mbed-os/targets/TARGET_TOSHIBA/TARGET_TMPM4G9/spi_api.c

628 lines
20 KiB
C

/* mbed Microcontroller Library
*
* Copyright (C) 2019, Toshiba Electronic Device Solutions Corporation
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "spi_api.h"
#include "mbed_error.h"
#include "txz_tspi.h"
#include "pinmap.h"
#define TIMEOUT (5000)
#define BAUDRATE_1MHZ_BRS (0x0A)
#define BAUDRATE_1MHZ_BRCK (0x30)
#define SPI_TRANSFER_STATE_IDLE (0U)
#define SPI_TRANSFER_STATE_BUSY (1U)
#if DEVICE_SPI_ASYNCH
#define SPI_S(obj) (( struct spi_s *)(&(obj->spi)))
#else
#define SPI_S(obj) (( struct spi_s *)(obj))
#endif
#if DEVICE_SPI_ASYNCH
static inline void state_idle(struct spi_s *obj_s);
#endif
static const PinMap PinMap_SPI_SCLK[] = {
{PA1, SPI_0, PIN_DATA(7, 1)},
{PL1, SPI_1, PIN_DATA(7, 1)},
{PA6, SPI_2, PIN_DATA(7, 1)},
{PK6, SPI_3, PIN_DATA(4, 1)},
{PD1, SPI_4, PIN_DATA(4, 1)},
{PV6, SPI_5, PIN_DATA(4, 1)},
{PM2, SPI_6, PIN_DATA(6, 1)},
{PM5, SPI_7, PIN_DATA(6, 1)},
{PW1, SPI_8, PIN_DATA(4, 1)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_SLAVE_SCLK[] = {
{PA1, SPI_0, PIN_DATA(7, 0)},
{PL1, SPI_1, PIN_DATA(7, 0)},
{PA6, SPI_2, PIN_DATA(7, 0)},
{PK6, SPI_3, PIN_DATA(4, 0)},
{PD1, SPI_4, PIN_DATA(4, 0)},
{PV6, SPI_5, PIN_DATA(4, 0)},
{PM2, SPI_6, PIN_DATA(6, 0)},
{PM5, SPI_7, PIN_DATA(6, 0)},
{PW1, SPI_8, PIN_DATA(4, 0)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_MOSI[] = {
{PA3, SPI_0, PIN_DATA(7, 1)},
{PL3, SPI_1, PIN_DATA(7, 1)},
{PA4, SPI_2, PIN_DATA(7, 1)},
{PK4, SPI_3, PIN_DATA(4, 1)},
{PD3, SPI_4, PIN_DATA(4, 1)},
{PV5, SPI_5, PIN_DATA(4, 1)},
{PM0, SPI_6, PIN_DATA(6, 1)},
{PM7, SPI_7, PIN_DATA(6, 1)},
{PW3, SPI_8, PIN_DATA(4, 1)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{PA2, SPI_0, PIN_DATA(7, 0)},
{PL2, SPI_1, PIN_DATA(7, 0)},
{PA5, SPI_2, PIN_DATA(7, 0)},
{PK5, SPI_3, PIN_DATA(4, 0)},
{PD2, SPI_4, PIN_DATA(4, 0)},
{PV4, SPI_5, PIN_DATA(4, 0)},
{PM1, SPI_6, PIN_DATA(6, 0)},
{PM6, SPI_7, PIN_DATA(6, 0)},
{PW2, SPI_8, PIN_DATA(4, 0)},
{NC, NC, 0}
};
static const PinMap PinMap_SPI_SSEL[] = {
{PA0, SPI_0, PIN_DATA(7, 2)},
{PL0, SPI_1, PIN_DATA(7, 2)},
{PA7, SPI_2, PIN_DATA(7, 2)},
{PK7, SPI_3, PIN_DATA(4, 2)},
{PD0, SPI_4, PIN_DATA(4, 2)},
{PV7, SPI_5, PIN_DATA(4, 2)},
{PM3, SPI_6, PIN_DATA(6, 2)},
{PM4, SPI_7, PIN_DATA(6, 2)},
{PW0, SPI_8, PIN_DATA(4, 2)},
{NC, NC, 0}
};
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
struct spi_s *obj_s = SPI_S(obj);
// Check pin parameters
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
obj_s->module = (SPIName)pinmap_merge(spi_data, spi_sclk);
obj_s->module = (SPIName)pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT((int)obj_s->module!= NC);
obj_s->clk_pin = sclk;
