mbed-os/SPIFBlockDevice.cpp

673 lines
18 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2016 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SPIFBlockDevice.h"
#include "mbed_critical.h"
// Read/write/erase sizes
#define SPIF_READ_SIZE 1
#define SPIF_PROG_SIZE 1
#define SPIF_SE_SIZE 4096
#define SPIF_TIMEOUT 10000
// Debug available
#define SPIF_DEBUG 0
// MX25R Series Register Command Table.
enum ops {
SPIF_NOP = 0x00, // No operation
SPIF_READ = 0x03, // Read data
SPIF_PROG = 0x02, // Program data
SPIF_SE = 0x20, // 4KB Sector Erase
SPIF_CE = 0xc7, // Chip Erase
SPIF_SFDP = 0x5a, // Read SFDP
SPIF_WREN = 0x06, // Write Enable
SPIF_WRDI = 0x04, // Write Disable
SPIF_RDSR = 0x05, // Read Status Register
SPIF_RDID = 0x9f, // Read Manufacturer and JDEC Device ID
};
// Status register from RDSR
// [- stuff -| wel | wip ]
// [- 6 -| 1 | 1 ]
#define SPIF_WEL 0x2
#define SPIF_WIP 0x1
SPIFBlockDevice::SPIFBlockDevice(
PinName mosi, PinName miso, PinName sclk, PinName cs, int freq)
: _spi(mosi, miso, sclk), _cs(cs), _size(0), _is_initialized(false), _init_ref_count(0)
{
_cs = 1;
_spi.frequency(freq);
_address_size = QSPI_CFG_ADDR_SIZE_24;
// Initial SFDP read tables are read with 8 dummy cycles
_read_dummy_and_mode_cycles = 8;
_dummy_and_mode_cycles = 8;
}
int SPIFBlockDevice::init()
{
uint8_t vendor_device_ids[4];
size_t data_length = 3;
int status = SPIF_BD_ERROR_OK;
uint32_t basic_table_addr = NULL;
size_t basic_table_size = 0;
uint32_t sector_map_table_addr = NULL;
size_t sector_map_table_size = 0;
int qspi_status = QSPI_STATUS_OK;
_mutex.lock();
if (_is_initialized == true) {
goto exit_point;
}
// Soft Reset
/*
if ( -1 == _reset_flash_mem()) {
tr_error("ERROR: init - Unable to initialize flash memory, tests failed\n");
status = QSPIF_BD_ERROR_DEVICE_ERROR;
goto exit_point;
} else {
tr_info("INFO: Initialize flash memory OK\n");
}
*/
/* Read Manufacturer ID (1byte), and Device ID (2bytes)*/
qspi_status = _qspi_send_read_command(QSPIF_RDID, (char *)vendor_device_ids, 0x0 /*address*/, data_length);
if (qspi_status != QSPI_STATUS_OK) {
tr_error("ERROR: init - Read Vendor ID Failed");
status = QSPIF_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
switch (vendor_device_ids[0]) {
case 0xbf:
// SST devices come preset with block protection
// enabled for some regions, issue write disable instruction to clear
_set_write_enable();
_qspi_send_general_command(QSPIF_WRDI, -1, NULL, 0, NULL, 0);
break;
}
//Synchronize Device
if ( false == _is_mem_ready()) {
tr_error("ERROR: init - _is_mem_ready Failed");
status = QSPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
/**************************** Parse SFDP Header ***********************************/
if ( 0 != _sfdp_parse_sfdp_headers(basic_table_addr, basic_table_size, sector_map_table_addr, sector_map_table_size)) {
tr_error("ERROR: init - Parse SFDP Headers Failed");
status = QSPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
/**************************** Parse Basic Parameters Table ***********************************/
if ( 0 != _sfdp_parse_basic_param_table(basic_table_addr, basic_table_size) ) {
