mbed-os/targets/TARGET_Maxim/TARGET_MAX32620C/mxc/spis.c

461 lines
13 KiB
C

/**
* @file
* @brief SPI Slave API Function Implementations.
*/
/* *****************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*
* $Date: 2016-09-08 17:42:39 -0500 (Thu, 08 Sep 2016) $
* $Revision: 24325 $
**************************************************************************** */
/* **** Includes **** */
#include <stddef.h>
#include <string.h>
#include "mxc_config.h"
#include "mxc_assert.h"
#include "mxc_lock.h"
#include "spis.h"
/**
* @ingroup spis
* @{
*/
/* **** Definitions **** */
#define SPIS_FIFO_BUFFER 6
/* **** Globals **** */
static spis_req_t *states[MXC_CFG_SPIS_INSTANCES];
/* **** Functions **** */
static uint32_t SPIS_TransHandler(mxc_spis_regs_t *spis, spis_req_t *req, int spis_num);
/* ************************************************************************* */
int SPIS_Init(mxc_spis_regs_t *spis, uint8_t mode, const sys_cfg_spis_t *sys_cfg)
{
int err, spis_num;
spis_num = MXC_SPIS_GET_IDX(spis);
MXC_ASSERT(spis_num >= 0);
// Set system level configurations
if ((err = SYS_SPIS_Init(sys_cfg)) != E_NO_ERROR) {
return err;
}
// Initialize state pointers
states[spis_num] = NULL;
// Drain the FIFOs, enable SPIS
spis->gen_ctrl = 0;
spis->gen_ctrl = (MXC_F_SPIS_GEN_CTRL_SPI_SLAVE_EN | MXC_F_SPIS_GEN_CTRL_TX_FIFO_EN |
MXC_F_SPIS_GEN_CTRL_RX_FIFO_EN | ((mode << MXC_F_SPIS_GEN_CTRL_SPI_MODE_POS) & MXC_F_SPIS_GEN_CTRL_SPI_MODE));
// Set the TX FIFO almost empty level
spis->fifo_ctrl = ((spis->fifo_ctrl & ~MXC_F_SPIS_FIFO_CTRL_TX_FIFO_AE_LVL) |
((MXC_CFG_SPIS_FIFO_DEPTH - SPIS_FIFO_BUFFER) << MXC_F_SPIS_FIFO_CTRL_TX_FIFO_AE_LVL_POS));
return E_NO_ERROR;
}
/* ************************************************************************* */
int SPIS_Shutdown(mxc_spis_regs_t *spis)
{
int spis_num, err;
spis_req_t *temp_req;
// Disable and clear interrupts
spis->inten = 0;
spis->intfl = spis->intfl;
// Disable SPIS and FIFOS
spis->gen_ctrl &= ~(MXC_F_SPIS_GEN_CTRL_SPI_SLAVE_EN | MXC_F_SPIS_GEN_CTRL_TX_FIFO_EN |
MXC_F_SPIS_GEN_CTRL_RX_FIFO_EN);
// Call all of the pending callbacks for this SPIS
spis_num = MXC_SPIS_GET_IDX(spis);
if(states[spis_num] != NULL) {
// Save the request
temp_req = states[spis_num];
// Unlock this SPIS
mxc_free_lock((uint32_t*)&states[spis_num]);
// Callback if not NULL
if(temp_req->callback != NULL) {
temp_req->callback(temp_req, E_SHUTDOWN);
}
}
// Clear system level configurations
if ((err = SYS_SPIS_Shutdown()) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/* ************************************************************************* */
int SPIS_Trans(mxc_spis_regs_t *spis, spis_req_t *req)
{
int spis_num;
// Make sure the SPIS has been initialized
if((spis->gen_ctrl & MXC_F_SPIS_GEN_CTRL_SPI_SLAVE_EN) == 0)
return E_UNINITIALIZED;
// Check the input parameters
if(req == NULL)
return E_NULL_PTR;
if((req->rx_data == NULL) && (req->tx_data == NULL))
return E_NULL_PTR;
if(!(req->len > 0)) {
return E_NO_ERROR;
}
// Attempt to register this write request
spis_num = MXC_SPIS_GET_IDX(spis);
if(mxc_get_lock((uint32_t*)&states[spis_num], (uint32_t)req) != E_NO_ERROR) {
return E_BUSY;
}
//force deass to a 1 or 0
req->deass = !!req->deass;
// Clear the number of bytes counter
req->read_num = 0;
req->write_num = 0;
req->callback = NULL;
