mbed-os/connectivity/cellular/source/framework/AT/AT_CellularDevice.cpp

649 lines
19 KiB
C++

/*
* Copyright (c) 2017, Arm Limited and affiliates.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rtos/ThisThread.h"
#include "CellularUtil.h"
#include "AT_CellularDevice.h"
#include "AT_CellularInformation.h"
#include "AT_CellularNetwork.h"
#include "AT_CellularSMS.h"
#include "AT_CellularContext.h"
#include "AT_CellularStack.h"
#include "CellularLog.h"
#include "ATHandler.h"
#if (DEVICE_SERIAL && DEVICE_INTERRUPTIN) || defined(DOXYGEN_ONLY)
#include "drivers/BufferedSerial.h"
#endif // #if DEVICE_SERIAL
#include "FileHandle.h"
#include <ctype.h>
using namespace mbed_cellular_util;
using namespace events;
using namespace mbed;
using namespace std::chrono_literals;
#define DEFAULT_AT_TIMEOUT 1s // at default timeout
const int MAX_SIM_RESPONSE_LENGTH = 16;
AT_CellularDevice::AT_CellularDevice(FileHandle *fh) :
CellularDevice(),
_at(fh, _queue, DEFAULT_AT_TIMEOUT, "\r"),
#if MBED_CONF_CELLULAR_USE_SMS
_sms(0),
#endif // MBED_CONF_CELLULAR_USE_SMS
_network(0),
_information(0),
_context_list(0),
_default_timeout(DEFAULT_AT_TIMEOUT),
_modem_debug_on(false),
_property_array(NULL)
{
MBED_ASSERT(fh);
}
AT_CellularDevice::~AT_CellularDevice()
{
if (get_property(PROPERTY_AT_CGEREP)) {
_at.set_urc_handler("+CGEV: NW DEACT", nullptr);
_at.set_urc_handler("+CGEV: ME DEACT", nullptr);
_at.set_urc_handler("+CGEV: NW PDN D", nullptr);
_at.set_urc_handler("+CGEV: ME PDN D", nullptr);
}
// make sure that all is deleted even if somewhere close was not called and reference counting is messed up.
_network_ref_count = 1;
#if MBED_CONF_CELLULAR_USE_SMS
_sms_ref_count = 1;
#endif // MBED_CONF_CELLULAR_USE_SMS
_info_ref_count = 1;
close_network();
#if MBED_CONF_CELLULAR_USE_SMS
close_sms();
#endif //MBED_CONF_CELLULAR_USE_SMS
close_information();
AT_CellularContext *curr = _context_list;
AT_CellularContext *next;
while (curr) {
next = (AT_CellularContext *)curr->_next;
delete curr;
curr = next;
}
}
void AT_CellularDevice::set_at_urcs_impl()
{
}
void AT_CellularDevice::set_at_urcs()
{
if (get_property(PROPERTY_AT_CGEREP)) {
_at.set_urc_handler("+CGEV: NW DEACT", callback(this, &AT_CellularDevice::urc_nw_deact));
_at.set_urc_handler("+CGEV: ME DEACT", callback(this, &AT_CellularDevice::urc_nw_deact));
_at.set_urc_handler("+CGEV: NW PDN D", callback(this, &AT_CellularDevice::urc_pdn_deact));
_at.set_urc_handler("+CGEV: ME PDN D", callback(this, &AT_CellularDevice::urc_pdn_deact));
}
set_at_urcs_impl();
}
void AT_CellularDevice::setup_at_handler()
{
set_at_urcs();
_at.set_send_delay(get_property(AT_CellularDevice::PROPERTY_AT_SEND_DELAY));
}
void AT_CellularDevice::urc_nw_deact()
{
// The network has forced a context deactivation
char buf[10];
_at.read_string(buf, 10);
int cid;
if (isalpha(buf[0])) {
// this is +CGEV: NW DEACT <PDP_type>, <PDP_addr>, [<cid>]
// or +CGEV: ME DEACT <PDP_type>, <PDP_addr>, [<cid>]
_at.skip_param(); // skip <PDP_addr>
cid = _at.read_int();
} else {
// this is +CGEV: NW DEACT <p_cid>, <cid>, <event_type>[,<WLAN_Offload>]
// or +CGEV: ME DEACT <p_cid>, <cid>, <event_type
cid = _at.read_int();
}
send_disconnect_to_context(cid);
}
void AT_CellularDevice::urc_pdn_deact()
{
// The network has deactivated a context
// The mobile termination has deactivated a context.
