mbed-os/targets/TARGET_Freescale/TARGET_KLXX/i2c_api.c

404 lines
9.4 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed_assert.h"
#include "i2c_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "clk_freqs.h"
#include "PeripheralPins.h"
static const uint16_t ICR[0x40] = {
20, 22, 24, 26, 28,
30, 34, 40, 28, 32,
36, 40, 44, 48, 56,
68, 48, 56, 64, 72,
80, 88, 104, 128, 80,
96, 112, 128, 144, 160,
192, 240, 160, 192, 224,
256, 288, 320, 384, 480,
320, 384, 448, 512, 576,
640, 768, 960, 640, 768,
896, 1024, 1152, 1280, 1536,
1920, 1280, 1536, 1792, 2048,
2304, 2560, 3072, 3840
};
void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
// determine the I2C to use
I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
obj->i2c = (I2C_Type*)pinmap_merge(i2c_sda, i2c_scl);
MBED_ASSERT((int)obj->i2c != NC);
// enable power
switch ((int)obj->i2c) {
case I2C_0: SIM->SCGC5 |= 1 << 13; SIM->SCGC4 |= 1 << 6; break;
case I2C_1: SIM->SCGC5 |= 1 << 11; SIM->SCGC4 |= 1 << 7; break;
}
// set default frequency at 100k
i2c_frequency(obj, 100000);
// enable I2C interface
obj->i2c->C1 |= 0x80;
pinmap_pinout(sda, PinMap_I2C_SDA);
pinmap_pinout(scl, PinMap_I2C_SCL);
}
int i2c_start(i2c_t *obj) {
uint8_t temp;
volatile int i;
// if we are in the middle of a transaction
// activate the repeat_start flag
if (obj->i2c->S & I2C_S_BUSY_MASK) {
// KL25Z errata sheet: repeat start cannot be generated if the
// I2Cx_F[MULT] field is set to a non-zero value
temp = obj->i2c->F >> 6;
obj->i2c->F &= 0x3F;
obj->i2c->C1 |= 0x04;
for (i = 0; i < 100; i ++) __NOP();
obj->i2c->F |= temp << 6;
} else {
obj->i2c->C1 |= I2C_C1_MST_MASK;
obj->i2c->C1 |= I2C_C1_TX_MASK;
}
return 0;
}
int i2c_stop(i2c_t *obj) {
volatile uint32_t n = 0;
obj->i2c->C1 &= ~I2C_C1_MST_MASK;
obj->i2c->C1 &= ~I2C_C1_TX_MASK;
// It seems that there are timing problems
// when there is no waiting time after a STOP.
// This wait is also included on the samples
// code provided with the freedom board
for (n = 0; n < 100; n++) __NOP();
return 0;
}
static int timeout_status_poll(i2c_t *obj, uint32_t mask) {
uint32_t i, timeout = 100000;
for (i = 0; i < timeout; i++) {
if (obj->i2c->S & mask)
return 0;
}
return 1;
}
// this function waits the end of a tx transfer and return the status of the transaction:
// 0: OK ack received
// 1: OK ack not received
// 2: failure
static int i2c_wait_end_tx_transfer(i2c_t *obj) {
// wait for the interrupt flag
if (timeout_status_poll(obj, I2C_S_IICIF_MASK)) {
return 2;
}
obj->i2c->S |= I2C_S_IICIF_MASK;
// wait transfer complete
if (timeout_status_poll(obj, I2C_S_TCF_MASK)) {
return 2;
}
// check if we received the ACK or not
return obj->i2c->S & I2C_S_RXAK_MASK ? 1 : 0;
}
// this function waits the end of a rx transfer and return the status of the transaction:
// 0: OK
// 1: failure
static int i2c_wait_end_rx_transfer(i2c_t *obj) {
// wait for the end of the rx transfer
if (timeout_status_poll(obj, I2C_S_IICIF_MASK)) {
return 1;
}
obj->i2c->S |= I2C_S_IICIF_MASK;
return 0;
}
static void i2c_send_nack(i2c_t *obj) {
obj->i2c->C1 |= I2C_C1_TXAK_MASK; // NACK
}
static void i2c_send_ack(i2c_t *obj) {
obj->i2c->C1 &= ~I2C_C1_TXAK_MASK; // ACK
}
static int i2c_do_write(i2c_t *obj, int value) {
// write the data
obj->i2c->D = value;
// init and wait the end of the transfer
return i2c_wait_end_tx_transfer(obj);
}
static int i2c_do_read(i2c_t *obj, char * data, int last) {
if (last)
i2c_send_nack(obj);
else
i2c_send_ack(obj);
*data = (obj->i2c->D & 0xFF);
// start rx transfer and wait the end of the transfer
return i2c_wait_end_rx_transfer(obj);
}
void i2c_frequency(i2c_t *obj, int hz) {
uint8_t icr = 0;
uint8_t mult = 0;
uint32_t error = 0;
uint32_t p_error = 0xffffffff;
uint32_t ref = 0;
uint8_t i, j;
// bus clk
uint32_t PCLK = bus_frequency();
uint32_t pulse = PCLK / (hz * 2);
// we look for the values that minimize the error
// test all the MULT values
for (i = 1; i < 5; i*=2) {
for (j = 0; j < 0x40; j++) {
ref = PCLK / (i*ICR[j]);
if (ref > (uint32_t)hz)
continue;
error = hz - ref;
if (error < p_error) {
icr = j;
mult = i/2;
p_error = error;
}
}
}
pulse = icr | (mult << 6);
// I2C Rate
obj->i2c->F = pulse;
}
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
int count;
char dummy_read, *ptr;
if (i2c_start(obj)) {
i2c_stop(obj);
return I2C_ERROR_BUS_BUSY;
}
if (i2c_do_write(obj, (address | 0x01))) {
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
}
// set rx mode
obj->i2c->C1 &= ~I2C_C1_TX_MASK;
// Read in bytes
for (count = 0; count < (length); count++) {
ptr = (count == 0) ? &dummy_read : &data[count - 1];
uint8_t stop_ = (count == (length - 1)) ? 1 : 0;
if (i2c_do_read(obj, ptr, stop_)) {
i2c_stop(obj);
return count;
}
}
// If not repeated start, send stop.
