort_transfer()
{
// There is a potential for race condition here which we need to be aware of.
// There may or may not be a transfer actually running when we enter this function.
// To work through this, if there is a transfer in progress, we use spi_abort_asynch
// which disables the transfer interrupt.
// Then, we check _transfer_in_progress again. If it is true, then it means the ISR
// fired during the call to spi_abort_async, so the transfer has already completed normally.
if (_transfer_in_progress) {
spi_abort_asynch(&_peripheral->spi);
}
if (_transfer_in_progress) {
// End-of-transfer ISR never fired, clean up.
unlock_deep_sleep();
if (--_select_count == 0) {
_set_ssel(1);
}
#if __DCACHE_PRESENT
if (_transfer_in_progress_uses_dma && _transfer_in_progress_rx_len > 0) {
// If the cache is present, invalidate the Rx data so it's loaded from main RAM.
// We only want to do this if DMA actually got used for the transfer because, if interrupts
// were used instead, the cache might have the correct data and NOT the main memory.
SCB_InvalidateDCache_by_Addr(_transfer_in_progress_rx_buffer, _transfer_in_progress_rx_len);
}
#endif
_transfer_in_progress = false;
#if MBED_CONF_DRIVERS_SPI_TRANSACTION_QUEUE_LEN
dequeue_transaction();
#endif
}
}
void SPI::clear_transfer_buffer()
{
#if MBED_CONF_DRIVERS_SPI_TRANSACTION_QUEUE_LEN
_peripheral->transaction_buffer->reset();
#endif
}
void SPI::abort_all_transfers()
{
clear_transfer_buffer();
abort_transfer();
}
int SPI::set_dma_usage(DMAUsage usage)
{
if (spi_active(&_peripheral->spi)) {
return -1;
}
_usage = usage;
return 0;
}
int SPI::queue_transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, unsigned char bit_width, const event_callback_t &callback, int event)
{
#if MBED_CONF_DRIVERS_SPI_TRANSACTION_QUEUE_LEN
transaction_t t;
t.tx_buffer = const_cast<void *>(tx_buffer);
t.tx_length = tx_length;
t.rx_buffer = rx_buffer;
t.rx_length = rx_length;
t.event = event;
t.callback = callback;
t.width = bit_width;
Transaction<SPI> transaction(this, t);
if (_peripheral->transaction_buffer->full()) {
return -1; // the buffer is full
} else {
core_util_critical_section_enter();
_peripheral->transaction_buffer->push(transaction);
if (!spi_active(&_peripheral->spi)) {
dequeue_transaction();
}
core_util_critical_section_exit();
return 0;
}
#else
return -1;
#endif
}
void SPI::start_transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, unsigned char bit_width, const event_callback_t &callback, int event)
{
lock_deep_sleep();
// Acquire the hardware and (if using GPIO CS mode) select the chip.
// But, if the user has already called select(), we can skip this step.
if (_select_count++ == 0) {
_acquire();
_set_ssel(0);
}
_callback = callback;
_irq.callback(&SPI::irq_handler_asynch);
#if __DCACHE_PRESENT
// On devices with a cache, we need to carefully manage the Tx and Rx buffer cache invalidation.
// We can assume that asynchronous SPI implementations might rely on DMA, and that DMA will
// not interoperate with the CPU cache. So, manual flushing/invalidation will be required.
// This page is very useful for how to do this correctly:
// https://community.st.com/t5/stm32-mcus-products/maintaining-cpu-data-cache-coherence-for-dma-buffers/td-p/95746
if (tx_length > 0) {
// For chips with a cache, we need to evict the Tx data from cache to main memory.
// This ensures that the DMA controller can see the most up-to-date copy of the data.
SCB_CleanDCache_by_Addr(const_cast<void *>(tx_buffer), tx_length);
}
// Additionally, we have to make sure that there aren't any pending changes which could be written back
// to the Rx buffer memory by the cache at a later date, corrupting the DMA results.
if (rx_length > 0) {
SCB_InvalidateDCache_by_Addr(rx_buffer, rx_length);
}
_transfer_in_progress_rx_buffer = rx_buffer;
_transfer_in_progress_rx_len = rx_length;
#endif
_transfer_in_progress = true;
_transfer_in_progress_uses_dma = spi_master_transfer(&_peripheral->spi, tx_buffer, tx_length, rx_buffer, rx_length, bit_width, _irq.entry(), event, _usage);
}
void SPI::lock_deep_sleep()
{
if (_deep_sleep_locked == false) {
sleep_manager_lock_deep_sleep();
_deep_sleep_locked = true;
}
}
void SPI::unlock_deep_sleep()
{
if (_deep_sleep_locked == true) {
sleep_manager_unlock_deep_sleep();
_deep_sleep_locked = false;
}
}
#if MBED_CONF_DRIVERS_SPI_TRANSACTION_QUEUE_LEN
void SPI::start_transaction(transaction_t *data)
{
start_transfer(data->tx_buffer, data->tx_length, data->rx_buffer, data->rx_length, data->width, data->callback, data->event);
}
void SPI::dequeue_transaction()
{
Transaction<SPI> t;
if (_peripheral->transaction_buffer->pop(t)) {
SPI *obj = t.get_object();
transaction_t *data = t.get_transaction();
obj->start_transaction(data);
}
}
#endif
void SPI::irq_handler_asynch(void)
{
int event = spi_irq_handler_asynch(&_peripheral->spi);
if ((event & SPI_EVENT_ALL)) {
#if __DCACHE_PRESENT
if (_transfer_in_progress_uses_dma && _transfer_in_progress_rx_len > 0) {
// If the cache is present, invalidate the Rx data so it's loaded from main RAM.
// We only want to do this if DMA actually got used for the transfer because, if interrupts
// were used instead, the cache might have the correct data and NOT the main memory.
SCB_InvalidateDCache_by_Addr(_transfer_in_progress_rx_buffer, _transfer_in_progress_rx_len);
}
#endif
// If using GPIO CS mode, unless we were asked to keep the peripheral selected, deselect it.
// If there's another transfer queued, we *do* want to deselect the peripheral now.
// It will be reselected in start_transfer() which is called by dequeue_transaction() below.
if (--_select_count == 0) {
_set_ssel(1);
}
_transfer_in_progress = false;
unlock_deep_sleep();
if (_callback) {
_callback.call(event & SPI_EVENT_ALL);
}
}
#if MBED_CONF_DRIVERS_SPI_TRANSACTION_QUEUE_LEN
if (event & (SPI_EVENT_ALL | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE)) {
// SPI peripheral is free (event happened), dequeue transaction
dequeue_transaction();
}
#endif
}
#endif
} // namespace mbed
#endif