mbed-os/targets/TARGET_NUVOTON/TARGET_M451/serial_api.c

1190 lines
42 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2015-2016 Nuvoton
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "serial_api.h"
#if DEVICE_SERIAL
#include "cmsis.h"
#include "mbed_error.h"
#include "mbed_assert.h"
#include "PeripheralPins.h"
#include "nu_modutil.h"
#include "nu_bitutil.h"
#include <string.h>
#include <stdbool.h>
#if DEVICE_SERIAL_ASYNCH
#include "dma_api.h"
#include "dma.h"
#endif
struct nu_uart_var {
uint32_t ref_cnt; // Reference count of the H/W module
serial_t * obj;
uint32_t fifo_size_tx;
uint32_t fifo_size_rx;
void (*vec)(void);
#if DEVICE_SERIAL_ASYNCH
void (*vec_async)(void);
uint8_t pdma_perp_tx;
uint8_t pdma_perp_rx;
#endif
};
static void uart0_vec(void);
static void uart1_vec(void);
static void uart2_vec(void);
static void uart3_vec(void);
static void uart_irq(serial_t *obj);
#if DEVICE_SERIAL_ASYNCH
static void uart0_vec_async(void);
static void uart1_vec_async(void);
static void uart2_vec_async(void);
static void uart3_vec_async(void);
static void uart_irq_async(serial_t *obj);
static void uart_dma_handler_tx(uint32_t id, uint32_t event);
static void uart_dma_handler_rx(uint32_t id, uint32_t event);
static void serial_tx_enable_interrupt(serial_t *obj, uint32_t address, uint8_t enable);
static void serial_rx_enable_interrupt(serial_t *obj, uint32_t address, uint8_t enable);
static void serial_enable_interrupt(serial_t *obj, SerialIrq irq, uint32_t enable);
static void serial_rollback_interrupt(serial_t *obj, SerialIrq irq);
static int serial_write_async(serial_t *obj);
static int serial_read_async(serial_t *obj);
static uint32_t serial_rx_event_check(serial_t *obj);
static uint32_t serial_tx_event_check(serial_t *obj);
static int serial_is_tx_complete(serial_t *obj);
static void serial_tx_enable_event(serial_t *obj, int event, uint8_t enable);
static void serial_tx_buffer_set(serial_t *obj, const void *tx, size_t length, uint8_t width);
static void serial_rx_buffer_set(serial_t *obj, void *rx, size_t length, uint8_t width);
static void serial_rx_set_char_match(serial_t *obj, uint8_t char_match);
static void serial_rx_enable_event(serial_t *obj, int event, uint8_t enable);
static int serial_is_rx_complete(serial_t *obj);
static void serial_check_dma_usage(DMAUsage *dma_usage, int *dma_ch);
#endif
static int serial_is_irq_en(serial_t *obj, SerialIrq irq);
bool serial_can_deep_sleep(void);
static struct nu_uart_var uart0_var = {
.ref_cnt = 0,
.obj = NULL,
.fifo_size_tx = 16,
.fifo_size_rx = 16,
.vec = uart0_vec,
#if DEVICE_SERIAL_ASYNCH
.vec_async = uart0_vec_async,
.pdma_perp_tx = PDMA_UART0_TX,
.pdma_perp_rx = PDMA_UART0_RX
#endif
};
static struct nu_uart_var uart1_var = {
.ref_cnt = 0,
.obj = NULL,
.fifo_size_tx = 16,
.fifo_size_rx = 16,
.vec = uart1_vec,
#if DEVICE_SERIAL_ASYNCH
.vec_async = uart1_vec_async,
.pdma_perp_tx = PDMA_UART1_TX,
.pdma_perp_rx = PDMA_UART1_RX
#endif
};
static struct nu_uart_var uart2_var = {
.ref_cnt = 0,
.obj = NULL,
.fifo_size_tx = 16,
.fifo_size_rx = 16,
.vec = uart2_vec,
#if DEVICE_SERIAL_ASYNCH
.vec_async = uart2_vec_async,
.pdma_perp_tx = PDMA_UART2_TX,
.pdma_perp_rx = PDMA_UART2_RX
#endif
};
static struct nu_uart_var uart3_var = {
.ref_cnt = 0,
.obj = NULL,
.fifo_size_tx = 16,
.fifo_size_rx = 16,
.vec = uart3_vec,
#if DEVICE_SERIAL_ASYNCH
.vec_async = uart3_vec_async,
.pdma_perp_tx = PDMA_UART3_TX,
.pdma_perp_rx = PDMA_UART3_RX
#endif
};
int stdio_uart_inited = 0;
serial_t stdio_uart;
static uint32_t uart_modinit_mask = 0;
static const struct nu_modinit_s uart_modinit_tab[] = {
{UART_0, UART0_MODULE, CLK_CLKSEL1_UARTSEL_HIRC, CLK_CLKDIV0_UART(1), UART0_RST, UART0_IRQn, &uart0_var},
{UART_1, UART1_MODULE, CLK_CLKSEL1_UARTSEL_HIRC, CLK_CLKDIV0_UART(1), UART1_RST, UART1_IRQn, &uart1_var},
{UART_2, UART2_MODULE, CLK_CLKSEL1_UARTSEL_HIRC, CLK_CLKDIV0_UART(1), UART2_RST, UART2_IRQn, &uart2_var},
{UART_3, UART3_MODULE, CLK_CLKSEL1_UARTSEL_HIRC, CLK_CLKDIV0_UART(1), UART3_RST, UART3_IRQn, &uart3_var},
{NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL}
};
extern void mbed_sdk_init(void);
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
// NOTE: With armcc, serial_init() gets called from _sys_open() timing of which is before main()/mbed_sdk_init().