tr_error("ERROR: init - Parse Basic Param Table Failed");
status = QSPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
/**************************** Parse Sector Map Table ***********************************/
_region_size_bytes[0] =
_device_size_bytes; // If there's no region map, we have a single region sized the entire device size
_region_high_boundary[0] = _device_size_bytes - 1;
if ( (sector_map_table_addr != NULL) && (0 != sector_map_table_size) ) {
tr_info("INFO: init - Parsing Sector Map Table - addr: 0x%xh, Size: %d", sector_map_table_addr,
sector_map_table_size);
if (0 != _sfdp_parse_sector_map_table(sector_map_table_addr, sector_map_table_size) ) {
tr_error("ERROR: init - Parse Sector Map Table Failed");
status = QSPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
}
// Configure BUS Mode to 1_1_1 for all commands other than Read
_qspi_configure_format(QSPI_CFG_BUS_SINGLE, QSPI_CFG_BUS_SINGLE, QSPI_CFG_ADDR_SIZE_24, QSPI_CFG_BUS_SINGLE,
QSPI_CFG_ALT_SIZE_8, QSPI_CFG_BUS_SINGLE, 0);
_is_initialized = true;
exit_point:
_mutex.unlock();
return status;
/**************************************************************************************************************/
if (!_is_initialized) {
_init_ref_count = 0;
}
uint32_t val = core_util_atomic_incr_u32(&_init_ref_count, 1);
if (val != 1) {
return BD_ERROR_OK;
}
// Initial SFDP read tables are read with 8 dummy cycles
_read_dummy_and_mode_cycles = 8;
// Check for vendor specific hacks, these should move into more general
// handling when possible. RDID is not used to verify a device is attached.
uint8_t id[3];
_cmdread(SPIF_RDID, 0, 3, 0x0, id);
switch (id[0]) {
case 0xbf:
// SST devices come preset with block protection
// enabled for some regions, issue gbpu instruction to clear
_wren();
_cmdwrite(0x98, 0, 0, 0x0, NULL);
break;
}
// Check that device is doing ok
int err = _sync();
if (err) {
return BD_ERROR_DEVICE_ERROR;
}
// Check JEDEC serial flash discoverable parameters for device
// specific info
uint8_t header[16];
_cmdread(SPIF_SFDP, 4, 16, 0x0, header);
// Verify SFDP signature for sanity
// Also check that major/minor version is acceptable
if (!(memcmp(&header[0], "SFDP", 4) == 0 && header[5] == 1)) {
return BD_ERROR_DEVICE_ERROR;
}
// The SFDP spec indicates the standard table is always at offset 0
// in the parameter headers, we check just to be safe
if (!(header[8] == 0 && header[10] == 1)) {
return BD_ERROR_DEVICE_ERROR;
}
// Parameter table pointer, spi commands are BE, SFDP is LE,
// also sfdp command expects extra read wait byte
uint32_t table_addr = (
(header[14] << 24) |
(header[13] << 16) |
(header[12] << 8 ));
uint8_t table[8];
_cmdread(SPIF_SFDP, 4, 8, table_addr, table);
// Check erase size, currently only supports 4kbytes
// TODO support erase size != 4kbytes?
// TODO support other erase opcodes from the sector descriptions
if ((table[0] & 0x3) != 0x1 || table[1] != SPIF_SE) {
return BD_ERROR_DEVICE_ERROR;
}
// Check address size, currently only supports 3byte addresses
// TODO support address > 3bytes?