#if DEVICE_SPI_ASYNCH
obj_s->state = SPI_TRANSFER_STATE_IDLE;
#endif
// Identify SPI module to use
switch ((int)obj_s->module) {
case SPI_0:
obj_s->p_obj.p_instance = TSB_TSPI0;
obj_s->rxirqn = INTT0RX_IRQn;
obj_s->txirqn = INTT0TX_IRQn;
obj_s->errirqn = INTT0ERR_IRQn;
// Enable clock for particular Port and SPI
TSB_CG_FSYSENA_IPENA04 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB02 = TXZ_ENABLE;
break;
case SPI_1:
obj_s->p_obj.p_instance = TSB_TSPI1;
obj_s->rxirqn = INTT1RX_IRQn;
obj_s->txirqn = INTT1TX_IRQn;
obj_s->errirqn = INTT1ERR_IRQn;
// Enable clock for particular Port and SPI
TSB_CG_FSYSENA_IPENA05 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB12 = TXZ_ENABLE;
break;
case SPI_2:
obj_s->p_obj.p_instance = TSB_TSPI2;
obj_s->rxirqn = INTT2RX_IRQn;
obj_s->txirqn = INTT2TX_IRQn;
obj_s->errirqn = INTT2ERR_IRQn;
// Enable clock for particular Port and SPI
TSB_CG_FSYSENA_IPENA06 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB02 = TXZ_ENABLE;
break;
case SPI_3:
obj_s->p_obj.p_instance = TSB_TSPI3;
obj_s->rxirqn = INTT3RX_IRQn;
obj_s->txirqn = INTT3TX_IRQn;
obj_s->errirqn = INTT3ERR_IRQn;
// Enable clock for particular Port and SPI
TSB_CG_FSYSENA_IPENA07 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB11 = TXZ_ENABLE;
break;
case SPI_4:
obj_s->p_obj.p_instance = TSB_TSPI4;
obj_s->rxirqn = INTT4RX_IRQn;
obj_s->txirqn = INTT4TX_IRQn;
obj_s->errirqn = INTT4ERR_IRQn;
// Enable clock for particular Port and SPI
TSB_CG_FSYSENA_IPENA08 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB05 = TXZ_ENABLE;
break;
case SPI_5:
obj_s->p_obj.p_instance = TSB_TSPI5;
obj_s->rxirqn = INTT5RX_IRQn;
obj_s->txirqn = INTT5TX_IRQn;
obj_s->errirqn = INTT5ERR_IRQn;
// Enable clock for particular Port and SPI
TSB_CG_FSYSENA_IPENA09 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB19 = TXZ_ENABLE;
break;
case SPI_6:
obj_s->p_obj.p_instance = TSB_TSPI6;
obj_s->rxirqn = INTT6RX_IRQn;
obj_s->txirqn = INTT6TX_IRQn;
obj_s->errirqn = INTT6ERR_IRQn;
// Enable clock for particular Port and SPI
TSB_CG_FSYSMENA_IPMENA20 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB13 = TXZ_ENABLE;
break;
case SPI_7:
obj_s->p_obj.p_instance = TSB_TSPI7;
obj_s->rxirqn = INTT7RX_IRQn;
obj_s->txirqn = INTT7TX_IRQn;
obj_s->errirqn = INTT7ERR_IRQn;
// Enable clock for particular Port and SPI
TSB_CG_FSYSMENA_IPMENA21 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB13 = TXZ_ENABLE;
break;
case SPI_8:
obj_s->p_obj.p_instance = TSB_TSPI8;
obj_s->rxirqn = INTT8RX_IRQn;
obj_s->txirqn = INTT8TX_IRQn;
obj_s->errirqn = INTT8ERR_IRQn;
// Enable clock for particular Port and SPI
TSB_CG_FSYSMENA_IPMENA22 = TXZ_ENABLE;
TSB_CG_FSYSMENB_IPMENB20 = TXZ_ENABLE;
break;
default:
obj_s->p_obj.p_instance = NULL;
obj_s->module = (SPIName)NC;
error("Cannot found SPI module corresponding with input pins.");
break;
}
// Pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
if (ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL);
}
// Default configurations 8 bit, 1Mhz frequency
// Control 1 configurations
obj_s->p_obj.init.id = (uint32_t)obj_s->module;
obj_s->p_obj.init.cnt1.trgen = TSPI_TRGEN_DISABLE; // Trigger disabled
obj_s->p_obj.init.cnt1.trxe = TSPI_DISABLE; // Enable Communication
obj_s->p_obj.init.cnt1.tspims = TSPI_SPI_MODE; // SPI mode
obj_s->p_obj.init.cnt1.mstr = TSPI_MASTER_OPERATION; // master mode operation
obj_s->p_obj.init.cnt1.tmmd = TSPI_TWO_WAY; // Full-duplex mode (Transmit/receive)
obj_s->p_obj.init.cnt1.cssel = TSPI_TSPIxCS0_ENABLE; // Chip select of pin CS0 is valid
obj_s->p_obj.init.cnt1.fc = TSPI_TRANS_RANGE_SINGLE; // transfer single frame at a time contineously
//Control 2 configurations
obj_s->p_obj.init.cnt2.tidle = TSPI_TIDLE_HI;
obj_s->p_obj.init.cnt2.txdemp = TSPI_TXDEMP_HI; // when slave underruns TxD fixed to low
obj_s->p_obj.init.cnt2.rxdly = TSPI_RXDLY_SET;
obj_s->p_obj.init.cnt2.til = TSPI_TX_FILL_LEVEL_0; // transmit FIFO Level
obj_s->p_obj.init.cnt2.ril = TSPI_RX_FILL_LEVEL_1; // receive FIFO Level
obj_s->p_obj.init.cnt2.inttxwe = TSPI_TX_INT_ENABLE;
obj_s->p_obj.init.cnt2.intrxwe = TSPI_RX_INT_ENABLE;
obj_s->p_obj.init.cnt2.inttxfe = TSPI_TX_FIFO_INT_DISABLE;
obj_s->p_obj.init.cnt2.intrxfe = TSPI_RX_FIFO_INT_DISABLE;
obj_s->p_obj.init.cnt2.interr = TSPI_ERR_INT_DISABLE;
obj_s->p_obj.init.cnt2.dmate = TSPI_TX_DMA_INT_DISABLE;
obj_s->p_obj.init.cnt2.dmare = TSPI_RX_DMA_INT_DISABLE;
//Control 3 configurations
obj_s->p_obj.init.cnt3.tfempclr = TSPI_TX_BUFF_CLR_DONE; // transmit buffer clear
obj_s->p_obj.init.cnt3.rffllclr = TSPI_RX_BUFF_CLR_DONE; // receive buffer clear
//baudrate settings - 1Mhz default
obj_s->p_obj.init.brd.brck = BAUDRATE_1MHZ_BRCK;
obj_s->p_obj.init.brd.brs = BAUDRATE_1MHZ_BRS;
//Format Control 0 settings
obj_s->p_obj.init.fmr0.dir = TSPI_DATA_DIRECTION_MSB; // MSB bit first
obj_s->p_obj.init.fmr0.fl = TSPI_DATA_LENGTH_8;
obj_s->p_obj.init.fmr0.fint = TSPI_INTERVAL_TIME_0;
//Special control on polarity of signal and generation timing
obj_s->p_obj.init.fmr0.cs3pol = TSPI_TSPIxCS3_NEGATIVE;
obj_s->p_obj.init.fmr0.cs2pol = TSPI_TSPIxCS2_NEGATIVE;
obj_s->p_obj.init.fmr0.cs1pol = TSPI_TSPIxCS1_NEGATIVE;
obj_s->p_obj.init.fmr0.cs0pol = TSPI_TSPIxCS0_NEGATIVE;
obj_s->p_obj.init.fmr0.ckpha = TSPI_SERIAL_CK_1ST_EDGE;
obj_s->p_obj.init.fmr0.ckpol = TSPI_SERIAL_CK_IDLE_LOW;
obj_s->p_obj.init.fmr0.csint = TSPI_MIN_IDLE_TIME_1;
obj_s->p_obj.init.fmr0.cssckdl = TSPI_SERIAL_CK_DELAY_1;