mbed_sdk_init();
// Determine which UART_x the pins are used for
uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX);
uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX);
// Get the peripheral name (UART_x) from the pins and assign it to the object
obj->serial.uart = (UARTName) pinmap_merge(uart_tx, uart_rx);
MBED_ASSERT((int)obj->serial.uart != NC);
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
obj->serial.pin_tx = tx;
obj->serial.pin_rx = rx;
obj->serial.pin_rts = NC;
obj->serial.pin_cts = NC;
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
if (! var->ref_cnt) {
// Select IP clock source
CLK_SetModuleClock(modinit->clkidx, modinit->clksrc, modinit->clkdiv);
// Enable IP clock
CLK_EnableModuleClock(modinit->clkidx);
// Reset this module
SYS_ResetModule(modinit->rsetidx);
// Configure baudrate
int baudrate = 9600;
if (obj->serial.uart == STDIO_UART) {
#if MBED_CONF_PLATFORM_STDIO_BAUD_RATE
baudrate = MBED_CONF_PLATFORM_STDIO_BAUD_RATE;
#endif
} else {
#if MBED_CONF_PLATFORM_DEFAULT_SERIAL_BAUD_RATE
baudrate = MBED_CONF_PLATFORM_DEFAULT_SERIAL_BAUD_RATE;
#endif
}
serial_baud(obj, baudrate);
// Configure data bits, parity, and stop bits
serial_format(obj, 8, ParityNone, 1);
}
var->ref_cnt ++;
obj->serial.vec = var->vec;
obj->serial.irq_en = 0;
#if DEVICE_SERIAL_ASYNCH
obj->serial.dma_usage_tx = DMA_USAGE_NEVER;
obj->serial.dma_usage_rx = DMA_USAGE_NEVER;
obj->serial.event = 0;
obj->serial.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
obj->serial.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
#endif
/* With support for checking H/W UART initialized or not, we allow serial_init(&stdio_uart)
* calls in even though H/W UART 'STDIO_UART' has initialized. When serial_init(&stdio_uart)
* calls in, we only need to set the 'stdio_uart_inited' flag. */
if (((uintptr_t) obj) == ((uintptr_t) &stdio_uart)) {
MBED_ASSERT(obj->serial.uart == STDIO_UART);
stdio_uart_inited = 1;
}
if (var->ref_cnt) {
// Mark this module to be inited.
int i = modinit - uart_modinit_tab;
uart_modinit_mask |= 1 << i;
}
}
void serial_free(serial_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
var->ref_cnt --;
if (! var->ref_cnt) {
#if DEVICE_SERIAL_ASYNCH
if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
dma_channel_free(obj->serial.dma_chn_id_tx);
obj->serial.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
}
if (obj->serial.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
dma_channel_free(obj->serial.dma_chn_id_rx);
obj->serial.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
}
#endif
UART_Close((UART_T *) NU_MODBASE(obj->serial.uart));
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_THREIEN_Msk | UART_INTEN_RXTOIEN_Msk));
NVIC_DisableIRQ(modinit->irq_n);
// Disable IP clock
CLK_DisableModuleClock(modinit->clkidx);
}
if (var->obj == obj) {
var->obj = NULL;
}
/* Clear the 'stdio_uart_inited' flag when serial_free(&stdio_uart) calls in. */
if (((uintptr_t) obj) == ((uintptr_t) &stdio_uart)) {
MBED_ASSERT(obj->serial.uart == STDIO_UART);
stdio_uart_inited = 0;
}
if (! var->ref_cnt) {
// Mark this module to be deinited.