// TODO check for devices larger than 2Gbits?
if ((table[2] & 0x4) != 0 || (table[7] & 0x80) != 0) {
return BD_ERROR_DEVICE_ERROR;
}
// Get device density, stored as size in bits - 1
uint32_t density = (
(table[7] << 24) |
(table[6] << 16) |
(table[5] << 8 ) |
(table[4] << 0 ));
_size = (density/8) + 1;
_is_initialized = true;
return 0;
}
int SPIFBlockDevice::deinit()
{
if (!_is_initialized) {
_init_ref_count = 0;
return 0;
}
uint32_t val = core_util_atomic_decr_u32(&_init_ref_count, 1);
if (val) {
return 0;
}
// Latch write disable just to keep noise
// from changing the device
_cmdwrite(SPIF_WRDI, 0, 0, 0x0, NULL);
_is_initialized = false;
return 0;
}
void SPIFBlockDevice::_cmdread(uint8_t inst, uint32_t addr, uint32_t data_size, uint8_t *data)
{
_cs = 0;
uint32_t dummy_bytes = _dummy_and_mode_cycles / 8;
uint8_t dummy_byte = 0x00;
uint8_t *addr_byte_ptr = &addr;
addr_byte_ptr += (_address_size-1)
// Write 1 byte Instruction
_spi.write(inst);
// Write Address (can be either 3 or 4 bytes long)
for (uint32_t i = 0; i < _address_size; i++) {
_spi.write(*addr_byte_ptr);
addr_byte_ptr--;
}
// Write Dummy Cycles Bytes
for (uint32_t i = 0; i < dummy_bytes; i++) {
_spi.write(dummy_byte);
}
// Read Data
for (uint32_t i = 0; i < data_size; i++) {
data[i] = _spi.write(0);
}
_cs = 1;
}
void SPIFBlockDevice::_cmdwrite(uint8_t inst, uint32_t addr, uint32_t data_size, const uint8_t *data)
{
_cs = 0;
uint32_t dummy_bytes = _dummy_and_mode_cycles / 8;
uint8_t dummy_byte = 0x00;
uint8_t *addr_byte_ptr = &addr;
addr_byte_ptr += (_address_size-1)
// Write 1 byte Instruction
_spi.write(inst);
// Write Address (can be either 3 or 4 bytes long)
for (uint32_t i = 0; i < _address_size; i++) {
_spi.write(*addr_byte_ptr);
addr_byte_ptr--;
}
// Write Dummy Cycles Bytes
for (uint32_t i = 0; i < dummy_bytes; i++) {
_spi.write(dummy_byte);
}
// Write Data
for (uint32_t i = 0; i < data_size; i++) {
_spi.write(data[i]);
}
_cs = 1;
}
int SPIFBlockDevice::_sync()
{
for (int i = 0; i < SPIF_TIMEOUT; i++) {
// Read status register until write not-in-progress
uint8_t status;
_cmdread(SPIF_RDSR, 0, 1, 0x0, &status);
// Check WIP bit
if (!(status & SPIF_WIP)) {
return 0;
}
wait_ms(1);
}
return BD_ERROR_DEVICE_ERROR;
}
int SPIFBlockDevice::_wren()
{
_cmdwrite(SPIF_WREN, 0, 0, 0x0, NULL);
for (int i = 0; i < SPIF_TIMEOUT; i++) {
// Read status register until write latch is enabled
uint8_t status;
_cmdread(SPIF_RDSR, 0, 1, 0x0, &status);
// Check WEL bit
if (status & SPIF_WEL) {
return 0;
}
wait_ms(1);
}
return BD_ERROR_DEVICE_ERROR;
}
void SPIFBlockDevice::_spi_send_read_command(uint8_t read_inst, void *buffer, bd_addr_t addr, bd_size_t size)
{
uint32_t dummy_bytes = _dummy_and_mode_cycles / 8;
uint8_t dummy_byte = 0x00;
uint8_t *addr_byte_ptr = addr;
uint8_t *data = (uint8_t *)buffer;
addr_byte_ptr += (_address_size-1);
// Write 1 byte Instruction
_spi.write(read_inst);
// Write Address (can be either 3 or 4 bytes long)
for (uint32_t i = 0; i < _address_size; i++) {
_spi.write(*addr_byte_ptr);
addr_byte_ptr--;
}
// Write Dummy Cycles Bytes
for (uint32_t i = 0; i < dummy_bytes; i++) {
_spi.write(dummy_byte);
}
// Read Data
for (bd_size_t i = 0; i < size; i++) {
data[i] = _spi.write(0);
}
return;
}
void SPIFBlockDevice::_spi_send_program_command(unsigned int prog_inst, const void *buffer, bd_addr_t addr, bd_size_t size)
