mirror of https://github.com/ARMmbed/mbed-os.git
383 lines
13 KiB
C
383 lines
13 KiB
C
/* ----------------------------------------------------------------------
|
|
* Copyright (C) 2010 ARM Limited. All rights reserved.
|
|
*
|
|
* $Date: 15. February 2012
|
|
* $Revision: V1.1.0
|
|
*
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_rfft_f32.c
|
|
*
|
|
* Description: RFFT & RIFFT Floating point process function
|
|
*
|
|
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
|
*
|
|
* Version 1.1.0 2012/02/15
|
|
* Updated with more optimizations, bug fixes and minor API changes.
|
|
*
|
|
* Version 1.0.10 2011/7/15
|
|
* Big Endian support added and Merged M0 and M3/M4 Source code.
|
|
*
|
|
* Version 1.0.3 2010/11/29
|
|
* Re-organized the CMSIS folders and updated documentation.
|
|
*
|
|
* Version 1.0.2 2010/11/11
|
|
* Documentation updated.
|
|
*
|
|
* Version 1.0.1 2010/10/05
|
|
* Production release and review comments incorporated.
|
|
*
|
|
* Version 1.0.0 2010/09/20
|
|
* Production release and review comments incorporated.
|
|
*
|
|
* Version 0.0.7 2010/06/10
|
|
* Misra-C changes done
|
|
* -------------------------------------------------------------------- */
|
|
|
|
#include "arm_math.h"
|
|
|
|
/**
|
|
* @ingroup groupTransforms
|
|
*/
|
|
|
|
/**
|
|
* @defgroup RFFT_RIFFT Real FFT Functions
|
|
*
|
|
* \par
|
|
* Complex FFT/IFFT typically assumes complex input and output. However many applications use real valued data in time domain.
|
|
* Real FFT/IFFT efficiently process real valued sequences with the advantage of requirement of low memory and with less complexity.
|
|
*
|
|
* \par
|
|
* This set of functions implements Real Fast Fourier Transforms(RFFT) and Real Inverse Fast Fourier Transform(RIFFT)
|
|
* for Q15, Q31, and floating-point data types.
|
|
*
|
|
*
|
|
* \par Algorithm:
|
|
*
|
|
* <b>Real Fast Fourier Transform:</b>
|
|
* \par
|
|
* Real FFT of N-point is calculated using CFFT of N/2-point and Split RFFT process as shown below figure.
|
|
* \par
|
|
* \image html RFFT.gif "Real Fast Fourier Transform"
|
|
* \par
|
|
* The RFFT functions operate on blocks of input and output data and each call to the function processes
|
|
* <code>fftLenR</code> samples through the transform. <code>pSrc</code> points to input array containing <code>fftLenR</code> values.
|
|
* <code>pDst</code> points to output array containing <code>2*fftLenR</code> values. \n
|
|
* Input for real FFT is in the order of
|
|
* <pre>{real[0], real[1], real[2], real[3], ..}</pre>
|
|
* Output for real FFT is complex and are in the order of
|
|
* <pre>{real(0), imag(0), real(1), imag(1), ...}</pre>
|
|
*
|
|
* <b>Real Inverse Fast Fourier Transform:</b>
|
|
* \par
|
|
* Real IFFT of N-point is calculated using Split RIFFT process and CFFT of N/2-point as shown below figure.
|
|
* \par
|
|
* \image html RIFFT.gif "Real Inverse Fast Fourier Transform"
|
|
* \par
|
|
* The RIFFT functions operate on blocks of input and output data and each call to the function processes
|
|
* <code>2*fftLenR</code> samples through the transform. <code>pSrc</code> points to input array containing <code>2*fftLenR</code> values.
|
|
* <code>pDst</code> points to output array containing <code>fftLenR</code> values. \n
|
|
* Input for real IFFT is complex and are in the order of
|
|
* <pre>{real(0), imag(0), real(1), imag(1), ...}</pre>
|
|
* Output for real IFFT is real and in the order of
|
|
* <pre>{real[0], real[1], real[2], real[3], ..}</pre>
|
|
*
|
|
* \par Lengths supported by the transform:
|
|
* \par
|
|
* Real FFT/IFFT supports the lengths [128, 512, 2048], as it internally uses CFFT/CIFFT.
|
|
*
|
|
* \par Instance Structure
|
|
* A separate instance structure must be defined for each Instance but the twiddle factors can be reused.
|
|
* There are separate instance structure declarations for each of the 3 supported data types.
|
|
*
|
|
* \par Initialization Functions
|
|
* There is also an associated initialization function for each data type.
|
|
* The initialization function performs the following operations:
|
|
* - Sets the values of the internal structure fields.
|
|
* - Initializes twiddle factor tables.
|
|
* - Initializes CFFT data structure fields.
|
|
* \par
|
|
* Use of the initialization function is optional.
|
|
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
|
|
* To place an instance structure into a const data section, the instance structure must be manually initialized.
|
|
* Manually initialize the instance structure as follows:
|
|
* <pre>
|
|
*arm_rfft_instance_f32 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
|
|
*arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
|
|
*arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
|
|
* </pre>
|
|
* where <code>fftLenReal</code> length of RFFT/RIFFT; <code>fftLenBy2</code> length of CFFT/CIFFT.