obj_s->p_obj.init.fmr0.sckcsdl = TSPI_NEGATE_1;
//Format Control 1 settings tspi_fmtr1_t
obj_s->p_obj.init.fmr1.vpe = TSPI_PARITY_DISABLE;
obj_s->p_obj.init.fmr1.vpm = TSPI_PARITY_BIT_ODD;
obj_s->bits = (uint8_t)TSPI_DATA_LENGTH_8;
//initialize SPI
tspi_init(&obj_s->p_obj);
}
void spi_free(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
tspi_deinit(&obj_s->p_obj);
obj_s->module = (SPIName)NC;
}
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
struct spi_s *obj_s = SPI_S(obj);
MBED_ASSERT((slave == 0U) || (slave == 1U)); // 0: master mode, 1: slave mode
MBED_ASSERT((bits >= 8) && (bits <= 32));
obj_s->bits = bits;
obj_s->p_obj.init.fmr0.fl = (bits << 24);
if(slave) {
pinmap_pinout(obj_s->clk_pin, PinMap_SPI_SLAVE_SCLK);
obj_s->p_obj.init.cnt1.mstr = TSPI_SLAVE_OPERATION; // slave mode operation
}
if((mode >> 1) & 0x1) {
obj_s->p_obj.init.fmr0.ckpol = TSPI_SERIAL_CK_IDLE_HI;
} else {
obj_s->p_obj.init.fmr0.ckpol = TSPI_SERIAL_CK_IDLE_LOW;
}
if(mode & 0x1) {
obj_s->p_obj.init.fmr0.ckpha = TSPI_SERIAL_CK_2ND_EDGE;
} else {
obj_s->p_obj.init.fmr0.ckpha = TSPI_SERIAL_CK_1ST_EDGE;
}
tspi_init(&obj_s->p_obj);
}
void spi_frequency(spi_t *obj, int hz)
{
struct spi_s *obj_s = SPI_S(obj);
SystemCoreClockUpdate();
uint8_t brs = 0;
uint8_t brck = 0;
uint16_t prsck = 1;
uint64_t fscl = 0;
uint64_t tmp_fscl = 0;
uint64_t fx = 0;
uint64_t tmpvar = SystemCoreClock / 2;
for (prsck = 1; prsck <= 512; prsck *= 2) {
fx = ((uint64_t)tmpvar / prsck);
for (brs = 1; brs <= 16; brs++) {
fscl = fx /brs;
if ((fscl <= (uint64_t)hz) && (fscl > tmp_fscl)) {
tmp_fscl = fscl;
obj_s->p_obj.init.brd.brck = (brck << 4);
if(brs == 16) {
obj_s->p_obj.init.brd.brs = 0;
} else {
obj_s->p_obj.init.brd.brs = brs;
}
}
}
brck ++;
}
tspi_init(&obj_s->p_obj);
}
int spi_master_write(spi_t *obj, int value)
{
struct spi_s *obj_s = SPI_S(obj);
uint8_t ret_value = 0;
tspi_transmit_t send_obj;
tspi_receive_t rec_obj;
// Transmit data
send_obj.tx8.p_data = (uint8_t *)&value;
send_obj.tx8.num = 1;
tspi_master_write(&obj_s->p_obj, &send_obj, TIMEOUT);
// Read received data
rec_obj.rx8.p_data = &ret_value;
rec_obj.rx8.num = 1;
tspi_master_read(&obj_s->p_obj, &rec_obj, TIMEOUT);
return ret_value;
}
int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
char *rx_buffer, int rx_length, char write_fill)
{
int total = (tx_length > rx_length) ? tx_length : rx_length;
for (int i = 0; i < total; i++) {
char out = (i < tx_length) ? tx_buffer[i] : write_fill;
char in = spi_master_write(obj, out);
if (i < rx_length) {
rx_buffer[i] = in;
}
}
return total;
}
int spi_slave_receive(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
if((obj_s->p_obj.p_instance->SR & 0x0F) != 0) {
return 1;
}
return 0;
}