// +CGEV: NW PDN DEACT <cid>[,<WLAN_Offload>]
// +CGEV: ME PDN DEACT <cid>
_at.set_delimiter(' ');
_at.skip_param();
_at.set_delimiter(',');
int cid = _at.read_int();
send_disconnect_to_context(cid);
}
void AT_CellularDevice::send_disconnect_to_context(int cid)
{
tr_debug("send_disconnect_to_context, cid: %d", cid);
AT_CellularContext *curr = _context_list;
while (curr) {
if (cid >= 0) {
if (curr->get_cid() == cid) {
CellularDevice::cellular_callback(NSAPI_EVENT_CONNECTION_STATUS_CHANGE, NSAPI_STATUS_DISCONNECTED, curr);
break;
}
} else {
CellularDevice::cellular_callback(NSAPI_EVENT_CONNECTION_STATUS_CHANGE, NSAPI_STATUS_DISCONNECTED);
}
curr = (AT_CellularContext *)curr->_next;
}
}
nsapi_error_t AT_CellularDevice::hard_power_on()
{
return NSAPI_ERROR_OK;
}
nsapi_error_t AT_CellularDevice::hard_power_off()
{
return NSAPI_ERROR_OK;
}
nsapi_error_t AT_CellularDevice::soft_power_on()
{
return NSAPI_ERROR_OK;
}
nsapi_error_t AT_CellularDevice::soft_power_off()
{
return NSAPI_ERROR_OK;
}
ATHandler *AT_CellularDevice::get_at_handler()
{
return &_at;
}
nsapi_error_t AT_CellularDevice::get_sim_state(SimState &state)
{
char simstr[MAX_SIM_RESPONSE_LENGTH];
_at.lock();
_at.flush();
nsapi_error_t error = _at.at_cmd_str("+CPIN", "?", simstr, sizeof(simstr));
ssize_t len = strlen(simstr);
#if MBED_CONF_MBED_TRACE_ENABLE
device_err_t err = _at.get_last_device_error();
#endif
_at.unlock();
if (len != -1) {
if (len >= 5 && memcmp(simstr, "READY", 5) == 0) {
state = SimStateReady;
} else if (len >= 7 && memcmp(simstr, "SIM PIN", 7) == 0) {
state = SimStatePinNeeded;
} else if (len >= 7 && memcmp(simstr, "SIM PUK", 7) == 0) {
state = SimStatePukNeeded;
} else {
simstr[len] = '\0';
state = SimStateUnknown;
}
} else {
tr_warn("SIM not readable.");
state = SimStateUnknown; // SIM may not be ready yet or +CPIN may be unsupported command
}
#if MBED_CONF_MBED_TRACE_ENABLE
switch (state) {
case SimStatePinNeeded:
tr_info("SIM PIN required");
break;
case SimStatePukNeeded:
tr_error("SIM PUK required");
break;
case SimStateUnknown:
if (err.errType == DeviceErrorTypeErrorCME && err.errCode == 14) {
tr_info("SIM busy");
} else {
tr_warn("SIM state unknown");
}
break;
default:
tr_info("SIM is ready");
break;
}
#endif
return error;
}
nsapi_error_t AT_CellularDevice::set_pin(const char *sim_pin)
{
// if SIM is already in ready state then settings the PIN
// will return error so let's check the state before settings the pin.