|
|
* <code>ifftFlagR</code> Flag for selection of RFFT or RIFFT(Set ifftFlagR to calculate RIFFT otherwise calculates RFFT);
|
|
* <code>bitReverseFlagR</code> Flag for selection of output order(Set bitReverseFlagR to output in normal order otherwise output in bit reversed order);
|
|
* <code>twidCoefRModifier</code> modifier for twiddle factor table which supports 128, 512, 2048 RFFT lengths with same table;
|
|
* <code>pTwiddleAReal</code>points to A array of twiddle coefficients; <code>pTwiddleBReal</code>points to B array of twiddle coefficients;
|
|
* <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure also needs to be initialized, refer to arm_cfft_radix4_f32() for details regarding
|
|
* static initialization of cfft structure.
|
|
*
|
|
* \par Fixed-Point Behavior
|
|
* Care must be taken when using the fixed-point versions of the RFFT/RIFFT function.
|
|
* Refer to the function specific documentation below for usage guidelines.
|
|
*/
|
|
|
|
/*--------------------------------------------------------------------
|
|
* Internal functions prototypes
|
|
*--------------------------------------------------------------------*/
|
|
|
|
void arm_split_rfft_f32(
|
|
float32_t * pSrc,
|
|
uint32_t fftLen,
|
|
float32_t * pATable,
|
|
float32_t * pBTable,
|
|
float32_t * pDst,
|
|
uint32_t modifier);
|
|
void arm_split_rifft_f32(
|
|
float32_t * pSrc,
|
|
uint32_t fftLen,
|
|
float32_t * pATable,
|
|
float32_t * pBTable,
|
|
float32_t * pDst,
|
|
uint32_t modifier);
|
|
|
|
/**
|
|
* @addtogroup RFFT_RIFFT
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Processing function for the floating-point RFFT/RIFFT.
|
|
* @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure.
|
|
* @param[in] *pSrc points to the input buffer.
|
|
* @param[out] *pDst points to the output buffer.
|
|
* @return none.
|
|
*/
|
|
|
|
void arm_rfft_f32(
|
|
const arm_rfft_instance_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pDst)
|
|
{
|
|
const arm_cfft_radix4_instance_f32 *S_CFFT = S->pCfft;
|
|
|
|
|
|
/* Calculation of Real IFFT of input */
|
|
if(S->ifftFlagR == 1u)
|
|
{
|
|
/* Real IFFT core process */
|
|
arm_split_rifft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal,
|
|
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
|
|
|
|
|
|
/* Complex radix-4 IFFT process */
|
|
arm_radix4_butterfly_inverse_f32(pDst, S_CFFT->fftLen,
|
|
S_CFFT->pTwiddle,
|
|
S_CFFT->twidCoefModifier,
|
|
S_CFFT->onebyfftLen);
|
|
|
|
/* Bit reversal process */
|
|
if(S->bitReverseFlagR == 1u)
|
|
{
|
|
arm_bitreversal_f32(pDst, S_CFFT->fftLen,
|
|
S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
/* Calculation of RFFT of input */
|
|
|
|
/* Complex radix-4 FFT process */
|
|
arm_radix4_butterfly_f32(pSrc, S_CFFT->fftLen,
|
|
S_CFFT->pTwiddle, S_CFFT->twidCoefModifier);
|
|
|
|
/* Bit reversal process */
|
|
if(S->bitReverseFlagR == 1u)
|
|
{
|
|
arm_bitreversal_f32(pSrc, S_CFFT->fftLen,
|
|
S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
|
|
}
|
|
|
|
|
|
/* Real FFT core process */
|
|
arm_split_rfft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal,
|
|
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* @} end of RFFT_RIFFT group
|
|
*/
|
|
|
|
/**
|
|
* @brief Core Real FFT process
|
|
* @param[in] *pSrc points to the input buffer.
|
|
* @param[in] fftLen length of FFT.
|
|
* @param[in] *pATable points to the twiddle Coef A buffer.
|
|
* @param[in] *pBTable points to the twiddle Coef B buffer.
|
|
* @param[out] *pDst points to the output buffer.
|
|
* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
|
|
* @return none.