// Start the transaction, keep calling the handler until complete
spis->intfl = (MXC_F_SPIS_INTFL_SS_DEASSERTED | MXC_F_SPIS_INTFL_TX_UNDERFLOW);
while(SPIS_TransHandler(spis, req, spis_num) & (MXC_F_SPIS_INTEN_RX_FIFO_AF |
MXC_F_SPIS_INTEN_TX_FIFO_AE)) {
if((req->tx_data != NULL) && (spis->intfl & MXC_F_SPIS_INTFL_TX_UNDERFLOW)) {
return E_UNDERFLOW;
}
if((req->rx_data != NULL) && (spis->intfl & MXC_F_SPIS_INTFL_RX_LOST_DATA)) {
return E_OVERFLOW;
}
if((req->deass) && (spis->intfl & MXC_F_SPIS_INTFL_SS_DEASSERTED)) {
if(((req->rx_data != NULL) && ((req->read_num + SPIS_NumReadAvail(spis)) < req->len)) ||
((req->tx_data != NULL) && (req->write_num < req->len))) {
return E_COMM_ERR;
}
}
}
if(req->tx_data == NULL) {
return req->read_num;
}
return req->write_num;
}
/* ************************************************************************* */
int SPIS_TransAsync(mxc_spis_regs_t *spis, spis_req_t *req)
{
int spis_num;
// Make sure the SPIS has been initialized
if((spis->gen_ctrl & MXC_F_SPIS_GEN_CTRL_SPI_SLAVE_EN) == 0)
return E_UNINITIALIZED;
// Check the input parameters
if(req == NULL)
return E_NULL_PTR;
if((req->rx_data == NULL) && (req->tx_data == NULL))
return E_NULL_PTR;
if(!(req->len > 0)) {
return E_NO_ERROR;
}
// Attempt to register this write request
spis_num = MXC_SPIS_GET_IDX(spis);
if(mxc_get_lock((uint32_t*)&states[spis_num], (uint32_t)req) != E_NO_ERROR) {
return E_BUSY;
}
//force deass to a 1 or 0
req->deass = !!req->deass;
// Clear the number of bytes counter
req->read_num = 0;
req->write_num = 0;
// Start the transaction, enable the interrupts
spis->intfl = MXC_F_SPIS_INTFL_SS_DEASSERTED;
spis->inten = SPIS_TransHandler(spis, req, spis_num);
if(spis->intfl & MXC_F_SPIS_INTFL_SS_DEASSERTED) {
return E_COMM_ERR;
}
return E_NO_ERROR;
}
/* ************************************************************************* */
int SPIS_AbortAsync(spis_req_t *req)
{
int spis_num;
// Check the input parameters
if(req == NULL) {
return E_BAD_PARAM;
}
// Find the request, set to NULL
for(spis_num = 0; spis_num < MXC_CFG_SPIS_INSTANCES; spis_num++) {
if(req == states[spis_num]) {
// Disable interrupts, clear the flags
MXC_SPIS_GET_SPIS(spis_num)->inten = 0;
MXC_SPIS_GET_SPIS(spis_num)->intfl = MXC_SPIS_GET_SPIS(spis_num)->intfl;
// Unlock this SPIS
mxc_free_lock((uint32_t*)&states[spis_num]);
// Callback if not NULL
if(req->callback != NULL) {
req->callback(req, E_ABORT);
}
return E_NO_ERROR;
}
}
return E_BAD_PARAM;
}
/* ************************************************************************* */
void SPIS_Handler(mxc_spis_regs_t *spis)
{
int spis_num;
uint32_t flags;
spis_req_t *req;
// Clear the interrupt flags
spis->inten = 0;
flags = spis->intfl;
spis->intfl = flags;
spis_num = MXC_SPIS_GET_IDX(spis);
req = states[spis_num];
// Check for errors
if((flags & MXC_F_SPIS_INTFL_TX_UNDERFLOW) && (req->tx_data != NULL)) {
// Unlock this SPIS
mxc_free_lock((uint32_t*)&states[spis_num]);
// Callback if not NULL
if(req->callback != NULL) {
req->callback(req, E_UNDERFLOW);
}
return;
}
if((flags & MXC_F_SPIS_INTFL_RX_LOST_DATA) && (req->rx_data != NULL)) {
// Unlock this SPIS
mxc_free_lock((uint32_t*)&states[spis_num]);
// Callback if not NULL
if(req->callback != NULL) {
req->callback(req, E_OVERFLOW);
}
return;
}
// Check for deassert
if((flags & MXC_F_SPIS_INTFL_SS_DEASSERTED) && (req != NULL) &&
(req->deass)) {
