mirror of https://github.com/ARMmbed/mbed-os.git
2423 lines
79 KiB
C
2423 lines
79 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32f4xx_hal_qspi.c
|
|
* @author MCD Application Team
|
|
* @brief QSPI HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the QuadSPI interface (QSPI).
|
|
* + Initialization and de-initialization functions
|
|
* + Indirect functional mode management
|
|
* + Memory-mapped functional mode management
|
|
* + Auto-polling functional mode management
|
|
* + Interrupts and flags management
|
|
* + DMA channel configuration for indirect functional mode
|
|
* + Errors management and abort functionality
|
|
*
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### How to use this driver #####
|
|
===============================================================================
|
|
[..]
|
|
*** Initialization ***
|
|
======================
|
|
[..]
|
|
(#) As prerequisite, fill in the HAL_QSPI_MspInit() :
|
|
(++) Enable QuadSPI clock interface with __HAL_RCC_QSPI_CLK_ENABLE().
|
|
(++) Reset QuadSPI IP with __HAL_RCC_QSPI_FORCE_RESET() and __HAL_RCC_QSPI_RELEASE_RESET().
|
|
(++) Enable the clocks for the QuadSPI GPIOS with __HAL_RCC_GPIOx_CLK_ENABLE().
|
|
(++) Configure these QuadSPI pins in alternate mode using HAL_GPIO_Init().
|
|
(++) If interrupt mode is used, enable and configure QuadSPI global
|
|
interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
|
|
(++) If DMA mode is used, enable the clocks for the QuadSPI DMA channel
|
|
with __HAL_RCC_DMAx_CLK_ENABLE(), configure DMA with HAL_DMA_Init(),
|
|
link it with QuadSPI handle using __HAL_LINKDMA(), enable and configure
|
|
DMA channel global interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
|
|
(#) Configure the flash size, the clock prescaler, the fifo threshold, the
|
|
clock mode, the sample shifting and the CS high time using the HAL_QSPI_Init() function.
|
|
|
|
*** Indirect functional mode ***
|
|
================================
|
|
[..]
|
|
(#) Configure the command sequence using the HAL_QSPI_Command() or HAL_QSPI_Command_IT()
|
|
functions :
|
|
(++) Instruction phase : the mode used and if present the instruction opcode.
|
|
(++) Address phase : the mode used and if present the size and the address value.
|
|
(++) Alternate-bytes phase : the mode used and if present the size and the alternate
|
|
bytes values.
|
|
(++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase).
|
|
(++) Data phase : the mode used and if present the number of bytes.
|
|
(++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay
|
|
if activated.
|
|
(++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode.
|
|
(#) If no data is required for the command, it is sent directly to the memory :
|
|
(++) In polling mode, the output of the function is done when the transfer is complete.
|
|
(++) In interrupt mode, HAL_QSPI_CmdCpltCallback() will be called when the transfer is complete.
|
|
(#) For the indirect write mode, use HAL_QSPI_Transmit(), HAL_QSPI_Transmit_DMA() or
|
|
HAL_QSPI_Transmit_IT() after the command configuration :
|
|
(++) In polling mode, the output of the function is done when the transfer is complete.
|
|
(++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold
|
|
is reached and HAL_QSPI_TxCpltCallback() will be called when the transfer is complete.
|
|
(++) In DMA mode, HAL_QSPI_TxHalfCpltCallback() will be called at the half transfer and
|
|
HAL_QSPI_TxCpltCallback() will be called when the transfer is complete.
|
|
(#) For the indirect read mode, use HAL_QSPI_Receive(), HAL_QSPI_Receive_DMA() or
|
|
HAL_QSPI_Receive_IT() after the command configuration :
|
|
(++) In polling mode, the output of the function is done when the transfer is complete.
|
|
(++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold
|
|
is reached and HAL_QSPI_RxCpltCallback() will be called when the transfer is complete.
|
|
(++) In DMA mode, HAL_QSPI_RxHalfCpltCallback() will be called at the half transfer and
|
|
HAL_QSPI_RxCpltCallback() will be called when the transfer is complete.
|
|
|
|
*** Auto-polling functional mode ***
|
|
====================================
|
|
[..]
|
|
(#) Configure the command sequence and the auto-polling functional mode using the
|
|
HAL_QSPI_AutoPolling() or HAL_QSPI_AutoPolling_IT() functions :
|
|
(++) Instruction phase : the mode used and if present the instruction opcode.
|
|
(++) Address phase : the mode used and if present the size and the address value.
|
|
(++) Alternate-bytes phase : the mode used and if present the size and the alternate
|
|
bytes values.
|
|
(++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase).
|
|
(++) Data phase : the mode used.
|
|
(++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay
|
|
if activated.
|
|
(++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode.
|
|
(++) The size of the status bytes, the match value, the mask used, the match mode (OR/AND),
|
|
the polling interval and the automatic stop activation.
|
|
(#) After the configuration :
|
|
(++) In polling mode, the output of the function is done when the status match is reached. The
|
|
automatic stop is activated to avoid an infinite loop.
|
|
(++) In interrupt mode, HAL_QSPI_StatusMatchCallback() will be called each time the status match is reached.
|
|
|
|
*** Memory-mapped functional mode ***
|
|
=====================================
|
|
[..]
|
|
(#) Configure the command sequence and the memory-mapped functional mode using the
|
|
HAL_QSPI_MemoryMapped() functions :
|
|
(++) Instruction phase : the mode used and if present the instruction opcode.
|
|
(++) Address phase : the mode used and the size.
|
|
(++) Alternate-bytes phase : the mode used and if present the size and the alternate
|
|
bytes values.
|
|
(++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase).
|
|
(++) Data phase : the mode used.
|
|
(++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay
|
|
if activated.
|
|
(++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode.
|
|
(++) The timeout activation and the timeout period.
|
|
(#) After the configuration, the QuadSPI will be used as soon as an access on the AHB is done on
|
|
the address range. HAL_QSPI_TimeOutCallback() will be called when the timeout expires.
|
|
|
|
*** Errors management and abort functionality ***
|
|
==================================================
|
|
[..]
|
|
(#) HAL_QSPI_GetError() function gives the error raised during the last operation.
|
|
(#) HAL_QSPI_Abort() and HAL_QSPI_AbortIT() functions aborts any on-going operation and
|
|
flushes the fifo :
|
|
(++) In polling mode, the output of the function is done when the transfer
|
|
complete bit is set and the busy bit cleared.
|
|
(++) In interrupt mode, HAL_QSPI_AbortCpltCallback() will be called when
|
|
the transfer complete bi is set.
|
|
|
|
*** Control functions ***
|
|
=========================
|
|
[..]
|
|
(#) HAL_QSPI_GetState() function gives the current state of the HAL QuadSPI driver.
|
|
(#) HAL_QSPI_SetTimeout() function configures the timeout value used in the driver.
|
|
(#) HAL_QSPI_SetFifoThreshold() function configures the threshold on the Fifo of the QSPI IP.
|
|
(#) HAL_QSPI_GetFifoThreshold() function gives the current of the Fifo's threshold
|
|
|
|
*** Workarounds linked to Silicon Limitation ***
|
|
====================================================
|
|
[..]
