mbed-os/targets/TARGET_NXP/TARGET_LPC2460/spi_api.c

220 lines
5.9 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2015 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include <math.h>
#include "spi_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
static const PinMap PinMap_SPI_SCLK[] = {
{P0_7 , SPI_1, 2},
{P0_15, SPI_0, 2},
{P1_20, SPI_0, 3},
{P1_31, SPI_1, 2},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MOSI[] = {
{P0_9 , SPI_1, 2},
{P0_13, SPI_1, 2},
{P0_18, SPI_0, 2},
{P1_24, SPI_0, 3},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_MISO[] = {
{P0_8 , SPI_1, 2},
{P0_12, SPI_1, 2},
{P0_17, SPI_0, 2},
{P1_23, SPI_0, 3},
{NC , NC , 0}
};
static const PinMap PinMap_SPI_SSEL[] = {
{P0_6 , SPI_1, 2},
{P0_14, SPI_1, 3},
{P0_16, SPI_0, 2},
{P1_21, SPI_0, 3},
{NC , NC , 0}
};
static inline int ssp_disable(spi_t *obj);
static inline int ssp_enable(spi_t *obj);
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
// determine the SPI to use
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
obj->spi = (LPC_SSP_TypeDef*)pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT((int)obj->spi != NC);
// enable power and clocking
switch ((int)obj->spi) {
case SPI_0: LPC_SC->PCONP |= 1 << PCSSP0; break;
case SPI_1: LPC_SC->PCONP |= 1 << PCSSP1; break;
}
// set default format and frequency
if (ssel == NC) {
spi_format(obj, 8, 0, 0); // 8 bits, mode 0, master
} else {
spi_format(obj, 8, 0, 1); // 8 bits, mode 0, slave
}
spi_frequency(obj, 1000000);
// enable the ssp channel
ssp_enable(obj);
// pin out the spi pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
if (ssel != NC) {
pinmap_pinout(ssel, PinMap_SPI_SSEL);
}
}
void spi_free(spi_t *obj) {}
void spi_format(spi_t *obj, int bits, int mode, int slave) {
MBED_ASSERT(((bits >= 4) && (bits <= 16)) && ((mode >= 0) && (mode <= 3)));
ssp_disable(obj);
int polarity = (mode & 0x2) ? 1 : 0;
int phase = (mode & 0x1) ? 1 : 0;
// set it up
int DSS = bits - 1; // DSS (data select size)
int SPO = (polarity) ? 1 : 0; // SPO - clock out polarity
int SPH = (phase) ? 1 : 0; // SPH - clock out phase
int FRF = 0; // FRF (frame format) = SPI
uint32_t tmp = obj->spi->CR0;
tmp &= ~(0xFFFF);
tmp |= DSS << 0
| FRF << 4
| SPO << 6
| SPH << 7;
obj->spi->CR0 = tmp;
tmp = obj->spi->CR1;
tmp &= ~(0xD);
tmp |= 0 << 0 // LBM - loop back mode - off
| ((slave) ? 1 : 0) << 2 // MS - master slave mode, 1 = slave
| 0 << 3; // SOD - slave output disable - na
obj->spi->CR1 = tmp;
ssp_enable(obj);
}
void spi_frequency(spi_t *obj, int hz) {
ssp_disable(obj);
// setup the spi clock diveder to /1
switch ((int)obj->spi) {
case SPI_0:
LPC_SC->PCLKSEL1 &= ~(3 << 10);
LPC_SC->PCLKSEL1 |= (1 << 10);
break;
case SPI_1:
LPC_SC->PCLKSEL0 &= ~(3 << 20);
LPC_SC->PCLKSEL0 |= (1 << 20);
break;
}
uint32_t PCLK = SystemCoreClock;
int prescaler;
for (prescaler = 2; prescaler <= 254; prescaler += 2) {
int prescale_hz = PCLK / prescaler;
// calculate the divider
int divider = floor(((float)prescale_hz / (float)hz) + 0.5f);
// check we can support the divider
if (divider < 256) {
// prescaler
obj->spi->CPSR = prescaler;
// divider
obj->spi->CR0 &= ~(0xFFFF << 8);
obj->spi->CR0 |= (divider - 1) << 8;
ssp_enable(obj);
return;
}
}
error("Couldn't setup requested SPI frequency");
}
static inline int ssp_disable(spi_t *obj) {
return obj->spi->CR1 &= ~(1 << 1);
}
static inline int ssp_enable(spi_t *obj) {
return obj->spi->CR1 |= (1 << 1);
}
static inline int ssp_readable(spi_t *obj) {
return obj->spi->SR & (1 << 2);
}
static inline int ssp_writeable(spi_t *obj) {
return obj->spi->SR & (1 << 1);
}
static inline void ssp_write(spi_t *obj, int value) {
while (!ssp_writeable(obj));
obj->spi->DR = value;
}
static inline int ssp_read(spi_t *obj) {
while (!ssp_readable(obj));
return obj->spi->DR;
}
static inline int ssp_busy(spi_t *obj) {
return (obj->spi->SR & (1 << 4)) ? (1) : (0);
}
int spi_master_write(spi_t *obj, int value) {
ssp_write(obj, value);
return ssp_read(obj);
}
int spi_slave_receive(spi_t *obj) {
return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0);
}
int spi_slave_read(spi_t *obj) {
return obj->spi->DR;
}
void spi_slave_write(spi_t *obj, int value) {
while (ssp_writeable(obj) == 0) ;
obj->spi->DR = value;
}
int spi_busy(spi_t *obj) {
return ssp_busy(obj);
}