int i = modinit - uart_modinit_tab;
uart_modinit_mask &= ~(1 << i);
}
// Free up pins
gpio_set(obj->serial.pin_tx);
gpio_set(obj->serial.pin_rx);
gpio_set(obj->serial.pin_rts);
gpio_set(obj->serial.pin_cts);
obj->serial.pin_tx = NC;
obj->serial.pin_rx = NC;
obj->serial.pin_rts = NC;
obj->serial.pin_cts = NC;
}
void serial_baud(serial_t *obj, int baudrate) {
// Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
obj->serial.baudrate = baudrate;
UART_Open((UART_T *) NU_MODBASE(obj->serial.uart), baudrate);
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
// Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
// Sanity check arguments
MBED_ASSERT((data_bits == 5) || (data_bits == 6) || (data_bits == 7) || (data_bits == 8));
MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven) || (parity == ParityForced1) || (parity == ParityForced0));
MBED_ASSERT((stop_bits == 1) || (stop_bits == 2));
obj->serial.databits = data_bits;
obj->serial.parity = parity;
obj->serial.stopbits = stop_bits;
uint32_t databits_intern = (data_bits == 5) ? UART_WORD_LEN_5 :
(data_bits == 6) ? UART_WORD_LEN_6 :
(data_bits == 7) ? UART_WORD_LEN_7 :
UART_WORD_LEN_8;
uint32_t parity_intern = (parity == ParityOdd || parity == ParityForced1) ? UART_PARITY_ODD :
(parity == ParityEven || parity == ParityForced0) ? UART_PARITY_EVEN :
UART_PARITY_NONE;
uint32_t stopbits_intern = (stop_bits == 2) ? UART_STOP_BIT_2 : UART_STOP_BIT_1;
UART_SetLine_Config((UART_T *) NU_MODBASE(obj->serial.uart),
0, // Don't change baudrate
databits_intern,
parity_intern,
stopbits_intern);
}
#if DEVICE_SERIAL_FC
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
// Free up old rts/cts pins when they are different from new ones
if (obj->serial.pin_rts != rxflow) {
gpio_set(obj->serial.pin_rts);
obj->serial.pin_rts = rxflow;
}
if (obj->serial.pin_cts != txflow) {
gpio_set(obj->serial.pin_cts);
obj->serial.pin_cts = txflow;
}
if (rxflow != NC) {
// Check if RTS pin matches.
uint32_t uart_rts = pinmap_peripheral(rxflow, PinMap_UART_RTS);
MBED_ASSERT(uart_rts == obj->serial.uart);
// Enable the pin for RTS function
pinmap_pinout(rxflow, PinMap_UART_RTS);
// nRTS pin output is low level active
uart_base->MODEM |= UART_MODEM_RTSACTLV_Msk;
// Configure RTS trigger level to 8 bytes
uart_base->FIFO = (uart_base->FIFO & ~UART_FIFO_RTSTRGLV_Msk) | UART_FIFO_RTSTRGLV_8BYTES;
if (type == FlowControlRTS || type == FlowControlRTSCTS) {
// Enable RTS
uart_base->INTEN |= UART_INTEN_ATORTSEN_Msk;
} else {
// Disable RTS
uart_base->INTEN &= ~UART_INTEN_ATORTSEN_Msk;
/* Drive nRTS pin output to low-active. Allow the peer to be able to send data
* even though its CTS is still enabled. */
uart_base->MODEM &= ~UART_MODEM_RTS_Msk;
}
}
/* If CTS is disabled, we don't need to configure CTS. But to be consistent with
* RTS code above, we still configure CTS. */
if (txflow != NC) {
// Check if CTS pin matches.
uint32_t uart_cts = pinmap_peripheral(txflow, PinMap_UART_CTS);
MBED_ASSERT(uart_cts == obj->serial.uart);
// Enable the pin for CTS function
pinmap_pinout(txflow, PinMap_UART_CTS);
// nCTS pin input is low level active
uart_base->MODEMSTS |= UART_MODEMSTS_CTSACTLV_Msk;
if (type == FlowControlCTS || type == FlowControlRTSCTS) {
// Enable CTS
uart_base->INTEN |= UART_INTEN_ATOCTSEN_Msk;
} else {
// Disable CTS
uart_base->INTEN &= ~UART_INTEN_ATOCTSEN_Msk;
}
}
}
#endif //DEVICE_SERIAL_FC
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
// Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
obj->serial.irq_handler = (uint32_t) handler;
obj->serial.irq_id = id;
// Restore sync-mode vector
obj->serial.vec = ((struct nu_uart_var *) modinit->var)->vec;
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
obj->serial.irq_en = enable;
serial_enable_interrupt(obj, irq, enable);
}
int serial_getc(serial_t *obj)
{
// NOTE: Every byte access requires accompaniment of one interrupt. This has side effect of performance degradation.
while (! serial_readable(obj));
int c = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
// NOTE: On Nuvoton targets, no H/W IRQ to match TxIrq/RxIrq.
// Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively.
if (obj->serial.inten_msk & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
}
return c;
}
void serial_putc(serial_t *obj, int c)
{
// NOTE: Every byte access requires accompaniment of one interrupt. This has side effect of performance degradation.
while (! serial_writable(obj));
UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), c);
// NOTE: On Nuvoton targets, no H/W IRQ to match TxIrq/RxIrq.