if (stop) {
i2c_stop(obj);
}
// last read
data[count-1] = obj->i2c->D;
return length;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
int i;
if (i2c_start(obj)) {
i2c_stop(obj);
return I2C_ERROR_BUS_BUSY;
}
if (i2c_do_write(obj, (address & 0xFE))) {
i2c_stop(obj);
return I2C_ERROR_NO_SLAVE;
}
for (i = 0; i < length; i++) {
if(i2c_do_write(obj, data[i])) {
i2c_stop(obj);
return i;
}
}
if (stop) {
i2c_stop(obj);
}
return length;
}
void i2c_reset(i2c_t *obj) {
i2c_stop(obj);
}
int i2c_byte_read(i2c_t *obj, int last) {
char data;
// set rx mode
obj->i2c->C1 &= ~I2C_C1_TX_MASK;
// Setup read
i2c_do_read(obj, &data, last);
// set tx mode
obj->i2c->C1 |= I2C_C1_TX_MASK;
return obj->i2c->D;
}
int i2c_byte_write(i2c_t *obj, int data) {
// set tx mode
obj->i2c->C1 |= I2C_C1_TX_MASK;
return !i2c_do_write(obj, (data & 0xFF));
}
const PinMap *i2c_master_sda_pinmap()
{
return PinMap_I2C_SDA;
}
const PinMap *i2c_master_scl_pinmap()
{
return PinMap_I2C_SCL;
}
const PinMap *i2c_slave_sda_pinmap()
{
return PinMap_I2C_SDA;
}
const PinMap *i2c_slave_scl_pinmap()
{
return PinMap_I2C_SCL;
}
#if DEVICE_I2CSLAVE
void i2c_slave_mode(i2c_t *obj, int enable_slave) {
if (enable_slave) {
// set slave mode
obj->i2c->C1 &= ~I2C_C1_MST_MASK;
obj->i2c->C1 |= I2C_C1_IICIE_MASK;
} else {
// set master mode
obj->i2c->C1 |= I2C_C1_MST_MASK;
}
}
int i2c_slave_receive(i2c_t *obj) {
switch(obj->i2c->S) {
// read addressed
case 0xE6: return 1;
// write addressed
case 0xE2: return 3;
default: return 0;
}
}
int i2c_slave_read(i2c_t *obj, char *data, int length) {
uint8_t dummy_read;
uint8_t * ptr;
int count;
// set rx mode
obj->i2c->C1 &= ~I2C_C1_TX_MASK;
// first dummy read
dummy_read = obj->i2c->D;
if(i2c_wait_end_rx_transfer(obj)) {
return 0;
}
// read address
dummy_read = obj->i2c->D;
if(i2c_wait_end_rx_transfer(obj)) {
return 0;
}
// read (length - 1) bytes
for (count = 0; count < (length - 1); count++) {
data[count] = obj->i2c->D;
if(i2c_wait_end_rx_transfer(obj)) {
return count;
}
}
// read last byte
ptr = (length == 0) ? &dummy_read : (uint8_t *)&data[count];
*ptr = obj->i2c->D;
return (length) ? (count + 1) : 0;
}
int i2c_slave_write(i2c_t *obj, const char *data, int length) {
int i, count = 0;
// set tx mode
obj->i2c->C1 |= I2C_C1_TX_MASK;
for (i = 0; i < length; i++) {
if(i2c_do_write(obj, data[count++]) == 2) {
return i;
}
}
// set rx mode
obj->i2c->C1 &= ~I2C_C1_TX_MASK;
// dummy rx transfer needed
// otherwise the master cannot generate a stop bit
obj->i2c->D;
if(i2c_wait_end_rx_transfer(obj) == 2) {
return count;
}
return count;
}
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
obj->i2c->A1 = address & 0xfe;
}
#endif