{
// Send Program (write) command to device driver
uint32_t dummy_bytes = _dummy_and_mode_cycles / 8;
uint8_t dummy_byte = 0x00;
uint8_t *addr_byte_ptr = addr;
uint8_t *data = (uint8_t *)buffer;
addr_byte_ptr += (_address_size-1)
// Write 1 byte Instruction
_spi.write(prog_inst);
// Write Address (can be either 3 or 4 bytes long)
for (uint32_t i = 0; i < _address_size; i++) {
_spi.write(*addr_byte_ptr);
addr_byte_ptr--;
}
// Write Dummy Cycles Bytes
for (uint32_t i = 0; i < dummy_bytes; i++) {
_spi.write(dummy_byte);
}
// Write Data
for (bd_size_t i = 0; i < size; i++) {
_spi.write(data[i]);
}
return;
}
qspi_status_t SPIFBlockDevice::_spi_send_erase_command(unsigned int erase_inst, bd_addr_t addr, bd_size_t size)
{
tr_info("INFO: Inst: 0x%xh, addr: %llu, size: %llu", erase_inst, addr, size);
_spi_send_general_command(erase_inst, addr)
return;
}
qspi_status_t SPIFBlockDevice::_spi_send_general_command(unsigned int instruction, bd_addr_t addr)
{
// Send a general command Instruction to driver
uint32_t dummy_bytes = _dummy_and_mode_cycles / 8;
uint8_t dummy_byte = 0x00;
uint8_t *addr_byte_ptr = (((int)addr) & 0x00FFF000);
uint8_t *data = (uint8_t *)buffer;
addr_byte_ptr += (_address_size-1)
// Write 1 byte Instruction
_spi.write(instruction);
// Write Address (can be either 3 or 4 bytes long)
for (uint32_t i = 0; i < _address_size; i++) {
_spi.write(*addr_byte_ptr);
addr_byte_ptr--;
}
// Write Dummy Cycles Bytes
for (uint32_t i = 0; i < dummy_bytes; i++) {
_spi.write(dummy_byte);
}
return;
}
int SPIFBlockDevice::read(void *buffer, bd_addr_t addr, bd_size_t size)
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
int status = SPIF_BD_ERROR_OK;
tr_info("INFO Inst: 0x%xh", _read_instruction);
_mutex.lock();
// Set Dummy Cycles for Specific Read Command Mode
_dummy_and_mode_cycles = _read_dummy_and_mode_cycles;
_spi_send_read_command(_read_instruction, buffer, addr, size);
// Set Dummy Cycles for all other command modes
_dummy_and_mode_cycles = 0;
_mutex.unlock();
return status;
}
int SPIFBlockDevice::program(const void *buffer, bd_addr_t addr, bd_size_t size)
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
qspi_status_t result = QSPI_STATUS_OK;
bool program_failed = false;
int status = SPIF_BD_ERROR_OK;
uint32_t offset = 0;
uint32_t chunk = 0;
tr_debug("DEBUG: program - Buff: 0x%x, addr: %llu, size: %llu", buffer, addr, size);
while (size > 0) {
// Write on _page_size_bytes boundaries (Default 256 bytes a page)
offset = addr % _page_size_bytes;
chunk = (offset + size < _page_size_bytes) ? size : (_page_size_bytes - offset);
_mutex.lock();
//Send WREN
if (_set_write_enable() != 0) {
tr_error("ERROR: Write Enabe failed\n");
program_failed = true;
status = QSPIF_BD_ERROR_WREN_FAILED;
goto exit_point;
}
_spi_send_program_command(_prog_instruction, buffer, addr, chunk);
buffer = static_cast<const uint8_t *>(buffer) + chunk;
addr += chunk;
size -= chunk;
if ( false == _is_mem_ready()) {
tr_error("ERROR: Device not ready after write, failed\n");
program_failed = true;
status = QSPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
_mutex.unlock();
}
exit_point:
if (program_failed) {
_mutex.unlock();
}
return status;
}
int SPIFBlockDevice::erase(bd_addr_t addr, bd_size_t size)
{
// Check the address and size fit onto the chip.