|
|
(#) Workarounds Implemented inside HAL Driver
|
|
(++) Extra data written in the FIFO at the end of a read transfer
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32f4xx_hal.h"
|
|
|
|
/** @addtogroup STM32F4xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup QSPI QSPI
|
|
* @brief QSPI HAL module driver
|
|
* @{
|
|
*/
|
|
#ifdef HAL_QSPI_MODULE_ENABLED
|
|
|
|
#if defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx) || defined(STM32F412Zx) || defined(STM32F412Vx) || \
|
|
defined(STM32F412Rx) || defined(STM32F413xx) || defined(STM32F423xx)
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/** @addtogroup QSPI_Private_Constants
|
|
* @{
|
|
*/
|
|
#define QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE 0x00000000U /*!<Indirect write mode*/
|
|
#define QSPI_FUNCTIONAL_MODE_INDIRECT_READ ((uint32_t)QUADSPI_CCR_FMODE_0) /*!<Indirect read mode*/
|
|
#define QSPI_FUNCTIONAL_MODE_AUTO_POLLING ((uint32_t)QUADSPI_CCR_FMODE_1) /*!<Automatic polling mode*/
|
|
#define QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED ((uint32_t)QUADSPI_CCR_FMODE) /*!<Memory-mapped mode*/
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/** @addtogroup QSPI_Private_Macros QSPI Private Macros
|
|
* @{
|
|
*/
|
|
#define IS_QSPI_FUNCTIONAL_MODE(MODE) (((MODE) == QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE) || \
|
|
((MODE) == QSPI_FUNCTIONAL_MODE_INDIRECT_READ) || \
|
|
((MODE) == QSPI_FUNCTIONAL_MODE_AUTO_POLLING) || \
|
|
((MODE) == QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED))
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/** @addtogroup QSPI_Private_Functions QSPI Private Functions
|
|
* @{
|
|
*/
|
|
static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma);
|
|
static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma);
|
|
static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
|
|
static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
|
|
static void QSPI_DMAError(DMA_HandleTypeDef *hdma);
|
|
static void QSPI_DMAAbortCplt(DMA_HandleTypeDef *hdma);
|
|
static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag, FlagStatus State, uint32_t tickstart, uint32_t Timeout);
|
|
static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode);
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Exported functions ---------------------------------------------------------*/
|
|
|
|
/** @defgroup QSPI_Exported_Functions QSPI Exported Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup QSPI_Exported_Functions_Group1 Initialization/de-initialization functions
|
|
* @brief Initialization and Configuration functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and Configuration functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to :
|
|
(+) Initialize the QuadSPI.
|
|
(+) De-initialize the QuadSPI.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initializes the QSPI mode according to the specified parameters
|
|
* in the QSPI_InitTypeDef and creates the associated handle.
|
|
* @param hqspi qspi handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_Init(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_ERROR;
|
|
uint32_t tickstart = HAL_GetTick();
|
|
|
|
/* Check the QSPI handle allocation */
|
|
if(hqspi == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_QSPI_ALL_INSTANCE(hqspi->Instance));
|
|
assert_param(IS_QSPI_CLOCK_PRESCALER(hqspi->Init.ClockPrescaler));
|
|
assert_param(IS_QSPI_FIFO_THRESHOLD(hqspi->Init.FifoThreshold));
|
|
assert_param(IS_QSPI_SSHIFT(hqspi->Init.SampleShifting));
|
|
assert_param(IS_QSPI_FLASH_SIZE(hqspi->Init.FlashSize));
|
|
assert_param(IS_QSPI_CS_HIGH_TIME(hqspi->Init.ChipSelectHighTime));
|
|
assert_param(IS_QSPI_CLOCK_MODE(hqspi->Init.ClockMode));
|
|
assert_param(IS_QSPI_DUAL_FLASH_MODE(hqspi->Init.DualFlash));
|
|
|
|
if (hqspi->Init.DualFlash != QSPI_DUALFLASH_ENABLE )
|
|
{
|
|
assert_param(IS_QSPI_FLASH_ID(hqspi->Init.FlashID));
|
|
}
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
hqspi->Lock = HAL_UNLOCKED;
|
|
|
|
/* Init the low level hardware : GPIO, CLOCK */
|
|
HAL_QSPI_MspInit(hqspi);
|
|
|
|
/* Configure the default timeout for the QSPI memory access */
|
|
HAL_QSPI_SetTimeout(hqspi, HAL_QPSI_TIMEOUT_DEFAULT_VALUE);
|
|
}
|
|
|
|
/* Configure QSPI FIFO Threshold */
|
|
MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES, ((hqspi->Init.FifoThreshold - 1U) << 8U));
|
|
|
|
/* Wait till BUSY flag reset */
|
|
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
|
|
|
|
if(status == HAL_OK)
|
|
{
|
|
|
|
/* Configure QSPI Clock Prescaler and Sample Shift */
|
|
MODIFY_REG(hqspi->Instance->CR,(QUADSPI_CR_PRESCALER | QUADSPI_CR_SSHIFT | QUADSPI_CR_FSEL | QUADSPI_CR_DFM), ((hqspi->Init.ClockPrescaler << 24U)| hqspi->Init.SampleShifting | hqspi->Init.FlashID| hqspi->Init.DualFlash ));
|
|
|
|
/* Configure QSPI Flash Size, CS High Time and Clock Mode */
|
|
MODIFY_REG(hqspi->Instance->DCR, (QUADSPI_DCR_FSIZE | QUADSPI_DCR_CSHT | QUADSPI_DCR_CKMODE),
|
|
((hqspi->Init.FlashSize << 16U) | hqspi->Init.ChipSelectHighTime | hqspi->Init.ClockMode));
|
|
|
|
/* Enable the QSPI peripheral */
|
|
__HAL_QSPI_ENABLE(hqspi);
|
|
|
|
/* Set QSPI error code to none */
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
|
|
/* Initialize the QSPI state */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
}
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitializes the QSPI peripheral
|
|
* @param hqspi qspi handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_DeInit(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Check the QSPI handle allocation */
|
|
if(hqspi == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
/* Disable the QSPI Peripheral Clock */
|
|
__HAL_QSPI_DISABLE(hqspi);
|
|
|
|
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
|
|
HAL_QSPI_MspDeInit(hqspi);
|
|
|
|
/* Set QSPI error code to none */
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
|
|
/* Initialize the QSPI state */
|
|
hqspi->State = HAL_QSPI_STATE_RESET;
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief QSPI MSP Init
|
|
* @param hqspi QSPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_QSPI_MspInit(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hqspi);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_QSPI_MspInit can be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief QSPI MSP DeInit
|
|
* @param hqspi QSPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_QSPI_MspDeInit(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hqspi);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_QSPI_MspDeInit can be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup QSPI_Exported_Functions_Group2 IO operation functions
|
|
* @brief QSPI Transmit/Receive functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### IO operation functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to :
|
|
(+) Handle the interrupts.
|
|
(+) Handle the command sequence.
|
|
(+) Transmit data in blocking, interrupt or DMA mode.
|
|
(+) Receive data in blocking, interrupt or DMA mode.
|
|
(+) Manage the auto-polling functional mode.
|
|
(+) Manage the memory-mapped functional mode.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief This function handles QSPI interrupt request.
|
|
* @param hqspi QSPI handle
|
|
* @retval None.