int spi_slave_read(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
uint8_t ret_value = 0;
ret_value = obj_s->p_obj.p_instance->DR & 0xFF;
obj_s->p_obj.p_instance->CR1 &= TSPI_TRXE_DISABLE_MASK;
return ret_value;
}
void spi_slave_write(spi_t *obj, int value)
{
struct spi_s *obj_s = SPI_S(obj);
if((obj_s->p_obj.p_instance->CR1 & TSPI_TX_ONLY) != TSPI_TX_ONLY) { //Enable TX if not Enabled
obj_s->p_obj.p_instance->CR1 |= TSPI_TX_ONLY;
}
obj_s->p_obj.p_instance->CR1 |= TSPI_TRXE_ENABLE;
obj_s->p_obj.p_instance->DR = (uint8_t)(value & 0xFF);
}
int spi_busy(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
int ret = 1;
uint32_t status = 0;
tspi_get_status(&obj_s->p_obj, &status);
if ((status & (TSPI_TX_FLAG_ACTIVE | TSPI_RX_FLAG_ACTIVE)) == 0) {
ret = 0;
}
return ret;
}
uint8_t spi_get_module(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
return (uint8_t)(obj_s->module);
}
const PinMap *spi_master_mosi_pinmap()
{
return PinMap_SPI_MOSI;
}
const PinMap *spi_master_miso_pinmap()
{
return PinMap_SPI_MISO;
}
const PinMap *spi_master_clk_pinmap()
{
return PinMap_SPI_SCLK;
}
const PinMap *spi_master_cs_pinmap()
{
return PinMap_SPI_SSEL;
}
const PinMap *spi_slave_mosi_pinmap()
{
return PinMap_SPI_MOSI;
}
const PinMap *spi_slave_miso_pinmap()
{
return PinMap_SPI_MISO;
}
const PinMap *spi_slave_clk_pinmap()
{
return PinMap_SPI_SLAVE_SCLK;
}
const PinMap *spi_slave_cs_pinmap()
{
return PinMap_SPI_SSEL;
}
#ifdef DEVICE_SPI_ASYNCH
void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
struct spi_s *obj_s = SPI_S(obj);
tspi_t *p_obj = &(obj_s->p_obj);
obj_s->event_mask = event | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
// check which use-case we have
bool use_tx = (tx != NULL && tx_length > 0);
bool use_rx = (rx != NULL && rx_length > 0);
// don't do anything, if the buffers aren't valid
if (!use_tx && !use_rx) {
return;
}
// copy the buffers to the SPI object
obj->tx_buff.buffer = (void *) tx;
obj->tx_buff.length = tx ? tx_length : 0;
obj->tx_buff.pos = 0;
obj->rx_buff.buffer = rx;
obj->rx_buff.length = rx ? rx_length : 0;
obj->rx_buff.pos = 0;
NVIC_SetVector(obj_s->rxirqn, (uint32_t)handler); //receive interrupt
NVIC_SetVector(obj_s->txirqn, (uint32_t)handler); //transmit interrupt
NVIC_SetVector(obj_s->errirqn, (uint32_t)handler); //error interrupt
NVIC_ClearPendingIRQ(obj_s->rxirqn);
NVIC_ClearPendingIRQ(obj_s->txirqn);
NVIC_ClearPendingIRQ(obj_s->errirqn);
obj_s->state = SPI_TRANSFER_STATE_BUSY;
obj_s->p_obj.p_instance->CR1 |= TSPI_TRXE_ENABLE;
// Enable Interrupt bit in SPI peripheral - Enabled in init()
if(use_tx) {
// Transmit first byte to enter into handler
p_obj->p_instance->DR = *(uint8_t *)(tx);
obj->tx_buff.pos++;