// Simulation of TxIrq/RxIrq requires the call to Serial::putc()/Serial::getc() respectively.
if (obj->serial.inten_msk & UART_INTEN_THREIEN_Msk) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
}
}
int serial_readable(serial_t *obj)
{
//return UART_IS_RX_READY(((UART_T *) NU_MODBASE(obj->serial.uart)));
return ! UART_GET_RX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart)));
}
int serial_writable(serial_t *obj)
{
return ! UART_IS_TX_FULL(((UART_T *) NU_MODBASE(obj->serial.uart)));
}
void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj)
{
((UART_T *) NU_MODBASE(obj->serial.uart))->LINE |= UART_LINE_BCB_Msk;
}
void serial_break_clear(serial_t *obj)
{
((UART_T *) NU_MODBASE(obj->serial.uart))->LINE &= ~UART_LINE_BCB_Msk;
}
static void uart0_vec(void)
{
uart_irq(uart0_var.obj);
}
static void uart1_vec(void)
{
uart_irq(uart1_var.obj);
}
static void uart2_vec(void)
{
uart_irq(uart2_var.obj);
}
static void uart3_vec(void)
{
uart_irq(uart3_var.obj);
}
static void uart_irq(serial_t *obj)
{
UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
if (uart_base->INTSTS & (UART_INTSTS_RDAINT_Msk | UART_INTSTS_RXTOINT_Msk)) {
// Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next read.
UART_DISABLE_INT(uart_base, (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
if (obj->serial.irq_handler && serial_is_irq_en(obj, RxIrq)) {
// Call irq_handler() only when RxIrq is enabled
((uart_irq_handler) obj->serial.irq_handler)(obj->serial.irq_id, RxIrq);
}
}
if (uart_base->INTSTS & UART_INTSTS_THREINT_Msk) {
// Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next write.
UART_DISABLE_INT(uart_base, UART_INTEN_THREIEN_Msk);
if (obj->serial.irq_handler && serial_is_irq_en(obj, TxIrq)) {
// Call irq_handler() only when TxIrq is enabled
((uart_irq_handler) obj->serial.irq_handler)(obj->serial.irq_id, TxIrq);
}
}
// FIXME: Ignore all other interrupt flags. Clear them. Otherwise, program will get stuck in interrupt.
uart_base->INTSTS = uart_base->INTSTS;
uart_base->FIFOSTS = uart_base->FIFOSTS;
}
#if DEVICE_SERIAL_ASYNCH
int serial_tx_asynch(serial_t *obj, const void *tx, size_t tx_length, uint8_t tx_width, uint32_t handler, uint32_t event, DMAUsage hint)
{
MBED_ASSERT(tx_width == 8 || tx_width == 16 || tx_width == 32);
obj->serial.dma_usage_tx = hint;
serial_check_dma_usage(&obj->serial.dma_usage_tx, &obj->serial.dma_chn_id_tx);
// UART IRQ is necessary for both interrupt way and DMA way
serial_tx_enable_event(obj, event, 1);
serial_tx_buffer_set(obj, tx, tx_length, tx_width);
//UART_HAL_DisableTransmitter(obj->serial.address);
//UART_HAL_FlushTxFifo(obj->serial.address);
//UART_HAL_EnableTransmitter(obj->serial.address);
int n_word = 0;
if (obj->serial.dma_usage_tx == DMA_USAGE_NEVER) {
// Interrupt way
n_word = serial_write_async(obj);
serial_tx_enable_interrupt(obj, handler, 1);
} else {
// DMA way
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
PDMA_T *pdma_base = dma_modbase();
pdma_base->CHCTL |= 1 << obj->serial.dma_chn_id_tx; // Enable this DMA channel
PDMA_SetTransferMode(obj->serial.dma_chn_id_tx,
((struct nu_uart_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled
0); // Scatter-gather descriptor address
PDMA_SetTransferCnt(obj->serial.dma_chn_id_tx,
(tx_width == 8) ? PDMA_WIDTH_8 : (tx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
tx_length);
PDMA_SetTransferAddr(obj->serial.dma_chn_id_tx,
(uint32_t) tx, // NOTE:
// NUC472: End of source address
// M451: Start of source address
PDMA_SAR_INC, // Source address incremental
(uint32_t) NU_MODBASE(obj->serial.uart), // Destination address
PDMA_DAR_FIX); // Destination address fixed
PDMA_SetBurstType(obj->serial.dma_chn_id_tx,
PDMA_REQ_SINGLE, // Single mode
0); // Burst size
PDMA_EnableInt(obj->serial.dma_chn_id_tx,
PDMA_INT_TRANS_DONE); // Interrupt type
// Register DMA event handler
dma_set_handler(obj->serial.dma_chn_id_tx, (uint32_t) uart_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL);
serial_tx_enable_interrupt(obj, handler, 1);
/* We needn't actually enable UART INT to go UART ISR -> handler.
