mbed-os/drivers/source/I2C.cpp

321 lines
7.9 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2006-2019 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "drivers/I2C.h"
#include "drivers/DigitalInOut.h"
#include "platform/mbed_wait_api.h"
#if DEVICE_I2C
#if DEVICE_I2C_ASYNCH
#include "platform/mbed_power_mgmt.h"
#include "rtos/EventFlags.h"
#endif
namespace mbed {
I2C::I2C(PinName sda, PinName scl) :
#if DEVICE_I2C_ASYNCH
_irq(this), _usage(DMA_USAGE_NEVER), _deep_sleep_locked(false),
#endif
_i2c(), _hz(100000)
{
lock();
// The init function also set the frequency to 100000
_sda = sda;
_scl = scl;
recover(sda, scl);
i2c_init(&_i2c, _sda, _scl);
unlock();
}
I2C::I2C(const i2c_pinmap_t &static_pinmap) :
#if DEVICE_I2C_ASYNCH
_irq(this), _usage(DMA_USAGE_NEVER), _deep_sleep_locked(false),
#endif
_i2c(), _hz(100000)
{
lock();
// The init function also set the frequency to 100000
_sda = static_pinmap.sda_pin;
_scl = static_pinmap.scl_pin;
recover(static_pinmap.sda_pin, static_pinmap.scl_pin);
i2c_init_direct(&_i2c, &static_pinmap);
unlock();
}
void I2C::frequency(int hz)
{
lock();
_hz = hz;
// We want to update the frequency even if we are already the bus owners
i2c_frequency(&_i2c, _hz);
unlock();
}
// write - Master Transmitter Mode
I2C::Result I2C::write(int address, const char *data, int length, bool repeated)
{
lock();
int stop = (repeated) ? 0 : 1;
int written = i2c_write(&_i2c, address, data, length, stop);
unlock();
// Note: C i2c_write() function does not distinguish between NACKs and errors, so assume NACK if read did not go through
return length == written ? Result::ACK : Result::NACK;
}
// read - Master Receiver Mode
I2C::Result I2C::read(int address, char *data, int length, bool repeated)
{
lock();
int stop = (repeated) ? 0 : 1;
int read = i2c_read(&_i2c, address, data, length, stop);
unlock();
// Note: C i2c_read() function does not distinguish between NACKs and errors, so assume NACK if read did not go through
return length == read ? Result::ACK : Result::NACK;
}
void I2C::start(void)
{
lock();
i2c_start(&_i2c);
unlock();
}
int I2C::read_byte(bool ack)
{
lock();
int ret;
if (ack) {
ret = i2c_byte_read(&_i2c, 0);
} else {
ret = i2c_byte_read(&_i2c, 1);
}
unlock();
return ret;
}
I2C::Result I2C::write_byte(int data)
{
lock();
int ret = i2c_byte_write(&_i2c, data);
unlock();
switch (ret) {
case 0:
return Result::NACK;
case 1:
return Result::ACK;
case 2:
return Result::TIMEOUT;
default:
return Result::OTHER_ERROR;
}
}
int I2C::write(int data)
{
auto result = write_byte(data);
// Replicate the legacy return code
switch (result) {
case Result::ACK:
return 1;
case Result::NACK:
return 0;
case Result::TIMEOUT:
return 2;
default:
return static_cast<int>(result);
}
}
void I2C::stop(void)
{
lock();
i2c_stop(&_i2c);
unlock();
}
void I2C::lock()
{
_mutex->lock();
}
void I2C::unlock()
{
_mutex->unlock();
}
int I2C::recover(PinName sda, PinName scl)
{
DigitalInOut pin_sda(sda, PIN_INPUT, PullNone, 1);
DigitalInOut pin_scl(scl, PIN_INPUT, PullNone, 1);
// Return as SCL is low and no access to become master.