SimState state = SimStateUnknown;
if (get_sim_state(state) == NSAPI_ERROR_OK && state == SimStateReady) {
return NSAPI_ERROR_OK;
}
if (sim_pin == NULL) {
return NSAPI_ERROR_PARAMETER;
}
_at.lock();
const bool stored_debug_state = _at.get_debug();
_at.set_debug(false);
_at.at_cmd_discard("+CPIN", "=", "%s", sim_pin);
_at.set_debug(stored_debug_state);
return _at.unlock_return_error();
}
CellularContext *AT_CellularDevice::get_context_list() const
{
return _context_list;
}
CellularContext *AT_CellularDevice::create_context(const char *apn, bool cp_req, bool nonip_req)
{
AT_CellularContext *ctx = create_context_impl(_at, apn, cp_req, nonip_req);
AT_CellularContext *curr = _context_list;
if (_context_list == NULL) {
_context_list = ctx;
return ctx;
}
AT_CellularContext *prev = NULL;
while (curr) {
prev = curr;
curr = (AT_CellularContext *)curr->_next;
}
prev->_next = ctx;
return ctx;
}
AT_CellularContext *AT_CellularDevice::create_context_impl(ATHandler &at, const char *apn, bool cp_req, bool nonip_req)
{
return new AT_CellularContext(at, this, apn, cp_req, nonip_req);
}
void AT_CellularDevice::delete_context(CellularContext *context)
{
AT_CellularContext *curr = _context_list;
AT_CellularContext *prev = NULL;
while (curr) {
if (curr == context) {
if (prev == NULL) {
_context_list = (AT_CellularContext *)curr->_next;
} else {
prev->_next = curr->_next;
}
}
prev = curr;
curr = (AT_CellularContext *)curr->_next;
}
delete (AT_CellularContext *)context;
}
CellularNetwork *AT_CellularDevice::open_network()
{
if (!_network) {
_network = open_network_impl(*get_at_handler());
}
_network_ref_count++;
return _network;
}
CellularInformation *AT_CellularDevice::open_information()
{
if (!_information) {
_information = open_information_impl(*get_at_handler());
}
_info_ref_count++;
return _information;
}
AT_CellularNetwork *AT_CellularDevice::open_network_impl(ATHandler &at)
{
return new AT_CellularNetwork(at, *this);
}
#if MBED_CONF_CELLULAR_USE_SMS
CellularSMS *AT_CellularDevice::open_sms()
{
if (!_sms) {
_sms = open_sms_impl(*get_at_handler());
}
_sms_ref_count++;
return _sms;
}
void AT_CellularDevice::close_sms()
{
if (_sms) {
_sms_ref_count--;
if (_sms_ref_count == 0) {
delete _sms;
_sms = NULL;
}
}
}
AT_CellularSMS *AT_CellularDevice::open_sms_impl(ATHandler &at)
{
return new AT_CellularSMS(at, *this);
}
#endif // MBED_CONF_CELLULAR_USE_SMS
AT_CellularInformation *AT_CellularDevice::open_information_impl(ATHandler &at)
{
return new AT_CellularInformation(at, *this);
}
void AT_CellularDevice::close_network()
{
if (_network) {
_network_ref_count--;
if (_network_ref_count == 0) {
delete _network;
_network = NULL;
}
}
}
void AT_CellularDevice::close_information()
{
if (_information) {
_info_ref_count--;
if (_info_ref_count == 0) {
delete _information;
_information = NULL;
}
}
}
void AT_CellularDevice::set_timeout(int timeout)
{
_default_timeout = std::chrono::duration<int, std::milli>(timeout);
_at.set_at_timeout(_default_timeout, true);
if (_state_machine) {
_state_machine->set_timeout(_default_timeout);
}
}
void AT_CellularDevice::modem_debug_on(bool on)
{
_modem_debug_on = on;
_at.set_debug(_modem_debug_on);
}
nsapi_error_t AT_CellularDevice::init()
{
setup_at_handler();
_at.lock();
for (int retry = 1; retry <= 3; retry++) {
_at.clear_error();
_at.flush();
_at.at_cmd_discard("E0", "");
if (_at.get_last_error() == NSAPI_ERROR_OK) {
_at.at_cmd_discard("+CMEE", "=1");
_at.at_cmd_discard("+CFUN", "=1");
if (_at.get_last_error() == NSAPI_ERROR_OK) {
break;
}
}
tr_debug("Wait 100ms to init modem");
rtos::ThisThread::sleep_for(100ms); // let modem have time to get ready
}
return _at.unlock_return_error();
}
nsapi_error_t AT_CellularDevice::shutdown()
{
CellularDevice::shutdown();
return _at.at_cmd_discard("+CFUN", "=0");
}
nsapi_error_t AT_CellularDevice::is_ready()
{
_at.lock();
_at.at_cmd_discard("", "");
// we need to do this twice because for example after data mode the first 'AT' command will give modem a
// stimulus that we are back to command mode.