* Instead, as PDMA INT is triggered, we will go PDMA ISR -> UART ISR -> handler
* with serial_tx/rx_enable_interrupt having set up this call path. */
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
((UART_T *) NU_MODBASE(obj->serial.uart))->INTEN |= UART_INTEN_TXPDMAEN_Msk; // Start DMA transfer
}
return n_word;
}
void serial_rx_asynch(serial_t *obj, void *rx, size_t rx_length, uint8_t rx_width, uint32_t handler, uint32_t event, uint8_t char_match, DMAUsage hint)
{
MBED_ASSERT(rx_width == 8 || rx_width == 16 || rx_width == 32);
obj->serial.dma_usage_rx = hint;
serial_check_dma_usage(&obj->serial.dma_usage_rx, &obj->serial.dma_chn_id_rx);
// DMA doesn't support char match, so fall back to IRQ if it is requested.
if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER &&
(event & SERIAL_EVENT_RX_CHARACTER_MATCH) &&
char_match != SERIAL_RESERVED_CHAR_MATCH) {
obj->serial.dma_usage_rx = DMA_USAGE_NEVER;
dma_channel_free(obj->serial.dma_chn_id_rx);
obj->serial.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
}
// UART IRQ is necessary for both interrupt way and DMA way
serial_rx_enable_event(obj, event, 1);
serial_rx_buffer_set(obj, rx, rx_length, rx_width);
serial_rx_set_char_match(obj, char_match);
//UART_HAL_DisableReceiver(obj->serial.address);
//UART_HAL_FlushRxFifo(obj->serial.address);
//UART_HAL_EnableReceiver(obj->serial.address);
if (obj->serial.dma_usage_rx == DMA_USAGE_NEVER) {
// Interrupt way
serial_rx_enable_interrupt(obj, handler, 1);
} else {
// DMA way
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
PDMA_T *pdma_base = dma_modbase();
pdma_base->CHCTL |= 1 << obj->serial.dma_chn_id_rx; // Enable this DMA channel
PDMA_SetTransferMode(obj->serial.dma_chn_id_rx,
((struct nu_uart_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA
0, // Scatter-gather disabled
0); // Scatter-gather descriptor address
PDMA_SetTransferCnt(obj->serial.dma_chn_id_rx,
(rx_width == 8) ? PDMA_WIDTH_8 : (rx_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
rx_length);
PDMA_SetTransferAddr(obj->serial.dma_chn_id_rx,
(uint32_t) NU_MODBASE(obj->serial.uart), // Source address
PDMA_SAR_FIX, // Source address fixed
(uint32_t) rx, // NOTE:
// NUC472: End of destination address
// M451: Start of destination address
PDMA_DAR_INC); // Destination address incremental
PDMA_SetBurstType(obj->serial.dma_chn_id_rx,
PDMA_REQ_SINGLE, // Single mode
0); // Burst size
PDMA_EnableInt(obj->serial.dma_chn_id_rx,
PDMA_INT_TRANS_DONE); // Interrupt type
// Register DMA event handler
dma_set_handler(obj->serial.dma_chn_id_rx, (uint32_t) uart_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL);
serial_rx_enable_interrupt(obj, handler, 1);
/* We needn't actually enable UART INT to go UART ISR -> handler.
* Instead, as PDMA INT is triggered, we will go PDMA ISR -> UART ISR -> handler
* with serial_tx/rx_enable_interrupt having set up this call path. */
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
((UART_T *) NU_MODBASE(obj->serial.uart))->INTEN |= UART_INTEN_RXPDMAEN_Msk; // Start DMA transfer
}
}
void serial_tx_abort_asynch(serial_t *obj)
{
// Flush Tx FIFO. Otherwise, output data may get lost on this change.
while (! UART_IS_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart))));
if (obj->serial.dma_usage_tx != DMA_USAGE_NEVER) {
PDMA_T *pdma_base = dma_modbase();
if (obj->serial.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
PDMA_DisableInt(obj->serial.dma_chn_id_tx, PDMA_INT_TRANS_DONE);
// FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
//PDMA_STOP(obj->serial.dma_chn_id_tx);
pdma_base->CHCTL &= ~(1 << obj->serial.dma_chn_id_tx);
}
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_TXPDMAEN_Msk);
}
// Necessary for both interrupt way and DMA way
serial_enable_interrupt(obj, TxIrq, 0);
serial_rollback_interrupt(obj, TxIrq);
}
void serial_rx_abort_asynch(serial_t *obj)
{
if (obj->serial.dma_usage_rx != DMA_USAGE_NEVER) {
PDMA_T *pdma_base = dma_modbase();
if (obj->serial.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
PDMA_DisableInt(obj->serial.dma_chn_id_rx, PDMA_INT_TRANS_DONE);
// FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
//PDMA_STOP(obj->serial.dma_chn_id_rx);
pdma_base->CHCTL &= ~(1 << obj->serial.dma_chn_id_rx);
}
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RXPDMAEN_Msk);
}
// Necessary for both interrupt way and DMA way
serial_enable_interrupt(obj, RxIrq, 0);
serial_rollback_interrupt(obj, RxIrq);
}
uint8_t serial_tx_active(serial_t *obj)
{
// NOTE: Judge by serial_is_irq_en(obj, TxIrq) doesn't work with sync/async modes interleaved. Change with TX FIFO empty flag.
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
return (obj->serial.vec == var->vec_async);
}
uint8_t serial_rx_active(serial_t *obj)
{
// NOTE: Judge by serial_is_irq_en(obj, RxIrq) doesn't work with sync/async modes interleaved. Change with RX FIFO empty flag.