|
|
*/
|
|
void HAL_QSPI_IRQHandler(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
__IO uint32_t *data_reg;
|
|
uint32_t flag = READ_REG(hqspi->Instance->SR);
|
|
uint32_t itsource = READ_REG(hqspi->Instance->CR);
|
|
|
|
/* QSPI Fifo Threshold interrupt occurred ----------------------------------*/
|
|
if(((flag & QSPI_FLAG_FT)!= RESET) && ((itsource & QSPI_IT_FT)!= RESET))
|
|
{
|
|
data_reg = &hqspi->Instance->DR;
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX)
|
|
{
|
|
/* Transmission process */
|
|
while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != 0U)
|
|
{
|
|
if (hqspi->TxXferCount > 0U)
|
|
{
|
|
/* Fill the FIFO until it is full */
|
|
*(__IO uint8_t *)data_reg = *hqspi->pTxBuffPtr++;
|
|
hqspi->TxXferCount--;
|
|
}
|
|
else
|
|
{
|
|
/* No more data available for the transfer */
|
|
/* Disable the QSPI FIFO Threshold Interrupt */
|
|
__HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_FT);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX)
|
|
{
|
|
/* Receiving Process */
|
|
while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != 0U)
|
|
{
|
|
if (hqspi->RxXferCount > 0U)
|
|
{
|
|
/* Read the FIFO until it is empty */
|
|
*hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg;
|
|
hqspi->RxXferCount--;
|
|
}
|
|
else
|
|
{
|
|
/* All data have been received for the transfer */
|
|
/* Disable the QSPI FIFO Threshold Interrupt */
|
|
__HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_FT);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FIFO Threshold callback */
|
|
HAL_QSPI_FifoThresholdCallback(hqspi);
|
|
}
|
|
|
|
/* QSPI Transfer Complete interrupt occurred -------------------------------*/
|
|
else if(((flag & QSPI_FLAG_TC)!= RESET) && ((itsource & QSPI_IT_TC)!= RESET))
|
|
{
|
|
/* Clear interrupt */
|
|
WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TC);
|
|
|
|
/* Disable the QSPI FIFO Threshold, Transfer Error and Transfer complete Interrupts */
|
|
__HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT);
|
|
|
|
/* Transfer complete callback */
|
|
if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX)
|
|
{
|
|
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET)
|
|
{
|
|
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
|
|
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
|
|
|
|
/* Disable the DMA channel */
|
|
__HAL_DMA_DISABLE(hqspi->hdma);
|
|
}
|
|
|
|
/* Clear Busy bit */
|
|
HAL_QSPI_Abort_IT(hqspi);
|
|
|
|
/* Change state of QSPI */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
|
|
/* TX Complete callback */
|
|
HAL_QSPI_TxCpltCallback(hqspi);
|
|
}
|
|
else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX)
|
|
{
|
|
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET)
|
|
{
|
|
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
|
|
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
|
|
|
|
/* Disable the DMA channel */
|
|
__HAL_DMA_DISABLE(hqspi->hdma);
|
|
}
|
|
else
|
|
{
|
|
data_reg = &hqspi->Instance->DR;
|
|
while(READ_BIT(hqspi->Instance->SR, QUADSPI_SR_FLEVEL) != 0U)
|
|
{
|
|
if (hqspi->RxXferCount > 0U)
|
|
{
|
|
/* Read the last data received in the FIFO until it is empty */
|
|
*hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg;
|
|
hqspi->RxXferCount--;
|
|
}
|
|
else
|
|
{
|
|
/* All data have been received for the transfer */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* Workaround - Extra data written in the FIFO at the end of a read transfer */
|
|
HAL_QSPI_Abort_IT(hqspi);
|
|
|
|
/* Change state of QSPI */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
|
|
/* RX Complete callback */
|
|
HAL_QSPI_RxCpltCallback(hqspi);
|
|
}
|
|
else if(hqspi->State == HAL_QSPI_STATE_BUSY)
|
|
{
|
|
/* Change state of QSPI */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
|
|
/* Command Complete callback */
|
|
HAL_QSPI_CmdCpltCallback(hqspi);
|
|
}
|
|
else if(hqspi->State == HAL_QSPI_STATE_ABORT)
|
|
{
|
|
/* Change state of QSPI */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
|
|
if (hqspi->ErrorCode == HAL_QSPI_ERROR_NONE)
|
|
{
|
|
/* Abort called by the user */
|
|
|
|
/* Abort Complete callback */
|
|
HAL_QSPI_AbortCpltCallback(hqspi);
|
|
}
|
|
else
|
|
{
|
|
/* Abort due to an error (eg : DMA error) */
|
|
|
|
/* Error callback */
|
|
HAL_QSPI_ErrorCallback(hqspi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* QSPI Status Match interrupt occurred ------------------------------------*/
|
|
else if(((flag & QSPI_FLAG_SM)!= RESET) && ((itsource & QSPI_IT_SM)!= RESET))
|
|
{
|
|
/* Clear interrupt */
|
|
WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_SM);
|
|
|
|
/* Check if the automatic poll mode stop is activated */
|
|
if(READ_BIT(hqspi->Instance->CR, QUADSPI_CR_APMS) != 0U)
|
|
{
|
|
/* Disable the QSPI Transfer Error and Status Match Interrupts */
|
|
__HAL_QSPI_DISABLE_IT(hqspi, (QSPI_IT_SM | QSPI_IT_TE));
|
|
|
|
/* Change state of QSPI */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
}
|
|
|
|
/* Status match callback */
|
|
HAL_QSPI_StatusMatchCallback(hqspi);
|
|
}
|
|
|
|
/* QSPI Transfer Error interrupt occurred ----------------------------------*/
|
|
else if(((flag & QSPI_FLAG_TE)!= RESET) && ((itsource & QSPI_IT_TE)!= RESET))
|
|
{
|
|
/* Clear interrupt */
|
|
WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TE);
|
|
|
|
/* Disable all the QSPI Interrupts */
|
|
__HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_SM | QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT);
|
|
|
|
/* Set error code */
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_TRANSFER;
|
|
|
|
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET)
|
|
{
|
|
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
|
|
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
|
|
|
|
/* Disable the DMA channel */
|
|
hqspi->hdma->XferAbortCallback = QSPI_DMAAbortCplt;
|
|
HAL_DMA_Abort_IT(hqspi->hdma);
|
|
}
|
|
else
|
|
{
|
|
/* Change state of QSPI */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
|
|
/* Error callback */
|
|
HAL_QSPI_ErrorCallback(hqspi);
|
|
}
|
|
}
|
|
|
|
/* QSPI Timeout interrupt occurred -----------------------------------------*/
|
|
else if(((flag & QSPI_FLAG_TO)!= RESET) && ((itsource & QSPI_IT_TO)!= RESET))
|
|
{
|
|
/* Clear interrupt */
|
|
WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TO);
|
|
|
|
/* Time out callback */
|
|
HAL_QSPI_TimeOutCallback(hqspi);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Sets the command configuration.
|
|
* @param hqspi QSPI handle
|
|
* @param cmd structure that contains the command configuration information
|
|
* @param Timeout Time out duration
|
|
* @note This function is used only in Indirect Read or Write Modes
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_Command(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t Timeout)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_ERROR;
|
|
uint32_t tickstart = HAL_GetTick();
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
|
|
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
|
|
{
|
|
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
|
|
}
|
|
|
|
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
|
|
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
|
|
{
|
|
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
|
|
}
|
|
|
|
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
|
|
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
|
|
{
|
|
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
|
|
}
|
|
|
|
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
|
|
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
|
|
|
|
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
|
|
assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle));
|
|
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_READY)
|
|
{
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
|
|
/* Update QSPI state */
|
|
hqspi->State = HAL_QSPI_STATE_BUSY;
|
|
|
|
/* Wait till BUSY flag reset */
|
|
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, Timeout);
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Call the configuration function */
|
|
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
|
|
|
|
if (cmd->DataMode == QSPI_DATA_NONE)
|
|
{
|
|
/* When there is no data phase, the transfer start as soon as the configuration is done
|
|
so wait until TC flag is set to go back in idle state */
|
|
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout);
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
|
|
|
|
/* Update QSPI state */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Update QSPI state */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = HAL_BUSY;
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Sets the command configuration in interrupt mode.