MBED_ASSERT(is_valid_erase(addr, size));
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
int type = 0;
uint32_t chunk = 4096;
unsigned int cur_erase_inst = _erase_instruction;
int size = (int)in_size;
bool erase_failed = false;
int status = QSPIF_BD_ERROR_OK;
// Find region of erased address
int region = _utils_find_addr_region(addr);
// Erase Types of selected region
uint8_t bitfield = _region_erase_types_bitfield[region];
tr_debug("DEBUG: erase - addr: %llu, in_size: %llu", addr, in_size);
// For each iteration erase the largest section supported by current region
while (size > 0) {
// iterate to find next Largest erase type ( a. supported by region, b. smaller than size)
// find the matching instruction and erase size chunk for that type.
type = _utils_iterate_next_largest_erase_type(bitfield, size, (int)addr, _region_high_boundary[region]);
cur_erase_inst = _erase_type_inst_arr[type];
chunk = _erase_type_size_arr[type];
tr_debug("DEBUG: erase - addr: %llu, size:%d, Inst: 0x%xh, chunk: %d , ",
addr, size, cur_erase_inst, chunk);
tr_debug("DEBUG: erase - Region: %d, Type:%d",
region, type);
_mutex.lock();
if (_set_write_enable() != 0) {
tr_error("ERROR: QSPI Erase Device not ready - failed");
erase_failed = true;
status = QSPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
_spi_send_erase_command(cur_erase_inst, addr, size);
addr += chunk;
size -= chunk;
if ( (size > 0) && (addr > _region_high_boundary[region]) ) {
// erase crossed to next region
region++;
bitfield = _region_erase_types_bitfield[region];
}
if ( false == _is_mem_ready()) {
tr_error("ERROR: QSPI After Erase Device not ready - failed\n");
erase_failed = true;
status = QSPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
_mutex.unlock();
}
exit_point:
if (erase_failed) {
_mutex.unlock();
}
return status;
}
bd_size_t SPIFBlockDevice::get_read_size() const
{
return SPIF_READ_SIZE;
}
bd_size_t SPIFBlockDevice::get_program_size() const
{
return SPIF_PROG_SIZE;
}
bd_size_t SPIFBlockDevice::get_erase_size() const
{
return SPIF_SE_SIZE;
}
// Find minimal erase size supported by the region to which the address belongs to
bd_size_t SPIFBlockDevice::get_erase_size(bd_addr_t addr)
{
// Find region of current address
int region = _utils_find_addr_region(addr);
int min_region_erase_size = _min_common_erase_size;
int8_t type_mask = ERASE_BITMASK_TYPE1;
int i_ind = 0;
if (region != -1) {
type_mask = 0x01;
for (i_ind = 0; i_ind < 4; i_ind++) {
// loop through erase types bitfield supported by region
if (_region_erase_types_bitfield[region] & type_mask) {
min_region_erase_size = _erase_type_size_arr[i_ind];
break;
}
type_mask = type_mask << 1;
}
if (i_ind == 4) {
tr_error("ERROR: no erase type was found for region addr");
}
}
return (bd_size_t)min_region_erase_size;
}
bd_size_t SPIFBlockDevice::size() const
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
return _size;
}
int SPIFBlockDevice::get_erase_value() const
{
return 0xFF;
}