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
return (obj->serial.vec == var->vec_async);
}
int serial_irq_handler_asynch(serial_t *obj)
{
int event_rx = 0;
int event_tx = 0;
// Necessary for both interrupt way and DMA way
if (serial_is_irq_en(obj, RxIrq)) {
event_rx = serial_rx_event_check(obj);
if (event_rx) {
serial_rx_abort_asynch(obj);
}
}
if (serial_is_irq_en(obj, TxIrq)) {
event_tx = serial_tx_event_check(obj);
if (event_tx) {
serial_tx_abort_asynch(obj);
}
}
return (obj->serial.event & (event_rx | event_tx));
}
static void uart0_vec_async(void)
{
uart_irq_async(uart0_var.obj);
}
static void uart1_vec_async(void)
{
uart_irq_async(uart1_var.obj);
}
static void uart2_vec_async(void)
{
uart_irq_async(uart2_var.obj);
}
static void uart3_vec_async(void)
{
uart_irq_async(uart3_var.obj);
}
static void uart_irq_async(serial_t *obj)
{
if (serial_is_irq_en(obj, RxIrq)) {
(*obj->serial.irq_handler_rx_async)();
}
if (serial_is_irq_en(obj, TxIrq)) {
(*obj->serial.irq_handler_tx_async)();
}
}
static void serial_rx_set_char_match(serial_t *obj, uint8_t char_match)
{
obj->char_match = char_match;
obj->char_found = 0;
}
static void serial_tx_enable_event(serial_t *obj, int event, uint8_t enable)
{
obj->serial.event &= ~SERIAL_EVENT_TX_MASK;
obj->serial.event |= (event & SERIAL_EVENT_TX_MASK);
//if (event & SERIAL_EVENT_TX_COMPLETE) {
//}
}
static void serial_rx_enable_event(serial_t *obj, int event, uint8_t enable)
{
obj->serial.event &= ~SERIAL_EVENT_RX_MASK;
obj->serial.event |= (event & SERIAL_EVENT_RX_MASK);
//if (event & SERIAL_EVENT_RX_COMPLETE) {
//}
//if (event & SERIAL_EVENT_RX_OVERRUN_ERROR) {
//}
if (event & SERIAL_EVENT_RX_FRAMING_ERROR) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RLSIEN_Msk);
}
if (event & SERIAL_EVENT_RX_PARITY_ERROR) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_RLSIEN_Msk);
}
if (event & SERIAL_EVENT_RX_OVERFLOW) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_BUFERRIEN_Msk);
}
//if (event & SERIAL_EVENT_RX_CHARACTER_MATCH) {
//}
}
static int serial_is_tx_complete(serial_t *obj)
{
// NOTE: Exclude tx fifo empty check due to no such interrupt on DMA way
//return (obj->tx_buff.pos == obj->tx_buff.length) && UART_GET_TX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart)));
// FIXME: Premature abort???
return (obj->tx_buff.pos == obj->tx_buff.length);
}
static int serial_is_rx_complete(serial_t *obj)
{
//return (obj->rx_buff.pos == obj->rx_buff.length) && UART_GET_RX_EMPTY(((UART_T *) NU_MODBASE(obj->serial.uart)));
return (obj->rx_buff.pos == obj->rx_buff.length);
}
static uint32_t serial_tx_event_check(serial_t *obj)
{
UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
if (uart_base->INTSTS & UART_INTSTS_THREINT_Msk) {
// Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next write.
UART_DISABLE_INT(uart_base, UART_INTEN_THREIEN_Msk);
}
uint32_t event = 0;
if (obj->serial.dma_usage_tx == DMA_USAGE_NEVER) {
serial_write_async(obj);
}
if (serial_is_tx_complete(obj)) {
event |= SERIAL_EVENT_TX_COMPLETE;
}
return event;
}
static uint32_t serial_rx_event_check(serial_t *obj)
{
UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
if (uart_base->INTSTS & (UART_INTSTS_RDAINT_Msk | UART_INTSTS_RXTOINT_Msk)) {
// Simulate clear of the interrupt flag. Temporarily disable the interrupt here and to be recovered on next read.
UART_DISABLE_INT(uart_base, (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
}
uint32_t event = 0;
if (uart_base->FIFOSTS & UART_FIFOSTS_BIF_Msk) {
uart_base->FIFOSTS = UART_FIFOSTS_BIF_Msk;
}
if (uart_base->FIFOSTS & UART_FIFOSTS_FEF_Msk) {
uart_base->FIFOSTS = UART_FIFOSTS_FEF_Msk;
event |= SERIAL_EVENT_RX_FRAMING_ERROR;
}
if (uart_base->FIFOSTS & UART_FIFOSTS_PEF_Msk) {
uart_base->FIFOSTS = UART_FIFOSTS_PEF_Msk;
event |= SERIAL_EVENT_RX_PARITY_ERROR;
}
if (uart_base->FIFOSTS & UART_FIFOSTS_RXOVIF_Msk) {
uart_base->FIFOSTS = UART_FIFOSTS_RXOVIF_Msk;
event |= SERIAL_EVENT_RX_OVERFLOW;
}
if (obj->serial.dma_usage_rx == DMA_USAGE_NEVER) {
serial_read_async(obj);
}
if (serial_is_rx_complete(obj)) {
event |= SERIAL_EVENT_RX_COMPLETE;
}
if ((obj->char_match != SERIAL_RESERVED_CHAR_MATCH) && obj->char_found) {
event |= SERIAL_EVENT_RX_CHARACTER_MATCH;
// FIXME: Timing to reset char_found?