|
|
*/
|
|
|
|
void arm_split_rfft_f32(
|
|
float32_t * pSrc,
|
|
uint32_t fftLen,
|
|
float32_t * pATable,
|
|
float32_t * pBTable,
|
|
float32_t * pDst,
|
|
uint32_t modifier)
|
|
{
|
|
uint32_t i; /* Loop Counter */
|
|
float32_t outR, outI; /* Temporary variables for output */
|
|
float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
|
|
float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */
|
|
float32_t *pDst1 = &pDst[2], *pDst2 = &pDst[(4u * fftLen) - 1u]; /* temp pointers for output buffer */
|
|
float32_t *pSrc1 = &pSrc[2], *pSrc2 = &pSrc[(2u * fftLen) - 1u]; /* temp pointers for input buffer */
|
|
|
|
/* Init coefficient pointers */
|
|
pCoefA = &pATable[modifier * 2u];
|
|
pCoefB = &pBTable[modifier * 2u];
|
|
|
|
i = fftLen - 1u;
|
|
|
|
while(i > 0u)
|
|
{
|
|
/*
|
|
outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
|
|
+ pSrc[2 * n - 2 * i] * pBTable[2 * i] +
|
|
pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
|
|
*/
|
|
|
|
/* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
|
|
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
|
|
|
|
/* read pATable[2 * i] */
|
|
CoefA1 = *pCoefA++;
|
|
/* pATable[2 * i + 1] */
|
|
CoefA2 = *pCoefA;
|
|
|
|
/* pSrc[2 * i] * pATable[2 * i] */
|
|
outR = *pSrc1 * CoefA1;
|
|
/* pSrc[2 * i] * CoefA2 */
|
|
outI = *pSrc1++ * CoefA2;
|
|
|
|
/* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */
|
|
outR -= (*pSrc1 + *pSrc2) * CoefA2;
|
|
/* pSrc[2 * i + 1] * CoefA1 */
|
|
outI += *pSrc1++ * CoefA1;
|
|
|
|
CoefB1 = *pCoefB;
|
|
|
|
/* pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */
|
|
outI -= *pSrc2-- * CoefB1;
|
|
/* pSrc[2 * fftLen - 2 * i] * CoefA2 */
|
|
outI -= *pSrc2 * CoefA2;
|
|
|
|
/* pSrc[2 * fftLen - 2 * i] * CoefB1 */
|
|
outR += *pSrc2-- * CoefB1;
|
|
|
|
/* write output */
|
|
*pDst1++ = outR;
|
|
*pDst1++ = outI;
|
|
|
|
/* write complex conjugate output */
|
|
*pDst2-- = -outI;
|
|
*pDst2-- = outR;
|
|
|
|
/* update coefficient pointer */
|
|
pCoefB = pCoefB + (modifier * 2u);
|
|
pCoefA = pCoefA + ((modifier * 2u) - 1u);
|
|
|
|
i--;
|
|
|
|
}
|
|
|
|
pDst[2u * fftLen] = pSrc[0] - pSrc[1];
|
|
pDst[(2u * fftLen) + 1u] = 0.0f;
|
|
|
|
pDst[0] = pSrc[0] + pSrc[1];
|
|
pDst[1] = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Core Real IFFT process
|
|
* @param[in] *pSrc points to the input buffer.
|
|
* @param[in] fftLen length of FFT.
|
|
* @param[in] *pATable points to the twiddle Coef A buffer.
|
|
* @param[in] *pBTable points to the twiddle Coef B buffer.
|
|
* @param[out] *pDst points to the output buffer.
|
|
* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
|
|
* @return none.
|
|
*/
|
|
|
|
void arm_split_rifft_f32(
|
|
float32_t * pSrc,
|
|
uint32_t fftLen,
|
|
float32_t * pATable,
|
|
float32_t * pBTable,
|
|
float32_t * pDst,
|
|
uint32_t modifier)
|
|
{
|
|
float32_t outR, outI; /* Temporary variables for output */
|
|
float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
|
|
float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */
|
|
float32_t *pSrc1 = &pSrc[0], *pSrc2 = &pSrc[(2u * fftLen) + 1u];
|
|
|
|
pCoefA = &pATable[0];
|
|
pCoefB = &pBTable[0];
|
|
|
|
while(fftLen > 0u)
|
|
{
|
|
/*
|
|
outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
|
|
pIn[2 * n - 2 * i] * pBTable[2 * i] -
|
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
|
|
|
|
outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
|
|
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
|
|
|
|
*/
|
|
|
|
CoefA1 = *pCoefA++;
|
|
CoefA2 = *pCoefA;
|
|
|
|
/* outR = (pSrc[2 * i] * CoefA1 */
|
|
outR = *pSrc1 * CoefA1;
|
|
|
|
/* - pSrc[2 * i] * CoefA2 */
|
|
outI = -(*pSrc1++) * CoefA2;
|
|
|
|
/* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */
|
|
outR += (*pSrc1 + *pSrc2) * CoefA2;
|
|
|
|
/* pSrc[2 * i + 1] * CoefA1 */
|
|
outI += (*pSrc1++) * CoefA1;
|
|
|
|
CoefB1 = *pCoefB;
|
|
|
|
/* - pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */
|
|
outI -= *pSrc2-- * CoefB1;
|
|
|
|
/* pSrc[2 * fftLen - 2 * i] * CoefB1 */
|
|
outR += *pSrc2 * CoefB1;
|
|
|
|
/* pSrc[2 * fftLen - 2 * i] * CoefA2 */
|
|
outI += *pSrc2-- * CoefA2;
|
|
|
|
/* write output */
|
|
*pDst++ = outR;
|
|
*pDst++ = outI;
|
|
|
|
/* update coefficient pointer */
|
|
pCoefB = pCoefB + (modifier * 2u);
|
|
pCoefA = pCoefA + ((modifier * 2u) - 1u);
|
|
|
|
/* Decrement loop count */
|
|
fftLen--;
|
|
}
|
|
|
|
}
|