|
|
* @param hqspi QSPI handle
|
|
* @param cmd structure that contains the command configuration information
|
|
* @note This function is used only in Indirect Read or Write Modes
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_Command_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd)
|
|
{
|
|
__IO uint32_t count = 0U;
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
|
|
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
|
|
{
|
|
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
|
|
}
|
|
|
|
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
|
|
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
|
|
{
|
|
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
|
|
}
|
|
|
|
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
|
|
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
|
|
{
|
|
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
|
|
}
|
|
|
|
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
|
|
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
|
|
|
|
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
|
|
assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle));
|
|
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_READY)
|
|
{
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
|
|
/* Update QSPI state */
|
|
hqspi->State = HAL_QSPI_STATE_BUSY;
|
|
|
|
/* Wait till BUSY flag reset */
|
|
count = (hqspi->Timeout) * (SystemCoreClock / 16U / 1000U);
|
|
do
|
|
{
|
|
if (count-- == 0U)
|
|
{
|
|
hqspi->State = HAL_QSPI_STATE_ERROR;
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT;
|
|
status = HAL_TIMEOUT;
|
|
}
|
|
}
|
|
while ((__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_BUSY)) != RESET);
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
if (cmd->DataMode == QSPI_DATA_NONE)
|
|
{
|
|
/* Clear interrupt */
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC);
|
|
}
|
|
|
|
/* Call the configuration function */
|
|
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
|
|
|
|
if (cmd->DataMode == QSPI_DATA_NONE)
|
|
{
|
|
/* When there is no data phase, the transfer start as soon as the configuration is done
|
|
so activate TC and TE interrupts */
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Enable the QSPI Transfer Error Interrupt */
|
|
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_TC);
|
|
}
|
|
else
|
|
{
|
|
/* Update QSPI state */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = HAL_BUSY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Transmit an amount of data in blocking mode.
|
|
* @param hqspi QSPI handle
|
|
* @param pData pointer to data buffer
|
|
* @param Timeout Time out duration
|
|
* @note This function is used only in Indirect Write Mode
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_Transmit(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
uint32_t tickstart = HAL_GetTick();
|
|
__IO uint32_t *data_reg = &hqspi->Instance->DR;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_READY)
|
|
{
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
|
|
if(pData != NULL )
|
|
{
|
|
/* Update state */
|
|
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX;
|
|
|
|
/* Configure counters and size of the handle */
|
|
hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1U;
|
|
hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1U;
|
|
hqspi->pTxBuffPtr = pData;
|
|
|
|
/* Configure QSPI: CCR register with functional as indirect write */
|
|
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
|
|
|
|
while(hqspi->TxXferCount > 0U)
|
|
{
|
|
/* Wait until FT flag is set to send data */
|
|
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_FT, SET, tickstart, Timeout);
|
|
|
|
if (status != HAL_OK)
|
|
{
|
|
break;
|
|
}
|
|
|
|
*(__IO uint8_t *)data_reg = *hqspi->pTxBuffPtr++;
|
|
hqspi->TxXferCount--;
|
|
}
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Wait until TC flag is set to go back in idle state */
|
|
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout);
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Clear Transfer Complete bit */
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
|
|
|
|
/* Clear Busy bit */
|
|
status = HAL_QSPI_Abort(hqspi);
|
|
}
|
|
}
|
|
|
|
/* Update QSPI state */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
}
|
|
else
|
|
{
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
|
|
status = HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = HAL_BUSY;
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Receive an amount of data in blocking mode
|
|
* @param hqspi QSPI handle
|
|
* @param pData pointer to data buffer
|
|
* @param Timeout Time out duration
|
|
* @note This function is used only in Indirect Read Mode
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_Receive(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
uint32_t tickstart = HAL_GetTick();
|
|
uint32_t addr_reg = READ_REG(hqspi->Instance->AR);
|
|
__IO uint32_t *data_reg = &hqspi->Instance->DR;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_READY)
|
|
{
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
if(pData != NULL )
|
|
{
|
|
/* Update state */
|
|
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX;
|
|
|
|
/* Configure counters and size of the handle */
|
|
hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1U;
|
|
hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1U;
|
|
hqspi->pRxBuffPtr = pData;
|
|
|
|
/* Configure QSPI: CCR register with functional as indirect read */
|
|
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ);
|
|
|
|
/* Start the transfer by re-writing the address in AR register */
|
|
WRITE_REG(hqspi->Instance->AR, addr_reg);
|
|
|
|
while(hqspi->RxXferCount > 0U)
|
|
{
|
|
/* Wait until FT or TC flag is set to read received data */
|
|
status = QSPI_WaitFlagStateUntilTimeout(hqspi, (QSPI_FLAG_FT | QSPI_FLAG_TC), SET, tickstart, Timeout);
|
|
|
|
if (status != HAL_OK)
|
|
{
|
|
break;
|
|
}
|
|
|
|
*hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg;
|
|
hqspi->RxXferCount--;
|
|
}
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Wait until TC flag is set to go back in idle state */
|
|
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout);
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Clear Transfer Complete bit */
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
|
|
|
|
/* Workaround - Extra data written in the FIFO at the end of a read transfer */
|
|
status = HAL_QSPI_Abort(hqspi);
|
|
}
|
|
}
|
|
|
|
/* Update QSPI state */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
}
|
|
else
|
|
{
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
|
|
status = HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = HAL_BUSY;
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Send an amount of data in interrupt mode
|
|
* @param hqspi QSPI handle
|
|
* @param pData pointer to data buffer
|
|
* @note This function is used only in Indirect Write Mode
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_Transmit_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_READY)
|
|
{
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
if(pData != NULL )
|
|
{
|
|
/* Update state */
|
|
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX;
|
|
|
|
/* Configure counters and size of the handle */
|
|
hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1U;
|
|
hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1U;
|
|
hqspi->pTxBuffPtr = pData;
|
|
|
|
/* Configure QSPI: CCR register with functional as indirect write */
|
|
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
|
|
|
|
/* Clear interrupt */
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Enable the QSPI transfer error, FIFO threshold and transfer complete Interrupts */
|
|
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC);
|
|
|
|
}
|
|
else
|
|
{
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
|
|
status = HAL_ERROR;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = HAL_BUSY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Receive an amount of data in no-blocking mode with Interrupt
|
|
* @param hqspi QSPI handle
|
|
* @param pData pointer to data buffer
|
|
* @note This function is used only in Indirect Read Mode
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_Receive_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
uint32_t addr_reg = READ_REG(hqspi->Instance->AR);
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_READY)
|
|
{
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
|
|
if(pData != NULL )
|
|
{
|
|
/* Update state */
|
|
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX;
|
|
|
|
/* Configure counters and size of the handle */
|
|
hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1U;
|
|
hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1U;
|
|
hqspi->pRxBuffPtr = pData;
|
|
|
|
/* Configure QSPI: CCR register with functional as indirect read */
|
|
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ);
|
|
|
|
/* Start the transfer by re-writing the address in AR register */
|
|
WRITE_REG(hqspi->Instance->AR, addr_reg);
|
|
|
|
/* Clear interrupt */
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Enable the QSPI transfer error, FIFO threshold and transfer complete Interrupts */
|
|
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC);
|
|
}
|
|
else
|
|
{
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
|
|
status = HAL_ERROR;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = HAL_BUSY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Sends an amount of data in non blocking mode with DMA.