//obj->char_found = 0;
}
return event;
}
static void uart_dma_handler_tx(uint32_t id, uint32_t event_dma)
{
serial_t *obj = (serial_t *) id;
// FIXME: Pass this error to caller
if (event_dma & DMA_EVENT_ABORT) {
}
// Expect UART IRQ will catch this transfer done event
if (event_dma & DMA_EVENT_TRANSFER_DONE) {
obj->tx_buff.pos = obj->tx_buff.length;
}
// FIXME: Pass this error to caller
if (event_dma & DMA_EVENT_TIMEOUT) {
}
uart_irq_async(obj);
}
static void uart_dma_handler_rx(uint32_t id, uint32_t event_dma)
{
serial_t *obj = (serial_t *) id;
// FIXME: Pass this error to caller
if (event_dma & DMA_EVENT_ABORT) {
}
// Expect UART IRQ will catch this transfer done event
if (event_dma & DMA_EVENT_TRANSFER_DONE) {
obj->rx_buff.pos = obj->rx_buff.length;
}
// FIXME: Pass this error to caller
if (event_dma & DMA_EVENT_TIMEOUT) {
}
uart_irq_async(obj);
}
static int serial_write_async(serial_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
UART_T *uart_base = (UART_T *) NU_MODBASE(obj->serial.uart);
uint32_t tx_fifo_max = ((struct nu_uart_var *) modinit->var)->fifo_size_tx;
uint32_t tx_fifo_busy = (uart_base->FIFOSTS & UART_FIFOSTS_TXPTR_Msk) >> UART_FIFOSTS_TXPTR_Pos;
if (uart_base->FIFOSTS & UART_FIFOSTS_TXFULL_Msk) {
tx_fifo_busy = tx_fifo_max;
}
uint32_t tx_fifo_free = tx_fifo_max - tx_fifo_busy;
if (tx_fifo_free == 0) {
// Simulate clear of the interrupt flag
if (obj->serial.inten_msk & UART_INTEN_THREIEN_Msk) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
}
return 0;
}
uint32_t bytes_per_word = obj->tx_buff.width / 8;
uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos;
int n_words = 0;
while (obj->tx_buff.pos < obj->tx_buff.length && tx_fifo_free >= bytes_per_word) {
switch (bytes_per_word) {
case 4:
UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++);
UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++);
case 2:
UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++);
case 1:
UART_WRITE(((UART_T *) NU_MODBASE(obj->serial.uart)), *tx ++);
}
n_words ++;
tx_fifo_free -= bytes_per_word;
obj->tx_buff.pos ++;
}
if (n_words) {
// Simulate clear of the interrupt flag
if (obj->serial.inten_msk & UART_INTEN_THREIEN_Msk) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
}
}
return n_words;
}
static int serial_read_async(serial_t *obj)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
uint32_t rx_fifo_busy = (((UART_T *) NU_MODBASE(obj->serial.uart))->FIFOSTS & UART_FIFOSTS_RXPTR_Msk) >> UART_FIFOSTS_RXPTR_Pos;
//uint32_t rx_fifo_free = ((struct nu_uart_var *) modinit->var)->fifo_size_rx - rx_fifo_busy;
//if (rx_fifo_free == 0) {
// return 0;
//}
uint32_t bytes_per_word = obj->rx_buff.width / 8;
uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos;
int n_words = 0;
while (obj->rx_buff.pos < obj->rx_buff.length && rx_fifo_busy >= bytes_per_word) {
switch (bytes_per_word) {
case 4:
*rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
*rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
case 2:
*rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
case 1:
*rx ++ = UART_READ(((UART_T *) NU_MODBASE(obj->serial.uart)));
}
n_words ++;
rx_fifo_busy -= bytes_per_word;
obj->rx_buff.pos ++;
if ((obj->serial.event & SERIAL_EVENT_RX_CHARACTER_MATCH) &&
obj->char_match != SERIAL_RESERVED_CHAR_MATCH) {
uint8_t *rx_cmp = rx;
switch (bytes_per_word) {
case 4:
rx_cmp -= 2;
case 2:
rx_cmp --;
case 1:
rx_cmp --;
}
if (*rx_cmp == obj->char_match) {
obj->char_found = 1;
break;
}
}
}
if (n_words) {
// Simulate clear of the interrupt flag
if (obj->serial.inten_msk & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk)) {
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
}
}
return n_words;
}
static void serial_tx_buffer_set(serial_t *obj, const void *tx, size_t length, uint8_t width)
{
obj->tx_buff.buffer = (void *) tx;
obj->tx_buff.length = length;
obj->tx_buff.pos = 0;
obj->tx_buff.width = width;
}
static void serial_rx_buffer_set(serial_t *obj, void *rx, size_t length, uint8_t width)
{
obj->rx_buff.buffer = rx;
obj->rx_buff.length = length;
obj->rx_buff.pos = 0;
obj->rx_buff.width = width;
}
static void serial_tx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t enable)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
// Necessary for both interrupt way and DMA way
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// With our own async vector, tx/rx handlers can be different.
