mbed-os/rtos/Thread.cpp

375 lines
9.0 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2006-2012 ARM Limited
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "rtos/Thread.h"
#include "mbed.h"
#include "rtos/rtos_idle.h"
// rt_tid2ptcb is an internal function which we exposed to get TCB for thread id
#undef NULL //Workaround for conflicting macros in rt_TypeDef.h and stdio.h
#include "rt_TypeDef.h"
extern "C" P_TCB rt_tid2ptcb(osThreadId thread_id);
static void (*terminate_hook)(osThreadId id) = 0;
extern "C" void thread_terminate_hook(osThreadId id)
{
if (terminate_hook != (void (*)(osThreadId))NULL) {
terminate_hook(id);
}
}
namespace rtos {
void Thread::constructor(osPriority priority,
uint32_t stack_size, unsigned char *stack_pointer) {
_tid = 0;
_dynamic_stack = (stack_pointer == NULL);
#if defined(__MBED_CMSIS_RTOS_CA9) || defined(__MBED_CMSIS_RTOS_CM)
_thread_def.tpriority = priority;
_thread_def.stacksize = stack_size;
_thread_def.stack_pointer = (uint32_t*)stack_pointer;
#endif
}
void Thread::constructor(Callback<void()> task,
osPriority priority, uint32_t stack_size, unsigned char *stack_pointer) {
constructor(priority, stack_size, stack_pointer);
switch (start(task)) {
case osErrorResource:
error("OS ran out of threads!\n");
break;
case osErrorParameter:
error("Thread already running!\n");
break;
case osErrorNoMemory:
error("Error allocating the stack memory\n");
default:
break;
}
}
osStatus Thread::start(Callback<void()> task) {
_mutex.lock();
if (_tid != 0) {
_mutex.unlock();
return osErrorParameter;
}
#if defined(__MBED_CMSIS_RTOS_CA9) || defined(__MBED_CMSIS_RTOS_CM)
_thread_def.pthread = Thread::_thunk;
if (_thread_def.stack_pointer == NULL) {
_thread_def.stack_pointer = new uint32_t[_thread_def.stacksize/sizeof(uint32_t)];
MBED_ASSERT(_thread_def.stack_pointer != NULL);
}
//Fill the stack with a magic word for maximum usage checking
for (uint32_t i = 0; i < (_thread_def.stacksize / sizeof(uint32_t)); i++) {
_thread_def.stack_pointer[i] = 0xE25A2EA5;
}
#endif
_task = task;
_tid = osThreadCreate(&_thread_def, this);
if (_tid == NULL) {
if (_dynamic_stack) {
delete[] (_thread_def.stack_pointer);
_thread_def.stack_pointer = (uint32_t*)NULL;
}
_mutex.unlock();
_join_sem.release();
return osErrorResource;
}
_mutex.unlock();
return osOK;
}
osStatus Thread::terminate() {
osStatus ret;
_mutex.lock();
// Set the Thread's tid to NULL and
// release the semaphore before terminating
// since this thread could be terminating itself
osThreadId local_id = _tid;
_join_sem.release();
_tid = (osThreadId)NULL;
ret = osThreadTerminate(local_id);
_mutex.unlock();
return ret;
}
osStatus Thread::join() {
int32_t ret = _join_sem.wait();
if (ret < 0) {
return osErrorOS;
}
// The semaphore has been released so this thread is being
// terminated or has been terminated. Once the mutex has
// been locked it is ensured that the thread is deleted.