if (pin_scl == 0) {
return I2C_ERROR_BUS_BUSY;
}
// Return successfully as SDA and SCL is high
if (pin_sda == 1) {
return 0;
}
// Send clock pulses, for device to recover 9
pin_scl.mode(PullNone);
pin_scl.output();
for (int count = 0; count < 10; count++) {
pin_scl.mode(PullNone);
pin_scl = 0;
wait_us(5);
pin_scl.mode(PullUp);
pin_scl = 1;
wait_us(5);
}
// Send Stop
pin_sda.output();
pin_sda = 0;
wait_us(5);
pin_scl = 1;
wait_us(5);
pin_sda = 1;
wait_us(5);
pin_sda.input();
pin_scl.input();
if ((pin_scl == 0) || (pin_sda == 0)) {
// Return as SCL is low and no access to become master.
return I2C_ERROR_BUS_BUSY;
}
return 0;
}
#if DEVICE_I2C_ASYNCH
int I2C::transfer(int address, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length, const event_callback_t &callback, int event, bool repeated)
{
lock();
if (i2c_active(&_i2c)) {
unlock();
return -1; // transaction ongoing
}
lock_deep_sleep();
_callback = callback;
int stop = (repeated) ? 0 : 1;
_irq.callback(&I2C::irq_handler_asynch);
i2c_transfer_asynch(&_i2c, (void *)tx_buffer, tx_length, (void *)rx_buffer, rx_length, address, stop, _irq.entry(), event, _usage);
unlock();
return 0;
}
void I2C::abort_transfer(void)
{
lock();
i2c_abort_asynch(&_i2c);
unlock_deep_sleep();
unlock();
}
I2C::Result I2C::transfer_and_wait(int address, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length, rtos::Kernel::Clock::duration_u32 timeout, bool repeated)
{
// Use EventFlags to suspend the thread until the transfer finishes
rtos::EventFlags transferResultFlags("I2C::transfer_and_wait EvFlags");
// Simple callback from the transfer that sets the EventFlags using the I2C result event
event_callback_t transferCallback([&](int event) {
transferResultFlags.set(event);
});
transfer(address, tx_buffer, tx_length, rx_buffer, rx_length, transferCallback, I2C_EVENT_ALL, repeated);
// Wait until transfer complete, error, or timeout
uint32_t result = transferResultFlags.wait_any_for(I2C_EVENT_ALL, timeout);
if (result & osFlagsError) {
if (result == osFlagsErrorTimeout) {
// Timeout expired, cancel transfer.
abort_transfer();
return Result::TIMEOUT;
} else {
// Other event flags error. Transfer might be still running so cancel it.
abort_transfer();
return Result::OTHER_ERROR;
}
} else {
// Note: Cannot use a switch here because multiple flags might be set at the same time (possible
// in the STM32 HAL code at least).
if (result & I2C_EVENT_TRANSFER_COMPLETE) {
return Result::ACK;
} else if ((result & I2C_EVENT_ERROR_NO_SLAVE) || (result & I2C_EVENT_TRANSFER_EARLY_NACK)) {
// Both of these events mean that a NACK was received somewhere. Theoretically NO_SLAVE means
// NACK while transmitting address and EARLY_NACK means nack during the write operation.
// But these aren't distinguished in the Result enum and even some of the HALs treat them
// interchangeably.
return Result::NACK;
} else {
// Other / unknown error code
return Result::OTHER_ERROR;
}
}
}
void I2C::irq_handler_asynch(void)
{
int event = i2c_irq_handler_asynch(&_i2c);
if (_callback && event) {
_callback.call(event);
}
if (event) {
unlock_deep_sleep();
}
}
void I2C::lock_deep_sleep()
{
if (_deep_sleep_locked == false) {
sleep_manager_lock_deep_sleep();
_deep_sleep_locked = true;
}
}
void I2C::unlock_deep_sleep()
{
if (_deep_sleep_locked == true) {
sleep_manager_unlock_deep_sleep();
_deep_sleep_locked = false;
}
}
#endif
} // namespace mbed
#endif