_at.clear_error();
_at.at_cmd_discard("", "");
return _at.unlock_return_error();
}
void AT_CellularDevice::set_ready_cb(Callback<void()> callback)
{
}
nsapi_error_t AT_CellularDevice::set_power_save_mode(int periodic_time, int active_time)
{
_at.lock();
if (periodic_time == 0 && active_time == 0) {
// disable PSM
_at.at_cmd_discard("+CPSMS", "=0");
} else {
const int PSMTimerBits = 5;
/**
Table 10.5.163a/3GPP TS 24.008: GPRS Timer 3 information element
Bits 5 to 1 represent the binary coded timer value.
Bits 6 to 8 defines the timer value unit for the GPRS timer as follows:
8 7 6
0 0 0 value is incremented in multiples of 10 minutes
0 0 1 value is incremented in multiples of 1 hour
0 1 0 value is incremented in multiples of 10 hours
0 1 1 value is incremented in multiples of 2 seconds
1 0 0 value is incremented in multiples of 30 seconds
1 0 1 value is incremented in multiples of 1 minute
1 1 0 value is incremented in multiples of 320 hours (NOTE 1)
1 1 1 value indicates that the timer is deactivated (NOTE 2).
*/
char pt[8 + 1]; // timer value encoded as 3GPP IE
const int ie_value_max = 0x1f;
uint32_t periodic_timer = 0;
if (periodic_time <= 2 * ie_value_max) { // multiples of 2 seconds
periodic_timer = periodic_time / 2;
strcpy(pt, "01100000");
} else {
if (periodic_time <= 30 * ie_value_max) { // multiples of 30 seconds
periodic_timer = periodic_time / 30;
strcpy(pt, "10000000");
} else {
if (periodic_time <= 60 * ie_value_max) { // multiples of 1 minute
periodic_timer = periodic_time / 60;
strcpy(pt, "10100000");
} else {
if (periodic_time <= 10 * 60 * ie_value_max) { // multiples of 10 minutes
periodic_timer = periodic_time / (10 * 60);
strcpy(pt, "00000000");
} else {
if (periodic_time <= 60 * 60 * ie_value_max) { // multiples of 1 hour
periodic_timer = periodic_time / (60 * 60);
strcpy(pt, "00100000");
} else {
if (periodic_time <= 10 * 60 * 60 * ie_value_max) { // multiples of 10 hours
periodic_timer = periodic_time / (10 * 60 * 60);
strcpy(pt, "01000000");
} else { // multiples of 320 hours
int t = periodic_time / (320 * 60 * 60);
if (t > ie_value_max) {
t = ie_value_max;
}
periodic_timer = t;
strcpy(pt, "11000000");
}
}
}
}
}
}
uint_to_binary_str(periodic_timer, &pt[3], sizeof(pt) - 3, PSMTimerBits);
pt[8] = '\0';
/**
Table 10.5.172/3GPP TS 24.008: GPRS Timer information element
Bits 5 to 1 represent the binary coded timer value.
