mbed-os/core/mbed-rtos/rtos/Thread.cpp

148 lines
4.0 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2006-2012 ARM Limited
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Thread.h"
#include "mbed_error.h"
#include "rtos_idle.h"
namespace rtos {
Thread::Thread(void (*task)(void const *argument), void *argument,
osPriority priority, uint32_t stack_size, unsigned char *stack_pointer) {
#ifdef CMSIS_OS_RTX
_thread_def.pthread = task;
_thread_def.tpriority = priority;
_thread_def.stacksize = stack_size;
if (stack_pointer != NULL) {
_thread_def.stack_pointer = (uint32_t*)stack_pointer;
_dynamic_stack = false;
} else {
_thread_def.stack_pointer = new uint32_t[stack_size/sizeof(uint32_t)];
if (_thread_def.stack_pointer == NULL)
error("Error allocating the stack memory\n");
_dynamic_stack = true;
}
//Fill the stack with a magic word for maximum usage checking
for (uint32_t i = 0; i < (stack_size / sizeof(uint32_t)); i++) {
_thread_def.stack_pointer[i] = 0xE25A2EA5;
}
#endif
_tid = osThreadCreate(&_thread_def, argument);
}
osStatus Thread::terminate() {
return osThreadTerminate(_tid);
}
osStatus Thread::set_priority(osPriority priority) {
return osThreadSetPriority(_tid, priority);
}
osPriority Thread::get_priority() {
return osThreadGetPriority(_tid);
}
int32_t Thread::signal_set(int32_t signals) {
return osSignalSet(_tid, signals);
}
int32_t Thread::signal_clr(int32_t signals) {
return osSignalClear(_tid, signals);
}
Thread::State Thread::get_state() {
#ifndef __MBED_CMSIS_RTOS_CA9
return ((State)_thread_def.tcb.state);
#else
uint8_t status;
status = osThreadGetState(_tid);
return ((State)status);
#endif
}
uint32_t Thread::stack_size() {
#ifndef __MBED_CMSIS_RTOS_CA9
return _thread_def.tcb.priv_stack;
#else
return 0;
#endif
}
uint32_t Thread::free_stack() {
#ifndef __MBED_CMSIS_RTOS_CA9
uint32_t bottom = (uint32_t)_thread_def.tcb.stack;
return _thread_def.tcb.tsk_stack - bottom;
#else
return 0;
#endif
}
uint32_t Thread::used_stack() {
#ifndef __MBED_CMSIS_RTOS_CA9
uint32_t top = (uint32_t)_thread_def.tcb.stack + _thread_def.tcb.priv_stack;
return top - _thread_def.tcb.tsk_stack;
#else
return 0;
#endif
}
uint32_t Thread::max_stack() {
#ifndef __MBED_CMSIS_RTOS_CA9
uint32_t high_mark = 0;
while (_thread_def.tcb.stack[high_mark] == 0xE25A2EA5)
high_mark++;
return _thread_def.tcb.priv_stack - (high_mark * 4);
#else
return 0;
#endif
}
osEvent Thread::signal_wait(int32_t signals, uint32_t millisec) {
return osSignalWait(signals, millisec);
}
osStatus Thread::wait(uint32_t millisec) {
return osDelay(millisec);
}
osStatus Thread::yield() {
return osThreadYield();
}
osThreadId Thread::gettid() {
return osThreadGetId();
}
void Thread::attach_idle_hook(void (*fptr)(void)) {
rtos_attach_idle_hook(fptr);
}
Thread::~Thread() {
terminate();
if (_dynamic_stack) {
delete[] (_thread_def.stack_pointer);
}
}
}