if(((req->rx_data != NULL) && ((req->read_num + SPIS_NumReadAvail(spis)) < req->len)) ||
((req->tx_data != NULL) && (req->write_num < req->len))) {
// Unlock this SPIS
mxc_free_lock((uint32_t*)&states[spis_num]);
// Callback if not NULL
if(req->callback != NULL) {
req->callback(states[spis_num], E_COMM_ERR);
}
return;
}
}
// Figure out if this SPIS has an active request
if(flags && (req != NULL)) {
spis->inten = SPIS_TransHandler(spis, req, spis_num);
}
}
/* ************************************************************************* */
int SPIS_Busy(mxc_spis_regs_t *spis)
{
// Check to see if there are any ongoing transactions
if(states[MXC_SPIS_GET_IDX(spis)] == NULL) {
return E_NO_ERROR;
}
return E_BUSY;
}
/* ************************************************************************* */
int SPIS_PrepForSleep(mxc_spis_regs_t *spis)
{
if(SPIS_Busy(spis) != E_NO_ERROR) {
return E_BUSY;
}
// Disable interrupts
spis->inten = 0;
return E_NO_ERROR;
}
/* ************************************************************************* */
static uint32_t SPIS_TransHandler(mxc_spis_regs_t *spis, spis_req_t *req, int spis_num)
{
uint8_t read, write;
uint32_t inten;
unsigned remain, avail, temp_len;
mxc_spis_fifo_regs_t *fifo;
inten = 0;
// Get the FIFOS for this UART
fifo = MXC_SPIS_GET_SPIS_FIFO(spis_num);
// Figure out if we're reading
if(req->rx_data != NULL) {
read = 1;
} else {
read = 0;
}
// Figure out if we're writing
if(req->tx_data != NULL) {
write = 1;
} else {
write = 0;
}
// Put data into the FIFO if we are writing
if(write) {
avail = SPIS_NumWriteAvail(spis);
remain = req->len - req->write_num;
if(remain > avail) {
temp_len = avail;
} else {
temp_len = remain;
}
memcpy((void*)fifo->tx_32, &(req->tx_data[req->write_num]), temp_len);
spis->intfl = MXC_F_SPIS_INTFL_TX_FIFO_AE;
req->write_num += temp_len;
remain = req->len - req->write_num;
// Set the TX interrupts
if(remain) {
inten |= (MXC_F_SPIS_INTEN_TX_FIFO_AE | MXC_F_SPIS_INTFL_TX_UNDERFLOW);
}
}
// Read from the FIFO if we are reading
if(read) {
avail = SPIS_NumReadAvail(MXC_SPIS);
remain = req->len - req->read_num;
if(remain > avail) {
temp_len = avail;
} else {
temp_len = remain;
}
memcpy((void*)&req->rx_data[req->read_num], (void*)&(fifo->rx_8[0]), temp_len);
spis->intfl = MXC_F_SPIS_INTFL_RX_FIFO_AF;
req->read_num += temp_len;
remain = req->len - req->read_num;
// Set the RX interrupts
if(remain) {
// Adjust the almost full threshold
if (remain > (MXC_CFG_SPIS_FIFO_DEPTH - SPIS_FIFO_BUFFER)) {
spis->fifo_ctrl = ((spis->fifo_ctrl & ~MXC_F_SPIS_FIFO_CTRL_RX_FIFO_AF_LVL) |
((MXC_CFG_SPIS_FIFO_DEPTH - SPIS_FIFO_BUFFER) << MXC_F_SPIS_FIFO_CTRL_RX_FIFO_AF_LVL_POS));
} else {
spis->fifo_ctrl = ((spis->fifo_ctrl & ~MXC_F_SPIS_FIFO_CTRL_RX_FIFO_AF_LVL) |
((remain-1) << MXC_F_SPIS_FIFO_CTRL_RX_FIFO_AF_LVL_POS));
}
inten |= (MXC_F_SPIS_INTEN_RX_FIFO_AF | MXC_F_SPIS_INTFL_RX_LOST_DATA);
}
}
// Check to see if we've finished reading and writing
if(((read && (req->read_num == req->len)) || !read) &&
((req->write_num == req->len) || !write)) {
// Unlock this SPIS
mxc_free_lock((uint32_t*)&states[spis_num]);
// Callback if not NULL
if(req->callback != NULL) {
req->callback(req, E_NO_ERROR);
}
return 0;
}
// Enable deassert interrupt
if(req->deass) {
inten |= MXC_F_SPIS_INTEN_SS_DEASSERTED;
}
return inten;
}
/**@} end of ingroup spis*/