_mutex.lock();
MBED_ASSERT(NULL == _tid);
_mutex.unlock();
// Release sem so any other threads joining this thread wake up
_join_sem.release();
return osOK;
}
osStatus Thread::set_priority(osPriority priority) {
osStatus ret;
_mutex.lock();
ret = osThreadSetPriority(_tid, priority);
_mutex.unlock();
return ret;
}
osPriority Thread::get_priority() {
osPriority ret;
_mutex.lock();
ret = osThreadGetPriority(_tid);
_mutex.unlock();
return ret;
}
int32_t Thread::signal_set(int32_t signals) {
// osSignalSet is thread safe as long as the underlying
// thread does not get terminated or return from main
return osSignalSet(_tid, signals);
}
int32_t Thread::signal_clr(int32_t signals) {
// osSignalClear is thread safe as long as the underlying
// thread does not get terminated or return from main
return osSignalClear(_tid, signals);
}
Thread::State Thread::get_state() {
#if !defined(__MBED_CMSIS_RTOS_CA9) && !defined(__MBED_CMSIS_RTOS_CM)
#ifdef CMSIS_OS_RTX
State status = Deleted;
_mutex.lock();
if (_tid != NULL) {
status = (State)_thread_def.tcb.state;
}
_mutex.unlock();
return status;
#endif
#else
State status = Deleted;
_mutex.lock();
if (_tid != NULL) {
status = (State)osThreadGetState(_tid);
}
_mutex.unlock();
return status;
#endif
}
uint32_t Thread::stack_size() {
#ifndef __MBED_CMSIS_RTOS_CA9
#if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM)
uint32_t size = 0;
_mutex.lock();
if (_tid != NULL) {
size = _thread_def.tcb.priv_stack;
}
_mutex.unlock();
return size;
#else
uint32_t size = 0;
_mutex.lock();
if (_tid != NULL) {
P_TCB tcb = rt_tid2ptcb(_tid);
size = tcb->priv_stack;
}
_mutex.unlock();
return size;
#endif
#else
return 0;
#endif
}
uint32_t Thread::free_stack() {
#ifndef __MBED_CMSIS_RTOS_CA9
#if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM)
uint32_t size = 0;
_mutex.lock();
if (_tid != NULL) {
uint32_t bottom = (uint32_t)_thread_def.tcb.stack;
size = _thread_def.tcb.tsk_stack - bottom;
}
_mutex.unlock();
return size;
#else
uint32_t size = 0;
_mutex.lock();
if (_tid != NULL) {
P_TCB tcb = rt_tid2ptcb(_tid);
uint32_t bottom = (uint32_t)tcb->stack;
size = tcb->tsk_stack - bottom;
}
_mutex.unlock();
return size;
#endif
#else
return 0;
#endif
}
uint32_t Thread::used_stack() {
#ifndef __MBED_CMSIS_RTOS_CA9
#if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM)
uint32_t size = 0;
_mutex.lock();
if (_tid != NULL) {
uint32_t top = (uint32_t)_thread_def.tcb.stack + _thread_def.tcb.priv_stack;
size = top - _thread_def.tcb.tsk_stack;
}
_mutex.unlock();
return size;
#else
uint32_t size = 0;
_mutex.lock();
if (_tid != NULL) {
P_TCB tcb = rt_tid2ptcb(_tid);
uint32_t top = (uint32_t)tcb->stack + tcb->priv_stack;
size = top - tcb->tsk_stack;
}
_mutex.unlock();
return size;
#endif
#else
return 0;
#endif
}
uint32_t Thread::max_stack() {
#ifndef __MBED_CMSIS_RTOS_CA9
#if defined(CMSIS_OS_RTX) && !defined(__MBED_CMSIS_RTOS_CM)
uint32_t size = 0;
_mutex.lock();
if (_tid != NULL) {
uint32_t high_mark = 0;
while (_thread_def.tcb.stack[high_mark] == 0xE25A2EA5)
high_mark++;
size = _thread_def.tcb.priv_stack - (high_mark * 4);
}
_mutex.unlock();
return size;
#else
uint32_t size = 0;
_mutex.lock();
if (_tid != NULL) {
P_TCB tcb = rt_tid2ptcb(_tid);
uint32_t high_mark = 0;
while (tcb->stack[high_mark] == 0xE25A2EA5)
high_mark++;
size = tcb->priv_stack - (high_mark * 4);
}
_mutex.unlock();
return size;
#endif
#else
return 0;
#endif
}
osEvent Thread::signal_wait(int32_t signals, uint32_t millisec) {
return osSignalWait(signals, millisec);
}
osStatus Thread::wait(uint32_t millisec) {
return osDelay(millisec);
}
osStatus Thread::yield() {
return osThreadYield();
}
osThreadId Thread::gettid() {
return osThreadGetId();
}
void Thread::attach_idle_hook(void (*fptr)(void)) {
rtos_attach_idle_hook(fptr);
}
void Thread::attach_terminate_hook(void (*fptr)(osThreadId id)) {
terminate_hook = fptr;
}
Thread::~Thread() {
// terminate is thread safe
terminate();
#ifdef __MBED_CMSIS_RTOS_CM
if (_dynamic_stack) {
delete[] (_thread_def.stack_pointer);
_thread_def.stack_pointer = (uint32_t*)NULL;
}
#endif
}
void Thread::_thunk(const void * thread_ptr)
{
Thread *t = (Thread*)thread_ptr;
t->_task();
t->_mutex.lock();
t->_tid = (osThreadId)NULL;
t->_join_sem.release();
// rtos will release the mutex automatically
}
}