NVIC_EnableIRQ(obj_s->txirqn);
}
if (use_rx) {
if(!use_tx) {
//if RX only then transmit one dummy byte to enter into handler
p_obj->p_instance->DR = 0xFF;
}
NVIC_EnableIRQ(obj_s->rxirqn);
}
NVIC_EnableIRQ(obj_s->errirqn);
}
uint32_t spi_irq_handler_asynch(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
tspi_t *p_obj = &(obj_s->p_obj);
int event = 0;
uint32_t err = 0;
if (obj_s->state != SPI_TRANSFER_STATE_BUSY) {
event = SPI_EVENT_ERROR | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
state_idle(obj_s);
return (event & obj_s->event_mask);
}
if((p_obj->p_instance->SR & TSPI_RX_DONE_FLAG) == TSPI_RX_DONE) {
if(obj->rx_buff.pos < obj->rx_buff.length) {
*((uint8_t *)obj->rx_buff.buffer + obj->rx_buff.pos) = (p_obj->p_instance->DR & 0xFF);
obj->rx_buff.pos++;
if((obj->tx_buff.pos == obj->tx_buff.length) && (obj->rx_buff.pos < obj->rx_buff.length)) {
// transmit complete but receive pending - dummy write
p_obj->p_instance->DR = 0xFF;
}
} else {
//Receive complete - dummy read
uint8_t dummy = p_obj->p_instance->DR;
(void)dummy;
}
}
if((p_obj->p_instance->SR & TSPI_TX_DONE_FLAG) == TSPI_TX_DONE) {
p_obj->p_instance->SR |= TSPI_TX_DONE_CLR;
if(obj->tx_buff.pos < obj->tx_buff.length) {
p_obj->p_instance->DR = *((uint8_t *)obj->tx_buff.buffer + obj->tx_buff.pos) & 0xFF;
obj->tx_buff.pos++;
} else if (obj->rx_buff.pos == obj->rx_buff.length) {
// Tx and Rx complete
event = SPI_EVENT_COMPLETE | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
state_idle(obj_s);
}
}
err = p_obj->p_instance->ERR;
if(err != 0) {
p_obj->p_instance->ERR = (TSPI_TRGERR_ERR | TSPI_UNDERRUN_ERR |TSPI_OVERRUN_ERR | TSPI_PARITY_ERR );
event = SPI_EVENT_ERROR | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE;
state_idle(obj_s);
}
return (event & obj_s->event_mask);
}
uint8_t spi_active(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
return (obj_s->state != SPI_TRANSFER_STATE_IDLE);
}
void spi_abort_asynch(spi_t *obj)
{
struct spi_s *obj_s = SPI_S(obj);
state_idle(obj_s);
tspi_init(&obj_s->p_obj); //Reinitialising with software reset
}
static inline void state_idle(struct spi_s *obj_s)
{
NVIC_DisableIRQ(obj_s->rxirqn);
NVIC_DisableIRQ(obj_s->txirqn);
NVIC_DisableIRQ(obj_s->errirqn);
NVIC_ClearPendingIRQ(obj_s->rxirqn);
NVIC_ClearPendingIRQ(obj_s->txirqn);
NVIC_ClearPendingIRQ(obj_s->errirqn);
obj_s->state = SPI_TRANSFER_STATE_IDLE;
//clean-up
obj_s->p_obj.p_instance->CR1 &= TSPI_TRXE_DISABLE_MASK;
obj_s->p_obj.p_instance->SR = (TSPI_TX_DONE_CLR | TSPI_RX_DONE_CLR);
obj_s->p_obj.p_instance->CR3 = (TSPI_TX_BUFF_CLR_DONE | TSPI_RX_BUFF_CLR_DONE);
obj_s->p_obj.p_instance->ERR = (TSPI_TRGERR_ERR | TSPI_UNDERRUN_ERR |TSPI_OVERRUN_ERR | TSPI_PARITY_ERR );
}
#endif //DEVICE_SPI_ASYNCH