obj->serial.vec = var->vec_async;
obj->serial.irq_handler_tx_async = (void (*)(void)) handler;
serial_enable_interrupt(obj, TxIrq, enable);
}
static void serial_rx_enable_interrupt(serial_t *obj, uint32_t handler, uint8_t enable)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
// Necessary for both interrupt way and DMA way
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// With our own async vector, tx/rx handlers can be different.
obj->serial.vec = var->vec_async;
obj->serial.irq_handler_rx_async = (void (*) (void)) handler;
serial_enable_interrupt(obj, RxIrq, enable);
}
static void serial_enable_interrupt(serial_t *obj, SerialIrq irq, uint32_t enable)
{
if (enable) {
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
NVIC_SetVector(modinit->irq_n, (uint32_t) obj->serial.vec);
NVIC_EnableIRQ(modinit->irq_n);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
// Multiple serial S/W objects for single UART H/W module possibly.
// Bind serial S/W object to UART H/W module as interrupt is enabled.
var->obj = obj;
switch (irq) {
// NOTE: Setting inten_msk first to avoid race condition
case RxIrq:
obj->serial.inten_msk = obj->serial.inten_msk | (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk);
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
break;
case TxIrq:
obj->serial.inten_msk = obj->serial.inten_msk | UART_INTEN_THREIEN_Msk;
UART_ENABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
break;
}
}
else { // disable
switch (irq) {
case RxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk));
obj->serial.inten_msk = obj->serial.inten_msk & ~(UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk);
break;
case TxIrq:
UART_DISABLE_INT(((UART_T *) NU_MODBASE(obj->serial.uart)), UART_INTEN_THREIEN_Msk);
obj->serial.inten_msk = obj->serial.inten_msk & ~UART_INTEN_THREIEN_Msk;
break;
}
}
}
static void serial_rollback_interrupt(serial_t *obj, SerialIrq irq)
{
const struct nu_modinit_s *modinit = get_modinit(obj->serial.uart, uart_modinit_tab);
MBED_ASSERT(modinit != NULL);
MBED_ASSERT(modinit->modname == (int) obj->serial.uart);
struct nu_uart_var *var = (struct nu_uart_var *) modinit->var;
obj->serial.vec = var->vec;
serial_enable_interrupt(obj, irq, obj->serial.irq_en);
}
static void serial_check_dma_usage(DMAUsage *dma_usage, int *dma_ch)
{
if (*dma_usage != DMA_USAGE_NEVER) {
if (*dma_ch == DMA_ERROR_OUT_OF_CHANNELS) {
*dma_ch = dma_channel_allocate(DMA_CAP_NONE);
}
if (*dma_ch == DMA_ERROR_OUT_OF_CHANNELS) {
*dma_usage = DMA_USAGE_NEVER;
}
}
else {
dma_channel_free(*dma_ch);
*dma_ch = DMA_ERROR_OUT_OF_CHANNELS;
}
}
#endif // #if DEVICE_SERIAL_ASYNCH
static int serial_is_irq_en(serial_t *obj, SerialIrq irq)
{
int inten_msk = 0;
switch (irq) {
case RxIrq:
inten_msk = obj->serial.inten_msk & (UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk);
break;
case TxIrq:
inten_msk = obj->serial.inten_msk & UART_INTEN_THREIEN_Msk;
break;
}
return !! inten_msk;
}
bool serial_can_deep_sleep(void)
{
bool sleep_allowed = 1;
const struct nu_modinit_s *modinit = uart_modinit_tab;
while (modinit->var != NULL) {
struct nu_uart_var *uart_var = (struct nu_uart_var *) modinit->var;
UART_T *uart_base = (UART_T *) NU_MODBASE(modinit->modname);
if (uart_var->ref_cnt > 0) {
if (!UART_IS_TX_EMPTY(uart_base)) {
sleep_allowed = 0;
break;
}
}
modinit++;
}
return sleep_allowed;
}
const PinMap *serial_tx_pinmap()
{
return PinMap_UART_TX;
}
const PinMap *serial_rx_pinmap()
{
return PinMap_UART_RX;
}
const PinMap *serial_cts_pinmap()
{
return PinMap_UART_CTS;
}
const PinMap *serial_rts_pinmap()
{
return PinMap_UART_RTS;
}
#endif // #if DEVICE_SERIAL