|
|
* @param hqspi QSPI handle
|
|
* @param pData pointer to data buffer
|
|
* @note This function is used only in Indirect Write Mode
|
|
* @note If DMA peripheral access is configured as halfword, the number
|
|
* of data and the fifo threshold should be aligned on halfword
|
|
* @note If DMA peripheral access is configured as word, the number
|
|
* of data and the fifo threshold should be aligned on word
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_Transmit_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
uint32_t *tmp;
|
|
uint32_t data_size = (READ_REG(hqspi->Instance->DLR) + 1U);
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_READY)
|
|
{
|
|
/* Clear the error code */
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
|
|
if(pData != NULL )
|
|
{
|
|
/* Configure counters of the handle */
|
|
if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE)
|
|
{
|
|
hqspi->TxXferCount = data_size;
|
|
}
|
|
else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_HALFWORD)
|
|
{
|
|
if (((data_size % 2U) != 0U) || ((hqspi->Init.FifoThreshold % 2U) != 0U))
|
|
{
|
|
/* The number of data or the fifo threshold is not aligned on halfword
|
|
=> no transfer possible with DMA peripheral access configured as halfword */
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
|
|
status = HAL_ERROR;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
else
|
|
{
|
|
hqspi->TxXferCount = (data_size >> 1);
|
|
}
|
|
}
|
|
else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_WORD)
|
|
{
|
|
if (((data_size % 4U) != 0U) || ((hqspi->Init.FifoThreshold % 4U) != 0U))
|
|
{
|
|
/* The number of data or the fifo threshold is not aligned on word
|
|
=> no transfer possible with DMA peripheral access configured as word */
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
|
|
status = HAL_ERROR;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
else
|
|
{
|
|
hqspi->TxXferCount = (data_size >> 2U);
|
|
}
|
|
}
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Update state */
|
|
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX;
|
|
|
|
/* Clear interrupt */
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, (QSPI_FLAG_TE | QSPI_FLAG_TC));
|
|
|
|
/* Configure size and pointer of the handle */
|
|
hqspi->TxXferSize = hqspi->TxXferCount;
|
|
hqspi->pTxBuffPtr = pData;
|
|
|
|
/* Configure QSPI: CCR register with functional mode as indirect write */
|
|
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
|
|
|
|
/* Set the QSPI DMA transfer complete callback */
|
|
hqspi->hdma->XferCpltCallback = QSPI_DMATxCplt;
|
|
|
|
/* Set the QSPI DMA Half transfer complete callback */
|
|
hqspi->hdma->XferHalfCpltCallback = QSPI_DMATxHalfCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
hqspi->hdma->XferErrorCallback = QSPI_DMAError;
|
|
|
|
/* Clear the DMA abort callback */
|
|
hqspi->hdma->XferAbortCallback = NULL;
|
|
|
|
#if defined (QSPI1_V2_1L)
|
|
/* Bug "ES0305 section 2.1.8 In some specific cases, DMA2 data corruption occurs when managing
|
|
AHB and APB2 peripherals in a concurrent way" Workaround Implementation:
|
|
Change the following configuration of DMA peripheral
|
|
- Enable peripheral increment
|
|
- Disable memory increment
|
|
- Set DMA direction as peripheral to memory mode */
|
|
|
|
/* Enable peripheral increment mode of the DMA */
|
|
hqspi->hdma->Init.PeriphInc = DMA_PINC_ENABLE;
|
|
|
|
/* Disable memory increment mode of the DMA */
|
|
hqspi->hdma->Init.MemInc = DMA_MINC_DISABLE;
|
|
|
|
/* Update peripheral/memory increment mode bits */
|
|
MODIFY_REG(hqspi->hdma->Instance->CR, (DMA_SxCR_MINC | DMA_SxCR_PINC), (hqspi->hdma->Init.MemInc | hqspi->hdma->Init.PeriphInc));
|
|
|
|
/* Configure the direction of the DMA */
|
|
hqspi->hdma->Init.Direction = DMA_PERIPH_TO_MEMORY;
|
|
#else
|
|
/* Configure the direction of the DMA */
|
|
hqspi->hdma->Init.Direction = DMA_MEMORY_TO_PERIPH;
|
|
#endif /* QSPI1_V2_1L */
|
|
|
|
/* Update direction mode bit */
|
|
MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction);
|
|
|
|
/* Enable the QSPI transmit DMA Channel */
|
|
tmp = (uint32_t*)&pData;
|
|
HAL_DMA_Start_IT(hqspi->hdma, *(uint32_t*)tmp, (uint32_t)&hqspi->Instance->DR, hqspi->TxXferSize);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Enable the QSPI transfer error Interrupt */
|
|
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE);
|
|
|
|
/* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */
|
|
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
|
|
|
|
status = HAL_ERROR;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = HAL_BUSY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Receives an amount of data in non blocking mode with DMA.
|
|
* @param hqspi QSPI handle
|
|
* @param pData pointer to data buffer.
|
|
* @note This function is used only in Indirect Read Mode
|
|
* @note If DMA peripheral access is configured as halfword, the number
|
|
* of data and the fifo threshold should be aligned on halfword
|
|
* @note If DMA peripheral access is configured as word, the number
|
|
* of data and the fifo threshold should be aligned on word
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_Receive_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
uint32_t *tmp;
|
|
uint32_t addr_reg = READ_REG(hqspi->Instance->AR);
|
|
uint32_t data_size = (READ_REG(hqspi->Instance->DLR) + 1U);
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_READY)
|
|
{
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
|
|
if(pData != NULL )
|
|
{
|
|
/* Configure counters of the handle */
|
|
if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE)
|
|
{
|
|
hqspi->RxXferCount = data_size;
|
|
}
|
|
else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_HALFWORD)
|
|
{
|
|
if (((data_size % 2U) != 0U) || ((hqspi->Init.FifoThreshold % 2U) != 0U))
|
|
{
|
|
/* The number of data or the fifo threshold is not aligned on halfword
|
|
=> no transfer possible with DMA peripheral access configured as halfword */
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
|
|
status = HAL_ERROR;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
else
|
|
{
|
|
hqspi->RxXferCount = (data_size >> 1U);
|
|
}
|
|
}
|
|
else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_WORD)
|
|
{
|
|
if (((data_size % 4U) != 0U) || ((hqspi->Init.FifoThreshold % 4U) != 0U))
|
|
{
|
|
/* The number of data or the fifo threshold is not aligned on word
|
|
=> no transfer possible with DMA peripheral access configured as word */
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
|
|
status = HAL_ERROR;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
else
|
|
{
|
|
hqspi->RxXferCount = (data_size >> 2U);
|
|
}
|
|
}
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Update state */
|
|
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX;
|
|
|
|
/* Clear interrupt */
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, (QSPI_FLAG_TE | QSPI_FLAG_TC));
|
|
|
|
/* Configure size and pointer of the handle */
|
|
hqspi->RxXferSize = hqspi->RxXferCount;
|
|
hqspi->pRxBuffPtr = pData;
|
|
|
|
/* Set the QSPI DMA transfer complete callback */
|
|
hqspi->hdma->XferCpltCallback = QSPI_DMARxCplt;
|
|
|
|
/* Set the QSPI DMA Half transfer complete callback */
|
|
hqspi->hdma->XferHalfCpltCallback = QSPI_DMARxHalfCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
hqspi->hdma->XferErrorCallback = QSPI_DMAError;
|
|
|
|
/* Clear the DMA abort callback */
|
|
hqspi->hdma->XferAbortCallback = NULL;
|
|
|
|
#if defined (QSPI1_V2_1L)
|
|
/* Bug "ES0305 section 2.1.8 In some specific cases, DMA2 data corruption occurs when managing
|
|
AHB and APB2 peripherals in a concurrent way" Workaround Implementation:
|
|
Change the following configuration of DMA peripheral
|
|
- Enable peripheral increment
|
|
- Disable memory increment
|
|
- Set DMA direction as memory to peripheral mode
|
|
- 4 Extra words (32-bits) are added for read operation to guarantee
|
|
the last data is transferred from DMA FIFO to RAM memory */
|
|
|
|
/* Enable peripheral increment of the DMA */
|
|
hqspi->hdma->Init.PeriphInc = DMA_PINC_ENABLE;
|
|
|
|
/* Disable memory increment of the DMA */
|
|
hqspi->hdma->Init.MemInc = DMA_MINC_DISABLE;
|
|
|
|
/* Update peripheral/memory increment mode bits */
|
|
MODIFY_REG(hqspi->hdma->Instance->CR, (DMA_SxCR_MINC | DMA_SxCR_PINC), (hqspi->hdma->Init.MemInc | hqspi->hdma->Init.PeriphInc));
|
|
|
|
/* Configure the direction of the DMA */
|
|
hqspi->hdma->Init.Direction = DMA_MEMORY_TO_PERIPH;
|
|
|
|
/* 4 Extra words (32-bits) are needed for read operation to guarantee
|
|
the last data is transferred from DMA FIFO to RAM memory */
|
|
WRITE_REG(hqspi->Instance->DLR, (data_size - 1U + 16U));
|
|
|
|
/* Update direction mode bit */
|
|
MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction);
|
|
|
|
/* Configure QSPI: CCR register with functional as indirect read */
|
|
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ);
|
|
|
|
/* Start the transfer by re-writing the address in AR register */
|
|
WRITE_REG(hqspi->Instance->AR, addr_reg);
|
|
|
|
/* Enable the DMA Channel */
|
|
tmp = (uint32_t*)&pData;
|
|
HAL_DMA_Start_IT(hqspi->hdma, (uint32_t)&hqspi->Instance->DR, *(uint32_t*)tmp, hqspi->RxXferSize);
|
|
|
|
/* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */
|
|
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Enable the QSPI transfer error Interrupt */
|
|
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE);
|
|
#else
|
|
/* Configure the direction of the DMA */
|
|
hqspi->hdma->Init.Direction = DMA_PERIPH_TO_MEMORY;
|
|
|
|
MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction);
|
|
|
|
/* Enable the DMA Channel */
|
|
tmp = (uint32_t*)&pData;
|
|
HAL_DMA_Start_IT(hqspi->hdma, (uint32_t)&hqspi->Instance->DR, *(uint32_t*)tmp, hqspi->RxXferSize);
|
|
|
|
/* Configure QSPI: CCR register with functional as indirect read */
|
|
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ);
|
|
|
|
/* Start the transfer by re-writing the address in AR register */
|
|
WRITE_REG(hqspi->Instance->AR, addr_reg);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Enable the QSPI transfer error Interrupt */
|
|
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE);
|
|
|
|
/* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */
|
|
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
|
|
#endif /* QSPI1_V2_1L */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
|
|
status = HAL_ERROR;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = HAL_BUSY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the QSPI Automatic Polling Mode in blocking mode.