Bits 6 to 8 defines the timer value unit for the GPRS timer as follows:
8 7 6
0 0 0 value is incremented in multiples of 2 seconds
0 0 1 value is incremented in multiples of 1 minute
0 1 0 value is incremented in multiples of decihours
1 1 1 value indicates that the timer is deactivated.
Other values shall be interpreted as multiples of 1 minute in this version of the protocol.
*/
char at[8 + 1];
uint32_t active_timer; // timer value encoded as 3GPP IE
if (active_time <= 2 * ie_value_max) { // multiples of 2 seconds
active_timer = active_time / 2;
strcpy(at, "00000000");
} else {
if (active_time <= 60 * ie_value_max) { // multiples of 1 minute
active_timer = (1 << 5) | (active_time / 60);
strcpy(at, "00100000");
} else { // multiples of decihours
int t = active_time / (6 * 60);
if (t > ie_value_max) {
t = ie_value_max;
}
active_timer = t;
strcpy(at, "01000000");
}
}
uint_to_binary_str(active_timer, &at[3], sizeof(at) - 3, PSMTimerBits);
at[8] = '\0';
// request for both GPRS and LTE
_at.at_cmd_discard("+CPSMS", "=1,", "%s%s%s%s", pt, at, pt, at);
if (_at.get_last_error() != NSAPI_ERROR_OK) {
tr_warn("Power save mode not enabled!");
} else {
// network may not agree with power save options but
// that should be fine as timeout is not longer than requested
}
}
return _at.unlock_return_error();
}
void AT_CellularDevice::cellular_callback(nsapi_event_t ev, intptr_t ptr, CellularContext *ctx)
{
if (ev >= NSAPI_EVENT_CELLULAR_STATUS_BASE && ev <= NSAPI_EVENT_CELLULAR_STATUS_END) {
cellular_connection_status_t cell_ev = (cellular_connection_status_t)ev;
if (cell_ev == CellularDeviceTimeout) {
cell_callback_data_t *data = (cell_callback_data_t *)ptr;
auto timeout = *(std::chrono::duration<int, std::milli> *)data->data;
if (_default_timeout != timeout) {
_default_timeout = timeout;
_at.set_at_timeout(_default_timeout, true);
}
}
}
CellularDevice::cellular_callback(ev, ptr, ctx);
}
nsapi_error_t AT_CellularDevice::clear()
{
AT_CellularNetwork *net = static_cast<AT_CellularNetwork *>(open_network());
nsapi_error_t err = net->clear();
close_network();
return err;
}
nsapi_error_t AT_CellularDevice::set_baud_rate(int baud_rate)
{
nsapi_error_t error;
#if (DEVICE_SERIAL && DEVICE_INTERRUPTIN)
error = set_baud_rate_impl(baud_rate);
if (error) {
tr_warning("Baudrate was not changed to desired value: %d", baud_rate);
return error;
}
_at.set_baud(baud_rate);
// Give some time before starting using the UART with the new baud rate
rtos::ThisThread::sleep_for(3s);
#else
// Currently ATHandler only supports BufferedSerial based communication and
// if serial is disabled, baud rate cannot be set
tr_warn("set_baud_rate: Serial not supported");
error = NSAPI_ERROR_UNSUPPORTED;
#endif
return error;
}
nsapi_error_t AT_CellularDevice::set_baud_rate_impl(int baud_rate)
{
return _at.at_cmd_discard("+IPR", "=", "%d", baud_rate);
}
void AT_CellularDevice::set_cellular_properties(const intptr_t *property_array)
{
if (!property_array) {
tr_warning("trying to set an empty cellular property array");
return;
}
_property_array = property_array;
}
intptr_t AT_CellularDevice::get_property(CellularProperty key)
{
if (_property_array) {
return _property_array[key];
} else {
return 0;
}
}