|
|
* @param hqspi QSPI handle
|
|
* @param cmd structure that contains the command configuration information.
|
|
* @param cfg structure that contains the polling configuration information.
|
|
* @param Timeout Time out duration
|
|
* @note This function is used only in Automatic Polling Mode
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_AutoPolling(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg, uint32_t Timeout)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_ERROR;
|
|
uint32_t tickstart = HAL_GetTick();
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
|
|
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
|
|
{
|
|
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
|
|
}
|
|
|
|
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
|
|
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
|
|
{
|
|
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
|
|
}
|
|
|
|
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
|
|
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
|
|
{
|
|
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
|
|
}
|
|
|
|
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
|
|
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
|
|
|
|
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
|
|
assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle));
|
|
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
|
|
|
|
assert_param(IS_QSPI_INTERVAL(cfg->Interval));
|
|
assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize));
|
|
assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_READY)
|
|
{
|
|
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
|
|
/* Update state */
|
|
hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING;
|
|
|
|
/* Wait till BUSY flag reset */
|
|
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, Timeout);
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Configure QSPI: PSMAR register with the status match value */
|
|
WRITE_REG(hqspi->Instance->PSMAR, cfg->Match);
|
|
|
|
/* Configure QSPI: PSMKR register with the status mask value */
|
|
WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask);
|
|
|
|
/* Configure QSPI: PIR register with the interval value */
|
|
WRITE_REG(hqspi->Instance->PIR, cfg->Interval);
|
|
|
|
/* Configure QSPI: CR register with Match mode and Automatic stop enabled
|
|
(otherwise there will be an infinite loop in blocking mode) */
|
|
MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS),
|
|
(cfg->MatchMode | QSPI_AUTOMATIC_STOP_ENABLE));
|
|
|
|
/* Call the configuration function */
|
|
cmd->NbData = cfg->StatusBytesSize;
|
|
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING);
|
|
|
|
/* Wait until SM flag is set to go back in idle state */
|
|
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_SM, SET, tickstart, Timeout);
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_SM);
|
|
|
|
/* Update state */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = HAL_BUSY;
|
|
}
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the QSPI Automatic Polling Mode in non-blocking mode.
|
|
* @param hqspi QSPI handle
|
|
* @param cmd structure that contains the command configuration information.
|
|
* @param cfg structure that contains the polling configuration information.
|
|
* @note This function is used only in Automatic Polling Mode
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_AutoPolling_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg)
|
|
{
|
|
__IO uint32_t count = 0U;
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
|
|
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
|
|
{
|
|
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
|
|
}
|
|
|
|
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
|
|
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
|
|
{
|
|
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
|
|
}
|
|
|
|
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
|
|
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
|
|
{
|
|
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
|
|
}
|
|
|
|
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
|
|
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
|
|
|
|
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
|
|
assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle));
|
|
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
|
|
|
|
assert_param(IS_QSPI_INTERVAL(cfg->Interval));
|
|
assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize));
|
|
assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode));
|
|
assert_param(IS_QSPI_AUTOMATIC_STOP(cfg->AutomaticStop));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_READY)
|
|
{
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
|
|
/* Update state */
|
|
hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING;
|
|
|
|
/* Wait till BUSY flag reset */
|
|
count = (hqspi->Timeout) * (SystemCoreClock / 16U / 1000U);
|
|
do
|
|
{
|
|
if (count-- == 0U)
|
|
{
|
|
hqspi->State = HAL_QSPI_STATE_ERROR;
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT;
|
|
status = HAL_TIMEOUT;
|
|
}
|
|
}
|
|
while ((__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_BUSY)) != RESET);
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Configure QSPI: PSMAR register with the status match value */
|
|
WRITE_REG(hqspi->Instance->PSMAR, cfg->Match);
|
|
|
|
/* Configure QSPI: PSMKR register with the status mask value */
|
|
WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask);
|
|
|
|
/* Configure QSPI: PIR register with the interval value */
|
|
WRITE_REG(hqspi->Instance->PIR, cfg->Interval);
|
|
|
|
/* Configure QSPI: CR register with Match mode and Automatic stop mode */
|
|
MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS),
|
|
(cfg->MatchMode | cfg->AutomaticStop));
|
|
|
|
/* Clear interrupt */
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_SM);
|
|
|
|
/* Call the configuration function */
|
|
cmd->NbData = cfg->StatusBytesSize;
|
|
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Enable the QSPI Transfer Error and status match Interrupt */
|
|
__HAL_QSPI_ENABLE_IT(hqspi, (QSPI_IT_SM | QSPI_IT_TE));
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = HAL_BUSY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
}
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the Memory Mapped mode.
|
|
* @param hqspi QSPI handle
|
|
* @param cmd structure that contains the command configuration information.
|
|
* @param cfg structure that contains the memory mapped configuration information.
|
|
* @note This function is used only in Memory mapped Mode
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_MemoryMapped(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_MemoryMappedTypeDef *cfg)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_ERROR;
|
|
uint32_t tickstart = HAL_GetTick();
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
|
|
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
|
|
{
|
|
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
|
|
}
|
|
|
|
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
|
|
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
|
|
{
|
|
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
|
|
}
|
|
|
|
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
|
|
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
|
|
{
|
|
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
|
|
}
|
|
|
|
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
|
|
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
|
|
|
|
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
|
|
assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle));
|
|
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
|
|
|
|
assert_param(IS_QSPI_TIMEOUT_ACTIVATION(cfg->TimeOutActivation));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_READY)
|
|
{
|
|
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
|
|
|
|
/* Update state */
|
|
hqspi->State = HAL_QSPI_STATE_BUSY_MEM_MAPPED;
|
|
|
|
/* Wait till BUSY flag reset */
|
|
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Configure QSPI: CR register with timeout counter enable */
|
|
MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_TCEN, cfg->TimeOutActivation);
|
|
|
|
if (cfg->TimeOutActivation == QSPI_TIMEOUT_COUNTER_ENABLE)
|
|
{
|
|
assert_param(IS_QSPI_TIMEOUT_PERIOD(cfg->TimeOutPeriod));
|
|
|
|
/* Configure QSPI: LPTR register with the low-power timeout value */
|
|
WRITE_REG(hqspi->Instance->LPTR, cfg->TimeOutPeriod);
|
|
|
|
/* Clear interrupt */
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TO);
|
|
|
|
/* Enable the QSPI TimeOut Interrupt */
|
|
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TO);
|
|
}
|
|
|
|
/* Call the configuration function */
|
|
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
status = HAL_BUSY;
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Transfer Error callbacks
|
|
* @param hqspi QSPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_QSPI_ErrorCallback(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hqspi);
|
|
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_QSPI_ErrorCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Abort completed callback.
|
|
* @param hqspi QSPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_QSPI_AbortCpltCallback(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hqspi);
|
|
|
|
/* NOTE: This function should not be modified, when the callback is needed,
|
|
the HAL_QSPI_AbortCpltCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Command completed callback.
|
|
* @param hqspi QSPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_QSPI_CmdCpltCallback(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hqspi);
|
|
|
|
/* NOTE: This function Should not be modified, when the callback is needed,
|
|
the HAL_QSPI_CmdCpltCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Rx Transfer completed callbacks.
|
|
* @param hqspi QSPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_QSPI_RxCpltCallback(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hqspi);
|
|
|
|
/* NOTE: This function Should not be modified, when the callback is needed,
|
|
the HAL_QSPI_RxCpltCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Tx Transfer completed callbacks.
|
|
* @param hqspi QSPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_QSPI_TxCpltCallback(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hqspi);
|
|
|
|
/* NOTE: This function Should not be modified, when the callback is needed,
|
|
the HAL_QSPI_TxCpltCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Rx Half Transfer completed callbacks.
|
|
* @param hqspi QSPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_QSPI_RxHalfCpltCallback(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hqspi);
|
|
|
|
/* NOTE: This function Should not be modified, when the callback is needed,
|
|
the HAL_QSPI_RxHalfCpltCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Tx Half Transfer completed callbacks.
|
|
* @param hqspi QSPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_QSPI_TxHalfCpltCallback(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hqspi);
|
|
|
|
/* NOTE: This function Should not be modified, when the callback is needed,
|
|
the HAL_QSPI_TxHalfCpltCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief FIFO Threshold callbacks
|
|
* @param hqspi QSPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_QSPI_FifoThresholdCallback(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hqspi);
|
|
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_QSPI_FIFOThresholdCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Status Match callbacks
|
|
* @param hqspi QSPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_QSPI_StatusMatchCallback(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hqspi);
|
|
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_QSPI_StatusMatchCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Timeout callbacks
|
|
* @param hqspi QSPI handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_QSPI_TimeOutCallback(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hqspi);
|
|
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_QSPI_TimeOutCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup QSPI_Exported_Functions_Group3 Peripheral Control and State functions
|
|
* @brief QSPI control and State functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral Control and State functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides a set of functions allowing to :
|
|
(+) Check in run-time the state of the driver.
|
|
(+) Check the error code set during last operation.
|
|
(+) Abort any operation.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Return the QSPI handle state.
|
|
* @param hqspi QSPI handle
|
|
* @retval HAL state
|
|
*/
|
|
HAL_QSPI_StateTypeDef HAL_QSPI_GetState(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
/* Return QSPI handle state */
|
|
return hqspi->State;
|
|
}
|
|
|
|
/**
|
|
* @brief Return the QSPI error code
|
|
* @param hqspi QSPI handle
|
|
* @retval QSPI Error Code
|
|
*/
|
|
uint32_t HAL_QSPI_GetError(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
return hqspi->ErrorCode;
|
|
}
|
|
|
|
/**
|
|
* @brief Abort the current transmission
|
|
* @param hqspi QSPI handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_Abort(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
uint32_t tickstart = HAL_GetTick();
|
|
|
|
/* Check if the state is in one of the busy states */
|
|
if ((hqspi->State & 0x2U) != 0U)
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET)
|
|
{
|
|
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
|
|
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
|
|
|
|
/* Abort DMA channel */
|
|
status = HAL_DMA_Abort(hqspi->hdma);
|
|
if(status != HAL_OK)
|
|
{
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA;
|
|
}
|
|
}
|
|
|
|
/* Configure QSPI: CR register with Abort request */
|
|
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT);
|
|
|
|
/* Wait until TC flag is set to go back in idle state */
|
|
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, hqspi->Timeout);
|
|
|
|
if(status == HAL_OK)
|
|
{
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
|
|
|
|
/* Wait until BUSY flag is reset */
|
|
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
|
|
}
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Update state */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Abort the current transmission (non-blocking function)
|
|
* @param hqspi QSPI handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_Abort_IT(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
/* Check if the state is in one of the busy states */
|
|
if ((hqspi->State & 0x2U) != 0U)
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Update QSPI state */
|
|
hqspi->State = HAL_QSPI_STATE_ABORT;
|
|
|
|
/* Disable all interrupts */
|
|
__HAL_QSPI_DISABLE_IT(hqspi, (QSPI_IT_TO | QSPI_IT_SM | QSPI_IT_FT | QSPI_IT_TC | QSPI_IT_TE));
|
|
|
|
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN)!= RESET)
|
|
{
|
|
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
|
|
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
|
|
|
|
/* Abort DMA channel */
|
|
hqspi->hdma->XferAbortCallback = QSPI_DMAAbortCplt;
|
|
HAL_DMA_Abort_IT(hqspi->hdma);
|
|
}
|
|
else
|
|
{
|
|
/* Clear interrupt */
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
|
|
|
|
/* Enable the QSPI Transfer Complete Interrupt */
|
|
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC);
|
|
|
|
/* Configure QSPI: CR register with Abort request */
|
|
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT);
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/** @brief Set QSPI timeout
|
|
* @param hqspi QSPI handle.
|
|
* @param Timeout Timeout for the QSPI memory access.
|
|
* @retval None
|
|
*/
|
|
void HAL_QSPI_SetTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Timeout)
|
|
{
|
|
hqspi->Timeout = Timeout;
|
|
}
|
|
|
|
/** @brief Set QSPI Fifo threshold.
|
|
* @param hqspi QSPI handle.
|
|
* @param Threshold Threshold of the Fifo (value between 1 and 16).
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_QSPI_SetFifoThreshold(QSPI_HandleTypeDef *hqspi, uint32_t Threshold)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hqspi);
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_READY)
|
|
{
|
|
/* Synchronize init structure with new FIFO threshold value */
|
|
hqspi->Init.FifoThreshold = Threshold;
|
|
|
|
/* Configure QSPI FIFO Threshold */
|
|
MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES,
|
|
((hqspi->Init.FifoThreshold - 1U) << QUADSPI_CR_FTHRES_Pos));
|
|
}
|
|
else
|
|
{
|
|
status = HAL_BUSY;
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hqspi);
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/** @brief Get QSPI Fifo threshold.
|
|
* @param hqspi QSPI handle.
|
|
* @retval Fifo threshold (value between 1 and 16)
|
|
*/
|
|
uint32_t HAL_QSPI_GetFifoThreshold(QSPI_HandleTypeDef *hqspi)
|
|
{
|
|
return ((READ_BIT(hqspi->Instance->CR, QUADSPI_CR_FTHRES) >> QUADSPI_CR_FTHRES_Pos) + 1U);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private functions ---------------------------------------------------------*/
|
|
|
|
/**
|
|
* @brief DMA QSPI receive process complete callback.
|
|
* @param hdma DMA handle
|
|
* @retval None
|
|
*/
|
|
static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
hqspi->RxXferCount = 0U;
|
|
|
|
/* Enable the QSPI transfer complete Interrupt */
|
|
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC);
|
|
}
|
|
|
|
/**
|
|
* @brief DMA QSPI transmit process complete callback.
|
|
* @param hdma DMA handle
|
|
* @retval None
|
|
*/
|
|
static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
hqspi->TxXferCount = 0U;
|
|
|
|
/* Enable the QSPI transfer complete Interrupt */
|
|
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC);
|
|
}
|
|
|
|
/**
|
|
* @brief DMA QSPI receive process half complete callback
|
|
* @param hdma DMA handle
|
|
* @retval None
|
|
*/
|
|
static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
|
|
|
HAL_QSPI_RxHalfCpltCallback(hqspi);
|
|
}
|
|
|
|
/**
|
|
* @brief DMA QSPI transmit process half complete callback
|
|
* @param hdma DMA handle
|
|
* @retval None
|
|
*/
|
|
static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
|
|
|
|
HAL_QSPI_TxHalfCpltCallback(hqspi);
|
|
}
|
|
|
|
/**
|
|
* @brief DMA QSPI communication error callback.
|
|
* @param hdma DMA handle
|
|
* @retval None
|
|
*/
|
|
static void QSPI_DMAError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
|
|
/* if DMA error is FIFO error ignore it */
|
|
if(HAL_DMA_GetError(hdma) != HAL_DMA_ERROR_FE)
|
|
{
|
|
hqspi->RxXferCount = 0U;
|
|
hqspi->TxXferCount = 0U;
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA;
|
|
|
|
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
|
|
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
|
|
|
|
/* Abort the QSPI */
|
|
HAL_QSPI_Abort_IT(hqspi);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA QSPI abort complete callback.
|
|
* @param hdma DMA handle
|
|
* @retval None
|
|
*/
|
|
static void QSPI_DMAAbortCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
|
|
hqspi->RxXferCount = 0U;
|
|
hqspi->TxXferCount = 0U;
|
|
|
|
if(hqspi->State == HAL_QSPI_STATE_ABORT)
|
|
{
|
|
/* DMA Abort called by QSPI abort */
|
|
/* Clear interrupt */
|
|
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
|
|
|
|
/* Enable the QSPI Transfer Complete Interrupt */
|
|
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC);
|
|
|
|
/* Configure QSPI: CR register with Abort request */
|
|
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT);
|
|
}
|
|
else
|
|
{
|
|
/* DMA Abort called due to a transfer error interrupt */
|
|
/* Change state of QSPI */
|
|
hqspi->State = HAL_QSPI_STATE_READY;
|
|
|
|
/* Error callback */
|
|
HAL_QSPI_ErrorCallback(hqspi);
|
|
}
|
|
}
|
|
/**
|
|
* @brief Wait for a flag state until timeout.
|
|
* @param hqspi QSPI handle
|
|
* @param Flag Flag checked
|
|
* @param State Value of the flag expected
|
|
* @param Timeout Duration of the time out
|
|
* @param tickstart tick start value
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag,
|
|
FlagStatus State, uint32_t tickstart, uint32_t Timeout)
|
|
{
|
|
/* Wait until flag is in expected state */
|
|
while((FlagStatus)(__HAL_QSPI_GET_FLAG(hqspi, Flag)) != State)
|
|
{
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
|
|
{
|
|
hqspi->State = HAL_QSPI_STATE_ERROR;
|
|
hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the communication registers.
|
|
* @param hqspi QSPI handle
|
|
* @param cmd structure that contains the command configuration information
|
|
* @param FunctionalMode functional mode to configured
|
|
* This parameter can be one of the following values:
|
|
* @arg QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE: Indirect write mode
|
|
* @arg QSPI_FUNCTIONAL_MODE_INDIRECT_READ: Indirect read mode
|
|
* @arg QSPI_FUNCTIONAL_MODE_AUTO_POLLING: Automatic polling mode
|
|
* @arg QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED: Memory-mapped mode
|
|
* @retval None
|
|
*/
|
|
static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode)
|
|
{
|
|
assert_param(IS_QSPI_FUNCTIONAL_MODE(FunctionalMode));
|
|
|
|
if ((cmd->DataMode != QSPI_DATA_NONE) && (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED))
|
|
{
|
|
/* Configure QSPI: DLR register with the number of data to read or write */
|
|
WRITE_REG(hqspi->Instance->DLR, (cmd->NbData - 1U));
|
|
}
|
|
|
|
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
|
|
{
|
|
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
|
|
{
|
|
/* Configure QSPI: ABR register with alternate bytes value */
|
|
WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes);
|
|
|
|
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
|
|
{
|
|
/*---- Command with instruction, address and alternate bytes ----*/
|
|
/* Configure QSPI: CCR register with all communications parameters */
|
|
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
|
|
cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateBytesSize |
|
|
cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode |
|
|
cmd->InstructionMode | cmd->Instruction | FunctionalMode));
|
|
|
|
if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)
|
|
{
|
|
/* Configure QSPI: AR register with address value */
|
|
WRITE_REG(hqspi->Instance->AR, cmd->Address);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*---- Command with instruction and alternate bytes ----*/
|
|
/* Configure QSPI: CCR register with all communications parameters */
|
|
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
|
|
cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateBytesSize |
|
|
cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode |
|
|
cmd->Instruction | FunctionalMode));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
|
|
{
|
|
/*---- Command with instruction and address ----*/
|
|
/* Configure QSPI: CCR register with all communications parameters */
|
|
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
|
|
cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateByteMode |
|
|
cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode |
|
|
cmd->Instruction | FunctionalMode));
|
|
|
|
if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)
|
|
{
|
|
/* Configure QSPI: AR register with address value */
|
|
WRITE_REG(hqspi->Instance->AR, cmd->Address);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*---- Command with only instruction ----*/
|
|
/* Configure QSPI: CCR register with all communications parameters */
|
|
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
|
|
cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateByteMode |
|
|
cmd->AddressMode | cmd->InstructionMode | cmd->Instruction |
|
|
FunctionalMode));
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
|
|
{
|
|
/* Configure QSPI: ABR register with alternate bytes value */
|
|
WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes);
|
|
|
|
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
|
|
{
|
|
/*---- Command with address and alternate bytes ----*/
|
|
/* Configure QSPI: CCR register with all communications parameters */
|
|
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
|
|
cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateBytesSize |
|
|
cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode |
|
|
cmd->InstructionMode | FunctionalMode));
|
|
|
|
if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)
|
|
{
|
|
/* Configure QSPI: AR register with address value */
|
|
WRITE_REG(hqspi->Instance->AR, cmd->Address);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*---- Command with only alternate bytes ----*/
|
|
/* Configure QSPI: CCR register with all communications parameters */
|
|
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
|
|
cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateBytesSize |
|
|
cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode |
|
|
FunctionalMode));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
|
|
{
|
|
/*---- Command with only address ----*/
|
|
/* Configure QSPI: CCR register with all communications parameters */
|
|
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
|
|
cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateByteMode |
|
|
cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode |
|
|
FunctionalMode));
|
|
|
|
if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)
|
|
{
|
|
/* Configure QSPI: AR register with address value */
|
|
WRITE_REG(hqspi->Instance->AR, cmd->Address);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*---- Command with only data phase ----*/
|
|
if (cmd->DataMode != QSPI_DATA_NONE)
|
|
{
|
|
/* Configure QSPI: CCR register with all communications parameters */
|
|
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode |
|
|
cmd->DataMode | (cmd->DummyCycles << 18U) | cmd->AlternateByteMode |
|
|
cmd->AddressMode | cmd->InstructionMode | FunctionalMode));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/**
|
|
* @}
|
|
*/
|
|
#endif /* STM32F446xx || STM32F469xx || STM32F479xx || STM32F412Zx || STM32F412Vx || STM32F412Rx
|
|
STM32F413xx || STM32F423xx */
|
|
|
|
#endif /* HAL_QSPI_MODULE_ENABLED */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|